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Abstract

Background: Mesenchymal stromal cells (MSCs) have been largely investigated, in the past decade, as potential
therapeutic strategies for various acute and chronic pathological conditions. MSCs isolated from different sources,
such as bone marrow (BM), umbilical cord tissue (UCT) and adipose tissue (AT), share many biological features,
although they may show some differences on cumulative yield, proliferative ability and differentiation potential. The
standardization of MSCs growth and their functional amplification is a mandatory objective of cell therapies. The
aim of this study was to evaluate the cumulative yield and the ex vivo amplification potential of MSCs obtained
from various sources and different subjects, using defined culture conditions with a standardized platelet lysate (PL)
as growth stimulus.

Methods: MSCs isolated from BM, UCT and AT and expanded in human PL were compared in terms of cumulative
yield and growth potential per gram of starting tissue. MSCs morphology, phenotype, differentiation potential, and
immunomodulatory properties were also investigated to evaluate their biological characteristics.

Results: The use of standardized PL-based culture conditions resulted in a very low variability of MSC growth. Our
data showed that AT has the greater capacity to generate MSC per gram of initial tissue, compared to BM and UCT.
However, UCT-MSCs replicated faster than AT-MSCs and BM-MSCs, revealing a greater proliferation capacity of this
source irrespective of its lower MSC yield. All MSCs exhibited the typical MSC phenotype and the ability to
differentiate into all mesodermal lineages, while BM-MSCs showed the most prominent immunosuppressive effect
in vitro.

Conclusions: The adoption of standardized culture conditions may help researchers and clinicians to reveal
particular characteristics and inter-individual variability of MSCs sourced from different tissues. These data will be
beneficial to set the standards for tissue collection and MSCs clinical-scale expansion both for cell banking and for
cell-based therapy settings.
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Background

Mesenchymal stromal cells (MSCs) comprise a heteroge-
neous population of multipotent progenitors with
multiple biological properties, including a broad dif-
ferentiation potential, the ability to secrete paracrine
factors, a low immunogenicity and an immunosup-
pressive activity. These specific characteristics make
them ideal candidates for cell therapy [1-3]. MSCs
were initially isolated and characterized from bone
marrow (BM), but can also be found in other tissues,
including adipose tissue (AT), umbilical cord tissue
(UCT), dental pulp, amniotic fluid, placentae, syn-
ovial membranes, skeletal muscle, dermal tissue, and
umbilical cord blood [4-6]. Based on the minimal
criteria stated by the International Society of Cell
Therapy (ISCT), human MSCs can be identified by
the adherence to plastic, the expression of CD105,
CD73 and CD90 surface antigens, the lack of
hematopoietic markers (CD34, CD45, CD14 and
HLA-DR), and the ability to differentiate into tissues
of mesodermal origin, such as adipocytes, chondro-
blasts and osteoblasts [7, 8]. The prevailing view is
that MSCs, irrespective of their in vivo source, exert
their reparative function mostly through paracrine
effects rather than by differentiation into specialized
cells within the injured tissue. Indeed, it has recently
come to light that MSCs secrete a wide variety of
cytokines, chemokines and growth factors with im-
munomodulatory, angiogenic, anti-inflammatory and
anti-apoptotic activity [9-14]. Moreover, MSCs exert
an immunomodulatory function through the sup-
pression of T cell proliferation, the promotion of
regulatory T cell expansion and the secretion of im-
munosuppressive substances, protecting the injured
organ from autoimmune reactions [15-18]. For these
properties MSCs have been investigated in many
preclinical and clinical trials in various fields, includ-
ing plastic surgery, orthopedics, cardiology, neur-
ology and hematology. In particular, MSCs have
been found to be effective in the treatment of cartil-
age and bone defects, acute and chronic graft versus
host disease (GVHD), chronic wounds, type I dia-
betes, rheumatoid arthritis, Crohn’s disease, multiple
sclerosis, spinal cord injury, osteoarthritis, myocar-
dial infarction and liver failure [19-31]. Although
BM-MSCs were the first MSCs identified and are,
therefore, the best characterized, the invasive and
painful harvesting process, the low cell yield and
the lower proliferation ability in standard culture
conditions compared to MSCs isolated from other
sources such as UCT and AT [32-34] are known
limitations associated with their use. UCT and AT
represent two alternative valuable sources of MSCs,
easily accessible with minimally invasive procedures

Page 2 of 16

and reduced risks for the donor [5, 16, 33, 35-37].
AT is a convenient, abundant and readily available
source of MSCs (AT-MSCs), containing 500-fold
more cells per gram of tissue compared to BM.
Large adipose samples can be harvested from mul-
tiple sites, allowing to obtain millions of MSCs from
a single individual [38, 39]. Similarly, human UCT-
MSCs (umbilical cord tissue MSCs) can be easily
collected after the birth of an infant. UCT-MSCs
present multipotent properties, between embryonic
and adult stem cells, and exhibit a faster prolifera-
tion rate and lower immunogenicity compared to
MSCs from adult tissues [5, 12, 20, 21, 34—37, 40-46].
The medium used for the MSCs culture and propaga-
tion is crucial for the safety and efficacy of MSCs and
ideally should maintain their phenotype, differentiation
potential and functionality during multiple passages. In
the majority of studies involving MSCs, comparative
analyses between different MSCs types have been done
in medium supplemented with fetal bovine serum
(FBS), which presents several disadvantages both for
the high batch-to-batch variability, that can lead to low
quality and scarce reproducibility of culture perform-
ance, and for the low safety for cell therapy use, due to
the risks of xenogeneic immune reactions against
bovine antigens and animal pathogen transmissions
[47, 48]. To date, several human supplements have
been tested as alternatives to FBS for MSC culture. In
particular, several reports have demonstrated successful
use of human platelet lysate (PL) as a replacement for
FBS to promote growth and proliferation of MSCs
without altering their phenotypic and functional char-
acteristics [49—55]. Recently, our group has developed a
protocol for the production of a standardized pathogen-
free human PL for clinical-grade expansion of BM-MSCs
[56]. Moreover, we have also confirmed that PL is a feas-
ible FBS substitute for supporting growth and propagation
of UCT-MSCs and human cell lines [57, 58]. The avail-
ability of defined culture conditions, optimized by a very
standardized growth stimulus such as our PL, is a unique
opportunity to provide a qualified and reliable growth
assay for each relevant tissue with mesodermal capacity.
These very standardized culture conditions may help to
identify both source property and inter-individual variabil-
ity and to reveal the proliferative potential per gram of
collected tissue. In this study, we have compared MSCs
isolated from BM, UCT and AT in terms of growth
potential per gram of tissue, confirming their morph-
ology, phenotype, differentiation and immunological
capacity in standardized culture conditions. These
data will be very useful to set the acceptance criteria
for tissue collection and banking. To the best of our
knowledge, no work has so far been reported that
evaluates and compares the cumulative yield of MSCs
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isolated from different tissues and from different sub-
jects by a standardized culture method.

Methods

Platelet lysate production and lot testing

Platelet lysates (PL, trademarked as Mesengen™ and
kindly provided by Futura Relife Srl Rome, Italy) were
obtained by pools of pathogen-inactivated human donor
platelet concentrates as previously described [56]. PL
lots were released for laboratory use only when the fol-
lowing criteria had been met by screened aliquots at
least on BM-MSCs: (a) isolation of the first generation
of MSCs within 2 weeks of culture (Passage 0: P0); (b)
four fold expansion at each further passage within 1
week of culture; (c) a cumulative MSCs expansion from
PO to passage 2 (P2) equal to 35-fold or higher within 1
month of culture. Different PL lots were tested for their
ability to promote the growth of MSCs derived from
three tissue sources: BM, UCT and AT. For this purpose,
BM-MSCs, UCT-MSCs and AT-MSCs were seeded at
the same cell concentration in six-well plates and each
MSC line was cultured simultaneously with eight differ-
ent PL lots. The cell proliferation rate of the different
MSC cultures was evaluated at two successive passages
of cell expansion.

Isolation of MSCs from bone marrow, umbilical cord and
adipose tissue

All samples were obtained from healthy donors with in-
formed consent and the study was approved by the
Research Ethics Committee of San Camillo Hospital of
Rome (approval date June 4, 2015). BM samples (# = 10)
were obtained from healthy donors for allogeneic BM
transplantation (six men and four women; mean age 43
+7 years, range 29-57). Human UCTs were collected
after caesarian deliveries (# = 10) and human AT samples
(n=10) were harvested during liposuction intervention
(two men and eight women; mean age 42+9 years,
range 28-53). The tissues were stored at 4 °C and proc-
essed within 24 hours from collection. BM-MSCs were
isolated as previously described [56]. Briefly, BM-derived
mononuclear cells (BM-MNC) were isolated by dens-
ity gradient (Lympholyte, Cedarlaine, Burlington, ON,
Canada), washed with phosphate-buffered saline (PBS,
Euroclone, Pero, MI, Italy) with 0.5 % human albumin
(Grifols, Sant Cugat del Valles, Barcelona, Spain) and
0.05 M EDTA (Sigma-Aldrich, St Louis, MO, USA)
and counted using an automatic cell counter (ABX
Pentra 400, Horiba, Irvine, CA, USA). UCT cells were
isolated as previously described [58]. Briefly, whole
cord tissue was washed with sterile saline solution to
remove blood and blood clots from the outer layer
and immersed in 0.05 % sodium hypochloride (Angelini,
Rome, Italy) for 2 minutes. After washing, 10 grams of
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UCT were cut into small pieces with a sterile scalpel.
Tissue fragments were first mechanically dissociated
with gentleMACS dissociator (Miltenyi Biotech GmbH,
Bergisch Gladbach, Germany) following the manufactur-
er's instructions and then incubated for 1.5 hours at 37 °C
in a solution containing PBS with calcium and magne-
sium, 1 IU/ml collagenase NB4 (Serva Electrophoresis,
Heidelberg, Germany) and 1 IU/ml hyaluronidase
(Bioindustria, Laboratorio Italiano Medicinali, Novi
Ligure, AL, Italy). After digestion, the primary umbilical
cord tissue cells (UCTCs) were filtered through a 100-um
cell strainer (Miltenyi Biotech), washed with PBS with 0.5
% human albumin (Grifols) and 0.02 M ACDA and finally
counted using trypan blue assay. Lipoaspirates were
washed with PBS to remove contaminating blood cells
and local anaesthetics. Then, the ATs were enzymatically
digested with collagenase NB4 (0.15 IU per gram of tissue)
(Serva Electrophoresis) at 37 °C for 40 minutes in agitation.
The digested tissues were washed with PBS and 0.5 % hu-
man albumin, centrifuged at 1750 rpm for 10 minutes to
separate the floating adipocytes from the pelleted primary
stromal cells, identified as stromal vascular fraction (SVF).
SVF cells were suspended in PBS, passed through a 100-
pum mesh filter to remove clots and counted using an auto-
matic cell counter (ABX Pentra 400, Horiba).

MSCs selection and expansion

Primary BM-MNCs, UCTCs and SVF cells were plated
in culture medium (CM) consisting of o-Minimum
Essential Medium (a-MEM) (Euroclone) supplemented
with 10 % PL, 2 IU/ml heparin, 2 mM L-glutamine 100 U/
ml penicillin and 100 pg/ml streptomycin (Euroclone). CM
was replaced every 3 days. After 48 h the medium was
changed and the non-adherent cells were collected, centri-
fuged and replated in a new flask. CM for all cultures was
replaced every 3 days. Once the cultures reached 80 % con-
fluence (PO), cells were harvested by Trypsin-EDTA treat-
ment (Euroclone), counted with a Neubauer chamber and
subcultured at 2 x 10° cells per cm? until Passage 2 (P2).
Proliferation rate was determined by calculating total cell
yield and population doubling time (PDT). The total num-
ber of cells at each passage was calculated as a ratio of
number of cells harvested to number of cell seeded, multi-
plied by the total number of cells from the previous pas-
sage. MSCs total yield was calculated per gram of
processed tissue at both Passage 1 (P1) and P2. PDTs were
calculated from cell counts with the following mathemat-
ical equation: PDT: T (log2)/log (Y) - log(X) where (X) in-
dicates cells at seeding, (Y) the harvested cells and (T) the
culture time (days).

MSC phenotype analysis by flow cytometry
For phenotypic analysis BM-MSCs, UCT-MSCs and
AT-MSCs were harvested and stained for 15 minutes
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at room temperature with the following monoclonal
antibodies (mAbs): anti-human CD90 APC, CD73 PE,
CD34 PE, CD200 PE, CD273 APC, CD274 PE, CD71
FITC, CD44 PE (BD Pharmingen, Heidelberg, Germany),
anti-human HLA-DR PE, HLA-A,B,C FITC, CD144
(VE-cadherin) APC, CD31 FITC, CD105 PE (Biolegend,
San Diego, CA, USA), CD45 FITC (Tonbo, Biosciences,
San Diego, CA, USA) or with the appropriate
fluorochrome-conjugated isotype-matched mAbs to
establish background fluorescence. After incubation
cells were washed with PBS, centrifuged at 1400
RPM for 5 minutes and suspended in PBS for flow-
cytometry analysis. Samples were acquired using a
FACSCalibur (Becton Dickinson, San Jos¢, CA, USA)
and the data were analysed with CellQuest software
(Becton Dickinson).

Osteogenic, chondrogenic and adipogenic differentiation
assays

The MSCs osteogenic differentiation was induced using
the Human Mesenchymal Stem Cell Osteogenic Differ-
entiation Medium BulletKit (Lonza, Basel, Switzerland)
according to the manufacturer's instructions. Briefly,
3x 10* cells were seeded into a 35-mm cell culture
dish in CM and incubated at 37 °C in a humidified
atmosphere with 5 % CO,. After 24 hours the medium
was replaced with the Osteogenic Induction Medium and
changed every 3—4 days. After 3 weeks of differentiation,
cells were fixed with methanol and stained with alizarin
red S (Sigma-Aldrich) according to the manufacturer’s
instructions. The MSCs adipogenic differentiation was
induced using the Human Mesenchymal Stem Cell
Adipogenic Differentiation Medium BulletKit™ (Lonza)
according to the manufacturer's instructions. Briefly,
2% 10° cells were seeded into a 35-mm cell culture
dish in CM and incubated at 37 °C in a humidified
atmosphere with 5 % CO, until confluence. At 100 %
confluence the medium was replaced with the Adipogenic
Induction Medium and after 3 days the medium was re-
placed with the Adipogenic Maintenance Medium. Three
cycles of induction/maintenance were performed. After 3
weeks cells were washed twice with deionized H,O, fixed
with 4 % of formaldehyde solution for 10 minutes and
stained with Oil Red O (Sigma-Aldrich) to detect adipo-
cytes. The MSC:s differentiation into chondrogenic lineage
was performed using Human Mesenchymal Stem Cell
Chondrogenic Differentiation Medium BulletKit™ (Lonza)
according to the manufacturer's instructions. Briefly, a
micromass culture of UCT-MSCs was prepared resus-
pending 2.5 x 10° cells in Chondrogenic Differentiation
Medium (Lonza) into a polypropylene conical tube. Tubes
were incubated at 37 °C in a humidified atmosphere
with 5 % CO, and the differentiation medium was re-
placed every 3 days. After 24 days the differentiated
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chondrocytes, which formed three-dimensional clusters,
termed chondrocyte nodules, were fixed in 4 % formalin
and incubated overnight at room temperature. Nodules
were dehydrated with ethanol dilution series followed by
30 minutes incubation in xylol and then embedded in
paraffin at 58 °C. Three-micron-thick tissue sections
were obtained with a microtome. Chondrocyte differ-
entiation was detected by observing eosin/haematoxy-
lin (Sigma-Aldrich) staining of extracellular matrix.

MSC immunomodulation assay (lymphocyte proliferation
assay)

The immunoregulatory effect of BM-MSCs, UCT-MSCs
and AT-MSCs was evaluated in two experiments by co-
culturing MSCs and peripheral blood mononuclear cells
(PBMCs) using a carboxy fluorescein diacetate succini-
midyl ester (CFSE)-based proliferation assay (CSFE:
Invitrogen, Waltham, MA, USA). BM-MSCs, UCT-MSCs
and AT-MSCs were irradiated with 50 Gy and plated in
0.1 % gelatin (Merck Millipore, Billerica, MA, USA)
pre-coated 24-well plates at different cell concentra-
tions: 2.5 x 10° cells per well (MSCs/PBMC ratio 1:4)
and 1.25 x 10° cells per well (MSCs/PBMC ratio 1:8).
MSCs were plated in duplicate in 2 ml of CM and
allowed to adhere to the plate for 24 h in the pres-
ence of 50 ng/pl interferon-y (INF-y; Miltenyi Bio-
tech). Human PBMCs were obtained from healthy
blood donors after written informed consent. PBMCs
were isolated by density gradient centrifugation (Lym-
pholyte®-H, Cedarlane, Hornby, ON, Canada), washed
in PBS supplemented with FBS 5 % (Euroclone) and
counted by an automatic cell counter (ABX Pentra
400, Horiba). PBMCs were fluorescent-labelled with 2
uM CESE by incubating for 15 minutes at 37 °C in
the dark. Quench staining was performed on ice for 5
minutes by adding 5 volumes of ice-cold PBS supple-
mented with 20 % FBS. Cells were then washed three
times with cold PBS plus 10 % FBS and analysed for
CFSE staining. 1x 10° CFSE-stained PBMCs were
added to the wells previously seeded with 2.5 x 10° or
1.25x 10° adherent MSCs to obtain 1:4 and 1:8
MSCs/PBMCs ratios respectively. Co-cultures were incu-
bated in CM supplemented with 50 ng/ml pure anti-CD3
functional grade monoclonal antibody (mAb) OKT3
(Miltenyi Biotech) to stimulate T lymphocytes, and
with 300 IU/mL interleukin-2 (IL-2, Miltenyi Biotech)
to sustain T cell proliferation. The co-culture was carried
out using 24-well plates (contact culture) or transwell cul-
ture chambers (Corning Inc/Costar, Corning, NY, USA),
in which the PBMCs and MSCs were physically separated
by a membrane permeable for soluble factors. The PBMCs
stained with CSFE and cultured with anti-CD3 and IL-2
in the absence of MSCs were used as control for lympho-
cyte proliferation. Cultures were incubated at 37 °C in 5 %
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CO, and analysed after 72, 96 and 120 hours. In a
CESE-based assay, following proliferative stimulus, the
stained cells undergo mitotic events which generate a
CESE dilution profile. Generational boundaries iden-
tify adjacent daughter peaks, which are used to calcu-
late the percentage of proliferating cells falling in
each daughter peak. At the established times of cell
culture, aliquots of the CFSE-labelled cells were har-
vested, washed with PBS supplemented with 1 % FBS
and incubated for 10 minutes in the dark with 7-
amino-actinomycin D (7-AAD, BD Biosciences, San
Jose, CA, USA) to exclude dead cells. The flow cy-
tometry analysis allowed estimation of the number of
proliferating cells with respect to the starting cell
number. The levels of lymphocyte proliferation ob-
served in the co-cultures of CFSE-PBMCs plus MSCs
were normalized to the control without MSC, which
was set as 100 % proliferation. The inhibition of cell
proliferation was expressed as the percentage of total
proliferating cells.

Statistical analysis

All comparisons were performed by one-way ANOVA
and Scheffe test as post hoc comparison. A p <0.05 was
considered significant. All tests were performed by Stat-
Plus:mac Pro, version 6.0.3 (AnalystSoft Inc., Walnut,
CA, USA).

Results

PL preparations: assessment of reproducibility

Different PL lots, obtained according to standard proto-
cols previously reported and released in the presence of
criteria indicated in “Material and Methods”, were evalu-
ated once again for the ability to sustain the growth of
MSCs from different sources. Figure 1a shows that eight
lots of PL (PL1-PL8) supported an identical doubling
capacity of individual MSC populations derived respect-
ively from BM, UCT and AT, as revealed by the PDT
measured at P1 and P2, with an average variation coefti-
cient ever less than 4 % (Fig. 1b) (F = 0.479 and p = 0.847
at ANOVA and p > 0.900 for any post hoc comparison at
Scheffe test). These data confirm that the different PL
lots were manufactured to a consistent reproducible
quality ensuring reliable standardized culture conditions
when evaluating the growth potential of MSC from dif-
ferent sources.

Potential of different tissues in generating MSCs

The consistent and reproducible results observed in terms
of growth (as PDT), using several PL lots on the same
MSC population from all sources, allowed us to further
investigate the yield of MSCs obtained from a given
amount of BM, AT and UCT starting tissue under stan-
dardized conditions. The results of ten MSC expansions
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from different tissue origin revealed that each source
shows a high inter-individual variability in the amount of
MSCs obtained per gram of initial tissue, which ranged
between 2 x 10° and 80 x 10° at P2 (Fig. 2a). On average,
AT exhibited the greater capacity of generating MSCs
(44.6 x 10° +12.7 x 10° per gram) compared to both
BM (21.3 x 10° + 6.3 x 10° per gram) and UCT (14.4 x
10° +3.3 x 10° per gram) (Fig. 2b) (F=19.712 and p =
0.000 at ANOVA; p =0.008 for AT vs BM and p =0.001
for AT vs UCT at Scheffe test). Regarding the proliferation
capacity of MSC populations derived from the different
tissues, Fig. 2c shows the average value of PDT calculated
at P1 and P2, which resulted in 2.14+0.22, 1.63+0.13
and 1.7 £0.09 days for BM-MSCs, UCT-MSCs and AT-
MSC respectively (F =3.960 and p = 0.002 at ANOVA and
p =0.042 for UCT vs BM and p =0.050 for AT vs. BM at
Scheffe test for P2). Our results showed that once MSC
are selected from the initial primary cell population (P0),
UCT-MSCs and AT-MSCs cultures replicated faster than
BM-MSCs, irrespective of the MSCs yield per gram of ini-
tial tissue if standardized culture conditions are used.

General characterization of MSCs and differentiation assay
MSC population isolated from BM, AT and UCT were
analysed in order to evaluate cell morphology and differ-
entiation potential. Spindle-shaped adherent cells with
MSC morphology were observed among the three popu-
lations (Fig. 3a—c). When we analysed and compared the
ability of UCT-MSCs, AT-MSCs and BM-MSCs to dif-
ferentiate into the three mesenchymal lineages, we found
that all MSC populations had the ability to differentiate
towards adipocytes, osteoblasts and chondrocytes (Fig. 3).
In the adipogenic induction, many large, flattened, often
oval cells appeared in the culture, showing large lipid
droplet accumulation positive for Oil Red O staining,
while the non-stimulated cells maintained their original
spindle-shaped morphology and the formation of lipid
granules was not observed (Fig. 3d—f). After 3 weeks
under osteogenic stimuli all MSCs showed typical osteo-
genic morphological features and calcium deposits re-
vealed by Alizarin Red S staining, while the unstimulated
MSCs did not present Ca*" deposits (Fig. 3g—i). Under
chondrogenic stimuli MSCs showed cell condensation
in nodule-like structures and a high intensity of
glycosaminoglican production from cell aggregates,
revealed by eosin-haematoxylin staining (Fig. 3l-n).
No micromass formation was observed in non-conditioned
MSCs. The quantitative analysis of the different cul-
tures revealed that UCT-MSCs showed a weaker
differentiation potential compared to AT-MSCs and
BM-MSCs. Indeed, in all differentiation assays, UCT-
MSCs showed both a less percentage of differentiated
cells (about 30 % less, on average) and a weaker
staining intensity.



Fazzina et al. Stem Cell Research & Therapy (2016) 7:122

Page 6 of 16

Coefficient of Variation (%)

BM-MSCs

BM-MSCs
Cell Line 1
Z 3,0
=
8 25
@
E E 20
=
w0
o £
=
3 10
35 1
=
S o5
=
2 00
£ PL1 PL2 PL3 P4 PL5 PL6 PL7 PL8
UCT-MSCs
Cell Line 1
Z 30 —FP1
8 25
- Z
Q £
w0
S £
=
2 10
<
S o5
=
g oo
4 PLL PL2 PL3 P4 PL5 PL6 PL7 PL8
AT-MSCs
Cell Line 1
Z 30
=
2 25
g
- £ 20
3
< £ 15
2
3 10
<
S o5
=
=
3 00
2 PLL PL2 PL3 PL4 PL5 PL6 PL7 PL8

UCT-MSCs

Fig. 1 Platelet lysate lot testing. a MSCs growth assay with different platelet lysate lots. Two MSCs cell lines for each source (BM, UCT, AT) were
used to test the growth promotion ability and variability of eight different PL lots (PL1-PL8). MSCs proliferation was evaluated at passage 1 (P1)
and passage 2 (P2). b Coefficient of variation percentage related to the eight different PL lots (PL1-PL8) in BM-MSCs, UCT-MSCs, and AT-MSCs
cultures at P1 and P2. Results are expressed as mean + SD (standard deviation). (F = 0479 and p = 0.847 at ANOVA and p > 0.900 for any post hoc
comparison at Scheffe test) AT adipose tissue, BM bone marrow, MSCs mesenchymal stromal cells, UCT umbilical cord tissue

0,0

BM-MSCs
Cell Line2
= 3,0
£ P1
= 25 P2
o
£ 20 —
=
w0
£ 15
=
3 10
8 1,
=
2 05
=
S
2
g
£

UCT-MSCs
Cell Line 2
';; 30 P1
S 25 P2
@
E 20
o
£ 15
kS
8 10
<
S o5
=
§, 0,0
< PLL PL2 PL3 P4 PL5 PL6 PL7 PL8

AT-MISCs
Cell Line 2
3 3,0 P1
2 25 P2
£
£ 20
)
£ 15
=
3 10
5 1
=
S o5
=
2 00
& PL1 PL2 PL3 PL4 PLS PL6 PL7 PLS

®pl

#P2

AT-MSCs

MSC surface antigen profile

MSCs derived from all tissues exhibited a typical MSC
phenotype, as defined by ISCT, being strongly positive
for CD73, CD105, CD90, CD44 and CD71 and negative
for the hematopoietic markers CD34, CD45 and for the
typical endothelial antigens CD31 and CD144 (Fig. 4a, b).
The flow-cytometry analysis of immune-related markers

confirmed the constitutive expression of HLA-A,B,C anti-
gens and the absence of HLA-DR. Low levels of CD200
were found in most UCT-MSCs and in a small subset of
BM-MSCs, while it was absent in the majority of AT-
MSCs. The surface protein CD273 was highly expressed
on MSCs from all tissues, while CD274 was revealed
mostly on the surface of BM-MSCs and UCT-MSCs,
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(See figure on previous page.)

Fig. 2 Expansion potential of MSCs from BM, UCT and AT. a The expansion of MSCs from ten samples of each source (BM, UCT, AT) revealed a
high inter-individual variability in the amount of MSCs obtained per gram of initial tissue, which ranged between 2 x 10° and 80 x 10° at Passage
2 (P2). b Comparison of the average of MSCs cumulative cell yield per gram of initial tissue (BM, UCT, AT) at Passage 1 (P1) and P2. Results were
represented as mean + SEM (standard error of the mean) (F=19.712 and p < 0.000 at ANOVA; *p = 0.008 for AT vs BM and p=0.001 for AT vs

UCT at Scheffe test). ¢ Comparison of the population doubling time (PTD) mean calculated at P1 and P2 of MSCs populations derived from the
different tissues. Data are shown as means + SD of ten samples processed for each tissue (F=3.960 and p =0.002 at ANOVA and *p = 0.042 for
UCT vs BM and *p = 0.050 for AT vs BM at Scheffe test for P2). AT adipose tissue, BM bone marrow, MSCs mesenchymal stromal cells, UCT umbilical

cord tissue

whereas it exhibited low expression in AT-MSCs (Fig. 5a,
b). Our results are in accordance to published data, reveal-
ing that immune-related markers CD200, CD273 and
CD274 are differently expressed on MSCs depending on
the tissue of origin and that, among the different MSC
sources, UCT-MSCs express these markers in the greatest
proportion. These differences may affect the immuno-
logical properties of each MSCs population and may ex-
plain the lower immunogenicity of UCT-MSCs compared
to MSCs derived from other sources [18]. On the other
hand, it is worth noting that BM-MSCs may have a puta-
tive advantage in terms of low immunogenicity as com-
pared to AT-MSCs, due to relevant expression of at least
the CD274 antigen.

MSCs immunomodulation assay

To test whether MSCs obtained from various sources
could exert an immunoregulatory activity, CFSE-labelled
PBMCs, exposed to lymphocyte proliferation stimulus,
were co-cultured with irradiated MSCs. In the CFSE
proliferation assay, the flow-cytometry analysis generates
a histogram representing the distribution of cells with
respect to the CFSE expression level. Following each cell
division, the equal distribution of the CFSE to progeny
cells results in a halving of the fluorescence of daughter
cells, which specify the percentages of live cells that have
undergone cell divisions. To estimate the levels of
lymphocyte proliferation in the co-cultures with MSCs,
it was assumed that lymphocyte growth in the absence

MSCs

Adipogenesis

Osteogenesis

Chondrogenesis

cells, UCT umbilical cord tissue

Fig. 3 Morphology and differentiation assays of MSCs. Spindle-shaped adherent cells with MSCs morphology were observed in BM-MSCs (a),
UCT-MSCs (b) and AT-MSCs (c) cultures. Representative images of BM-MSCs, UCT-MSCs and AT-MSCs induced to differentiate into adipogenic
(d-f), osteogenic (g-i), and chondrogenic lineages (I-n). (Magnification x 100). AT adipose tissue, BM bone marrow, MSCs mesenchymal stromal
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of MSCs were 100 % proliferating (control). The residual
proliferative capacity of stimulated lymphocytes in the
presence of MSCs was then normalized to this control.
Figure 6 shows typical CFSE dilution profiles in the ab-
sence of MSCs (control) or in the presence of MSCs ob-
tained from all sources. Our data show that in the
presence of MSCs most proliferating lymphocytes fall
into the first-generation peak and do not move to the
next ones, as a result of MSC immunosuppressive

action. In particular, we found that BM-MSCs strongly
inhibited lymphocyte proliferation within the entire cul-
ture time (120 h), while the immunosuppressive effect
was less marked, but still remarkable, in UCT-MSCs and
AT-MSCs co-cultures (Fig. 7). Moreover, it is worth
mentioning that the ratio 1:4 was more effective than 1:8
and that cell-to-cell contact was required to induce the
highest immunosuppressive effect. Indeed, at the ratio of
1:4, in the cultures established in a cell-to-cell contact



Fazzina et al. Stem Cell Research & Therapy (2016) 7:122

Page 10 of 16

100

80

60

40

Expression ( %)

20

BM-MSCs

UCT-MSCs

Counts
a0 120 160 200
LS,

120 160 200

Counts
0

10
AntiHLAABC FITC

Counts
40 80 120 160 200
L

1]

80 120 160 200
L

Counts

,,,‘;7
10
Anti-HLA-DR PE

g T
10! 103 104

102
HLADR PE

10!

AT-MSCs

10! 102 103
Mause g1 FITC

102 102
HLADR FE

102 103
<p200 PE

Immuno-related markers

120 160 200

Counts
80

Counts
80 120 160 200
Ll

a0

Counts
30
|

120 160 200
L

0

=)
N

=
]

2
10
CD273 APC

102 108
CD2T3 APC

104

Counts
40 80 120 160 200

Counts
40 80 120 160 200
L

e e D e D e e T L e e e e D e T L L L

¥ T
102 103 104
D274 PE

g
10!

T
108

=
]

B

B e e ]

sz

CD200

80 120 160 200

Counts

~ T T
102 10%
CD274 PE

20

e

CD273

CD274

HLA-A,B,C

HLA-DR

CD200

CD273

CD274

H BM-MSCs
UCT-MSCs
O AT-MSCs

Fig. 5 (See legend on next page.)

Immuno-related markers




Fazzina et al. Stem Cell Research & Therapy (2016) 7:122

Page 11 of 16

(See figure on previous page.)

Fig. 5 Immune-related markers. a Histograms showing the immune-related antigen expression of BM-MSCs, UCT-MSCs and AT-MSCs. One
representative MSC sample for each source is shown. b Quantitative expression of immune-related markers measured by flow cytometry.
Results are expressed as mean + SD (standard deviation) of five samples processed for each tissue. AT adipose tissue, BM bone marrow,

MSCs mesenchymal stromal cells, UCT umbilical cord tissue

system, the percentage of residual proliferating lym-
phocytes in the presence of BM-MSCs resulted in 3 % at
72 h and 96 h, and 15 % at 120 h, whereas it was 21
%, 17 % and 30 % in the presence of UCT-MSCs and
31 %, 27 % and 41 % with AT-MSCs respectively
(Fig. 7) (F =29.025 and p = 0.000 at ANOVA and p = 0.000
for BM vs AT, p =0.001 for BM vs UCT, p = 0.029 for AT
vs UCT at Scheffe test). AT-MSCS and UCT-MSCs
produced a lower proliferative reduction of responding
lymphocytes, especially when tested in transwell cultures
(F=53.301 and p=0.000 at ANOVA and p=0.000 for
BM vs AT, p=0.001 for BM vs UCT, p=0.237 for AT vs

UCT at Scheffe test). Overall, the 1:8 ratio produced lower
reduction of proliferation in all sources and samples tested
(F=6.57 and p =0.008 at ANOVA and p =0.152 for BM
vs AT, p =0.009 for BM vs UCT, p = 0.328 for AT vs UCT
at Scheffe test for contact cultures; F =2.86 and p = 0.088
at ANOVA and p = 0.151 for BM vs AT, p =0.152 for BM
vs UCT, p =0.981 for AT vs UCT at Scheffe test for trans-
well cultures).

Discussion
MSCs define a population of progenitor cells with low
immunogenicity, ease of accessibility, broad differentiation

mesenchymal stromal cells, UCT umbilical cord tissue
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Fig. 6 CFSE dilution profile in CFSE-based lymphocyte proliferation assay. Histograms representing the distribution of proliferating lymphocytes
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tissue, BM bone marrow, CTRL control, UCT umbilical cord tissue

Fig. 7 MSC immunosuppressive effect on lymphocyte proliferation. Data show the percentages of residual proliferative capacity of stimulated
lymphocytes in the absence (CTRL) or in the presence of BM-MSCs, UCT-MSCs and AT-MSCs at ratio 1:4 and 1:8 (MSCs:PBMCs), either in cell-cell
contact or in transwell system, evaluated at 72 h, 96 h and 120 h. (F =29.025 and p =0.000 at ANOVA and xp =0.000 for BM vs AT, %p: 0.001 for
BM vs UCT, *p=10.029 for AT vs UCT at Scheffe test for 1:4 ratio in contact cultures; F = 53.301 and p = 0.000 at ANOVA and °p = 0.000 for BM vs
AT, °p=0.001 for BM vs UCT, p=0.237 for AT vs UCT at Scheffe test for 1:4 ratio for transwell cultures; F =6.57 and p=0.008 at ANOVA and
p=0.152 for BM vs AT, °p=0.009 for BM vs UCT, p=0.328 for AT vs UCT at Scheffe test for 1:8 ratio in contact cultures; F = 2.86 and p=0.088 at
ANOVA and p=0.151 for BM vs AT, p=0.152 for BM vs UCT, p =0.981 for AT vs UCT at Scheffe test for 1:8 ratio in transwell cultures). AT adipose

potential and immunomodulatory effects. Due to their po-
tential to repair and regenerate damaged tissues and or-
gans, MSCs are being largely investigated as promising
candidates for new cell-based therapies [1-3, 19, 22, 23].
In view of their rapidly increasing applications, it is es-
sential to establish standard cell culture conditions to
scale up the MSCs propagation without altering their
peculiar features and functions. Moreover, in order to
define standard criteria for tissue collection and banking,
since cell-based therapies need significant viable num-
bers of cells, that in some cases are administered
through an intravenous route at doses ranging from 10°
to 10” per kg of body weight, it is important to explore
both the MSCs cumulative yield potential per gram of
tissue processed among different possible sources and
the ex vivo amplification potential endowed with specific
cell functions. MSCs can be isolated from several human
tissues and, although they share many biological fea-
tures, such as morphology and expression of surface an-
tigens, there are some differences regarding proliferative
rates and differentiation potential between MSCs iso-
lated from different sources, which may be confirmed
only by applying a “standardized” culture method during
MSCs ex vivo expansion. In this study we attempted to
provide a standardized assay to detect the expansion
capacity of MSCs obtained from various sources and dif-
ferent subjects. We evaluated the number of MSCs ob-
tained per gram of tissue after expansion at both Passage
1 (P1) and Passage 2 (P2), considering P2 as our growth
endpoint. Each culture experiment was performed using
PL, a standardized culture supplement, which has been
demonstrated to have growth-promoting properties for
MSCs, while maintaining their immunophenotype, dif-
ferentiation potential and immunomodulatory proper-
ties. In addition, PL can be produced under Good
Manufacturing Practice (GMP) conditions for clinical-
scale expansion of MSCs for therapeutic applications
[56, 58, 59]. In our experiments, we efficiently isolated
MSCs either from BM, AT or UCT. To confirm once
again the reliability of our culture conditions to generate
very reproducible results in terms of MSCs growth, we
evaluated the proliferative potential of the same MSC
population exposed to different batches of PL prepara-
tions. Our results showed that different batches of PL

supported an identical proliferation capacity of a single
MSC population from both BM, UCT and AT, with an
average variation coefficient ever less than 4 %. By using
this standardized culture protocol, we evaluated the abil-
ity of BM, AT and UCT from different subjects to gener-
ate MSCs from a given amount of starting tissue. These
cultures revealed that each source suffers from high
inter-individual variability in producing MSC per gram
of tissue, ranging from 2 x 10° to 80 x 10° at P2. The re-
sults showed that AT has the greater capacity to gener-
ate MSC per gram of tissue, compared to BM and UCT.
However, taking into account the PDT mean values, our
findings indicated that, once established, UCT-MSCs
replicated faster than AT-MSCs and BM-MSCs, revealing
a greater proliferation capacity irrespective of its lower
MSC vyield per gram of initial tissue. Thus, regarding the
proliferation capacity of MSCs from the three tissues, our
data confirmed that UCT-MSCs and AT-MSCs exhibited
a higher growth rate compared to BM-MSCs in parallel
cultures if they were grown in standardized conditions
and not by methods that were optimized on a specific
MSC source. These data appear quite reliable considering
the low variability of the culture conditions employed in
the experiments and are in accordance with previously
published data revealing that BM-MSCs exhibit a lower
proliferation rate compared to MSCs from other sources
[10, 16, 33]. Regarding the general characteristics of
MSCs, cells isolated from the three sources exhibited typ-
ical MSC morphology and share the expression of the
classical MSC markers and the absence of hematopoietic
and endothelial markers. With regard to differentiation
capacity, minimal criteria defined by ISCT state that MSCs
should be able to differentiate into bone, cartilage and adi-
pose tissue under certain stimuli in vitro [7]. Our results
demonstrated that all MSC populations had the ability to
differentiate towards adipocytes, osteoblasts and chondro-
cytes. However, the qualitative and quantitative analysis of
the different cultures revealed that UCT-MSCs had a
weaker differentiation potential towards all lineages com-
pared to AT-MSCs and BM-MSCs. It is widely accepted
that MSCs have immunosuppressive and immunomodula-
tory functions [9, 12, 13, 15-17]. Due to their ability to
regulate immune responses, MSCs are potential candi-
dates for treating a wide range of immune-mediated
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diseases. Thus, great benefit may result from comparing
the immune properties of MSCs derived from different
sources to identify the best source for clinical treatment of
immune-related pathological conditions.

The analysis of immune-related markers confirmed
the constitutive expression of HLA-A,B,C antigens and
the absence of HLA-DR in all MSCs derived from the
three tissues. Furthermore, we analysed the expression
of CD200, CD273 and CD274 surface antigens, which
have recently been suggested to be involved in the im-
munoregulatory mechanism of MSCs, contributing to
fetomaternal and allograft tolerance [18, 60]. We found
a mild to moderate expression of CD273 and CD274 in
all MSCs while CD200 was mostly expressed at low level
in UCT-MSCs and in a small subset of BM-MSCs, how-
ever, was totally absent in the AT-MSCs. To further in-
vestigate the immunosuppressive properties of MSCs we
examined their effect on stimulated T cell proliferation
using co-culture experiments with both the contacted
mix culture and the transwell system, in which the T
cells and the MSCs were physically separated by a
membrane permeable for soluble factors. The results
demonstrated that BM-MSCs had the most prominent
suppressive effect at a ratio of 1:4 during cultures estab-
lished in a cell-to-cell contact system. Of note, this
significant effect of BM-MSCs persisted also in non-
contact cultures (transwell), still at the higher effector-
target ratio. Hence, BM-MSCs seem to be the most
suitable cell population to establish cell-based treatments
in allo-auto aggressive disorders. However, AT-MSCS and
UCT-MSCs produced a lower but still remarkable prolif-
erative reduction of responding lymphocytes, when tested
in cell-contact cultures.

Conclusions

In this study we showed that MSCs isolated from vari-
ous tissues exhibit differences in their cumulative yield,
ex vivo amplification potential and immunomodulation
activity. These data will be very useful to define standard
criteria for tissue collection and MSCs clinical-scale ex-
pansion both for cell banking and for cell-based therapy
settings. To the best of our knowledge, no work has so
far been reported establishing standardized MSCs cul-
ture conditions to evaluate and compare their “potency”
and their related functions from different tissues in par-
allel experiments.
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