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Abstract

Background: Dental pulp tissue contains many undifferentiated mesenchymal cells, which retain the ability to
differentiate into mature cells. Induced pluripotent stem cells have been developed from various cell sources,
including dental pulp-derived stem cells, and evaluated for potential application to regenerative therapy. Dental
pulp tissues overexpress CD44, a cell-adhesion factor involved in the induction of mineralization. In this study, we
investigated the effects of hyaluronan—a known CD44 ligand—on dental pulp stem cells (DPSCs).

Methods: DPSC CD44 expression was analyzed using immunofluorescence staining, flow cytometry, and western
blotting. Cell proliferation was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
assay. Effects of hyaluronan on the cell cycle were analyzed by flow cytometry. Alkaline phosphatase activity was
employed as marker of mineralization and measured by fluorometric quantification and western blotting. Bone
morphogenetic protein (BMP)-2, BMP-4, dentin sialophosphoprotein (DSPP), and dentin matrix acidic phosphoprotein 1
(DMP-1) levels were measured using real-time polymerase chain reaction. Odontoblastic differentiation and the close
cell signaling examination of DPSC differentiation were determined using western blotting.

Results: Hyaluronan induced expression of the odontoblastic differentiation markers DMP-1 and DSPP. Moreover, the
odontoblastic differentiation induced by hyaluronan was mediated by CD44—but not by Akt, Smad1 or MAPK signaling.

Conclusions: Our results indicate that hyaluronan induces odontoblastic differentiation of DPSCs via CD44. This suggests
that hyaluronan plays a crucial role in the induction of odontoblastic differentiation from DPSCs. Our findings may aid
the development of new, inexpensive, and effective conservative treatments for dental pulp repair.

Keywords: Dental pulp calcification, Bone mineralization, DMP-1 protein, DSPP protein, Dental pulp capping,
Smad1 protein

Background
Dental pulp cells have the capacity to differentiate into
odontoblasts. Dental damage caused by oral cavities,
periodontal disease, or mechanical trauma induces the
formation of reparative dentin, a poorly organized
mineralized matrix that serves as a protective barrier to
the dental pulp [1].

Dental pulp stem cells (DPSCs) are present in human
dental pulp, even in adult pulp, as clonogenic and highly
proliferative cells obtained after enzymatic disaggrega-
tion [2]. These cells harbor the characteristics of plastic
adherence and express stem cell markers such as CD29,
CD90, CD44, and CD146 [2]. Additionally, DPSCs
express transcription factors expressed by embryonic
stem cells, including Oct-4, Sox-2 and Nanog [3, 4].
Numerous researchers have since shown that DPSCs
retain the capacity for both self-renewal and multiple
cell lineage differentiation [5, 6] and can be stimulated,
under specific conditions, to differentiate into various
cell types such as adipocytes, myoblasts, neurons,
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chondrocytes, odontoblasts and osteoblasts both in vitro
and in vivo [7–9]. Animal studies have also revealed
great potential for DPSCs in the repair and regeneration
of various tissues, including bone [10], muscle [3] and
teeth [11].
Odontoblasts, especially those in the root ends of im-

mature teeth, express CD44, which is strongly expressed
by cells undergoing mineralization, such as ameloblasts,
odontoblasts and osteoblasts in calcifying areas [12].
CD44 functions as an adhesion molecule and is a
broadly distributed type I transmembrane glycoprotein
receptor for the glycosaminoglycan hyaluronan (HA)
[13, 14]. However, the effects of HA stimulation of
CD44 on DPSCs remain unknown. In this study, we
investigated the effect of HA on DPSCs.

Methods
Reagents and cell culture
Hyaluronic acid sodium salt (CAS number 9067-32-7)
was purchased from Nacalai Tesque Co. (Kyoto, Japan).
This reagent was slowly dissolved in double-distilled
water to a final concentration of 10 mg/mL (1 %). HA
was further diluted in culture medium to required
concentrations prior to use in cell culture experiments.
Dulbecco’s modified Eagle’s medium (DMEM) was
purchased from Invitrogen (Carlsbad, CA, USA). Fetal
bovine serum (FBS) was purchased from Nichirei
Bioscience (Tokyo, Japan).
Human DPSCs were obtained from AllCells LLC

(Emeryville, CA, USA). Cell cultures were maintained in
DMEM supplemented with 10 % FBS and antibiotics
(100 U/mL penicillin and 100 μg/mL streptomycin) at
37 °C in a humidified atmosphere containing 5 % CO2.
The passage numbers were limited at 2–5 to avoid cell
deterioration.

Immunofluorescence
Monolayers of DPSCs were cultured with DMEM
containing 10 % FBS for 48 h in four-well covered glass
chamber slides. After two washes with phosphate-
buffered saline (PBS) containing 1 % bovine serum albu-
min (Sigma-Aldrich, St. Louis, MO, USA), cell surface
Fc receptors were blocked with immunoglobulin G (IgG)
(Santa Cruz Biotechnology Inc., Dallas, TX, USA) on ice
for 15 min. The cells were then stained for 30 min at
37 °C with a 1:100 dilution of a fluorescein isothiocyan-
ate (FITC)-conjugated anti-CD44 monoclonal antibody
(BD Biosciences, Franklin Lakes, NJ, USA) or an
isotype-matched FITC-conjugated IgG control antibody
(BD Biosciences). After washing, the cells were analyzed
using an ECLIPSE TS100-F microscope equipped with
an Intensilight C-HGFIE illumination system (Nikon
Co., Ltd., Tochigi, Japan). Digital images were processed
with NIS Elements BR3.2 imaging software (Nikon Co.,

Ltd.) and Adobe Photoshop 7.0 (Adobe Systems, San
Jose, CA, USA).

Evaluation of cell growth using the MTT assay
DPSCs were seeded into 96-well microtiter plates at a
density of 1 × 103 cells/well and allowed to adhere for
24 h. Cell viability was assessed on a daily basis by
addition of 5 μL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) using a Cell Proliferation
Kit I (Roche Diagnostics, Mannheim, Germany), accord-
ing to the manufacturer’s instructions. The number of
viable cells was assessed by measuring the absorbance of
the produced formazan crystals at 595 nm with a MultiS-
kan JX microplate reader and Ascent software (Thermo
Labsystems, Vantaa, Finland). The measurement was
performed once per day for 5 days. Cell growth was
calculated relative to the value on the first day, which was
set at 100 %.

Quantification of alkaline phosphatase
DPSCs were seeded into 24-well plates at a density of
5 × 104 cells/well, and incubated with HA (1–20 μg/mL)
for 1 week. The cells were then harvested as cell lysates
using a SensoLyte® FDP Alkaline Phosphatase Assay Kit
(AnaSpec, San Jose, CA, USA), which uses a fluorogenic
assay to determine alkaline phosphatase (ALP) activity.
The assay was performed according to the manufacturer’s
instructions, and fluorescence signals were measured with
SpectraFluor plus XFluor4 software (Tecan Japan Co.,
Ltd., Kawasaki, Japan).

Flow cytometry analysis
For analysis of CD44-positive cell surface antigen expres-
sion, untreated and HA-treated DPSCs were harvested by
trypsinization, washed with PBS, centrifuged into cell pel-
lets and resuspended in fluorescence-activated cell sorting
(FACS) buffer (PBS containing 0.5 % bovine serum albu-
min). The cells were stained for 30 min at 4 °C with a
FITC-conjugated anti-human CD44 antibody (BD
Biosciences, San Jose, CA, USA) or an isotype-matched
FITC-conjugated IgG control antibody (BD Biosciences).
Flow cytometry was performed using an EPICS Altra flow
cytometer (Beckman Coulter, Brea, CA, USA) and the
data were analyzed using Expo-3 v1.2B software (Beckman
Coulter).
For cell cycle analysis, the cell cycle distribution of

cells was assayed after 48 h by using flow cytometry to
measure the DNA content of nuclei labeled with PI
according to the manufacturer’s instructions (BD
Pharmingen, BD BioSciences). Data acquisition and
analysis were performed using an EC800 flow cytometer
(Sony Biotechnology, Tokyo, Japan) with EC800 analysis
software (Sony Biotechnology).
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Immunoblot analysis
Whole-cell extracts from DPSCs were obtained using a
lysis buffer (10× RIPA buffer; Cell Signaling Technology,
Beverly, MA, USA) supplemented with 1 mM phenyl-
methanesulfonyl fluoride plus one tablet of protease in-
hibitor cocktail (Complete, ethylenediaminetetraacetic
acid (EDTA)-free; Roche Diagnostics GmbH, Mannheim,
Germany). Aliquots of cell lysates (50 μg protein) were
separated by 8 % or 12 % sodium dodecyl sulfate
polyacrylamide gel electrophoresis and electroblotted
onto polyvinylidene difluoride membranes. The mem-
branes were probed with primary antibodies, comprising
anti-CD44 mouse monoclonal antibody, anti-phospho-Akt
rabbit monoclonal antibody, anti-Akt rabbit monoclonal
antibody, anti-phospho-GSK3β rabbit monoclonal anti-
body, anti-phospho-Smad1 rabbit monoclonal antibody,
anti-Smad1 rabbit monoclonal antibody, anti-phospho-β-
catenin (Ser552) rabbit monoclonal antibody, anti-
phospho-β-catenin (Ser675) rabbit monoclonal antibody,
anti-β-catenin rabbit monoclonal antibody, anti-phospho-
p44/42 MAPK rabbit monoclonal antibody (all from Cell
Signaling Technology, Danvers, MA, USA), anti-dentin sia-
lophosphoprotein (DSPP) mouse monoclonal antibody
(Santa Cruz Biotechnology Inc.), anti-dentin matrix
protein-1 (DMP-1) rabbit polyclonal antibody, anti-ALP
rabbit monoclonal antibody (both from Abcam PLC, Cam-
bridge, UK), and anti-beta-actin antibody (Sigma-Aldrich)
at the dilutions recommended by the manufacturers.
Signals were detected using corresponding peroxidase-
conjugated secondary antibodies (anti-rabbit IgG antibody
or anti-mouse IgG antibody; Cell Signaling Technology),
and signal bands were visualized by chemoluminescence
(Clarity™ Western ECL substrate; Bio-Rad, Hercules, CA,
USA). The membranes and images were developed with a
ChemoDoc™ Imaging System (Bio-Rad).

Real-time polymerase chain reaction
Total RNA was purified using Trizol reagent (Invitrogen
Life Technologies, Carlsbad, CA, USA), and 600 ng of
total RNA was used for reverse transcription with an
iScript™ Advanced cDNA Synthesis Kit (Bio-Rad). For
real-time polymerase chain reaction analysis, 1 μL of
cDNA sample at 1:20 dilution, 1 μL each of forward and
reverse primers (final, 500 nM), 7 μL of nuclease-free
water, and 10 μL of SsoAdvanced SYBR Green Supermix
(Bio-Rad) were used. The following primers were used:
DMP-1 (GenBank ID: NM_004407.3) forward primer
5′-CCTGAGGATGAGAACAGCTCCA-3′ and reverse
primer 5′-GATCTGCTGCTGTCTTGAGAGTCAC-3′;
DSPP (GenBank ID: NM_014208.3) forward primer 5′-
CCAGAGCAAGTCTGGTAACGGTAA-3′ and reverse
primer 5′-GTCACTGCCTTCACTGTCACTGTC-3′;
bone morphogenetic protein (BMP)-2 (GenBank ID:
NM_001200.2) forward primer 5′-GGAACGGACATT

CGGTCCT-3′ and reverse primer 5′-GGAAGCAGCAA
CGCTAGAAG-3′; BMP-4 (GenBank ID: NM_001202.3)
forward primer 5′-TCACTGCAACCGTTCAGAGGTC-
3′ and reverse primer 5′-CCAATCTTGAACAAACTTG
CTGGA-3′; and GAPDH (GenBank ID: NM_002046.5)
forward primer 5′-GCACCGTCAAGGCTGAGAAC-3′
and reverse primer 5′-TGGTGAAGACGCCAGTGGA-
3′. Reaction conditions were one 5-min cycle at 95 °C,
followed by 45 cycles of 95 °C for 10 s and 72 °C for
10 s. The reactions and relative quantification analyses
were performed using a LightCycler 480 instrument
(Roche Diagnostics, Indianapolis, IN, USA).

Signal blocking assays
DMH-1, a Smad1/5 inhibitor and SCH772984, a novel ERK1/
2-specific inhibitor were purchased from Selleckchem.com
(http://www.selleckchem.com/). LY294002, an Akt inhibitor,
was purchased from Cell Signaling Technology. An anti-
CD44 monoclonal antibody (Clone A3D8; Sigma-Aldrich)
was used in neutralization assays.
DPSCs were pretreated with the inhibitors or

CD44-blocking antibody for 30 min before stimulation
with HA (10 μg/mL). After 30 min of stimulation, the
cells were harvested to investigate the inhibition of
phosphorylation for several signaling molecules. After
24 h, the odontoblastic differentiation markers DMP-
1 and DSPP were evaluated by immunoblotting.

Statistical analysis
Data are presented as the mean ± SD and evaluated
using one-way analysis of variance followed by Dunnett’s
multiple comparison. Values of P < 0.05 were accepted
as statistically significant.

Results
Expression of CD44 in DPSCs
Most CD44 antigenicity in dental pulp tissue is present in
the incomplete region of the roots [12]. However, whether
these CD44-expressing cells are DPSCs is unknown. Con-
sequently, we identified CD44 expression on the DPSC cell
surface (Fig. 1a, upper panels). Flow cytometry revealed a
high proportion of CD44-positive cells (approximately
62 %; Fig. 1b, c). We then investigated whether CD44 ex-
pression was altered by treatment with HA, a known
CD44 ligand [15]. We found that the number of CD44-
expressing cells was significantly increased from 62 % to
72 % at 5 min following treatment with HA, while this ex-
pression significantly decreased to 54 % after 30 min and
continued to decrease to 22 % (Fig. 1c).

HA induces mineralization in DPSCs
We examined whether HA induces DPSC cell growth,
and found that HA had no significant effect on the
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DPSC cell proliferation (Fig. 2a). Additionally, cell cycle
analysis revealed that HA does not influence the cell
cycle (Fig. 2b and c). We then investigated whether
DPSCs were otherwise affected by treatment with HA, a
known ligand of CD44. First, we considered whether
DPSC mineralization was influenced by HA, because
CD44 in pulp tissue plays an important role in
mineralization [12]. Therefore, we used immunoblotting
to measure ALP protein levels as an indicator of
mineralization [6, 16]. ALP protein levels increased in a
concentration-dependent manner when DPSCs were
cultured with HA for 1 week (Fig. 2d and e). Next, we

quantified the amount of ALP using a fluorogenic assay
(Fig. 2e), and found similar results. These results suggest
that DPSC mineralization was guided by HA.

HA induces odontoblastic differentiation, but not
osteogenic differentiation, in DPSCs
We also investigated how HA induces DPSCs to
undergo mineralization, to evaluate whether HA in-
duces odontoblastic differentiation or osteogenic dif-
ferentiation. We measured the mRNA levels of BMP-
2 and BMP-4 as osteogenic differentiation markers
[17, 18] and DSPP and DMP-1 as odontoblastic

a

b c

Fig. 1 DPSCs express CD44 on the cell surface. a Live cell images showing signals from anti-CD44 antibody immunofluorescence (green) and
Hoechst 33258 nuclear staining (blue). The rightmost panels indicate merged images from double staining. Scale bar: 100 μm. The top panels
show DPSCs that were not treated with HA, while the bottom panels show DPSCs treated with HA at 10 μg/mL for 5 min. b Representative
single-parameter diagrams showing CD44 expression by flow cytometry. RFI relative fluorescence intensity. c Bar graphs of the FACS analysis data
for HA treatment time course of CD44 cell surface expression. Data are presented as the mean ± SD of three different experiments. *P < 0.05, vs.
control. **P < 0.01, vs. control. DPSCs dental pulp stem cells, FITC fluorescein isothiocyanate, HA hyaluronic acid
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Fig. 2 HA induces ALP, but does not influence dental pulp stem cell (DPSC) proliferation or cell cycle distribution. a DPSC growth curve following
treatment with hyaluronic acid (HA). Increases are shown as percentages relative to the value on the first day of culture without HA, which was
set at 100 %. Data are presented as the mean ± SD of at least three independent experiments. b Representative figures of cell cycle distribution
are shown. DPSCs were treated with HA (10 μg/mL) for 48 h. Cell cycle distribution was analyzed by flow cytometry and cells classified into
G0 + G1, S and G2 + M phases. c Bar graphs represent the percentage of cells within the different cell cycle phases of DPSCs treated as indicated.
Data are presented as the mean ± SD. d ALP and CD44 protein levels were evaluated by western blotting. Whole-cell lysates of harvested DPSCs
treated with HA at various concentrations for 1 week were examined. e Intracellular ALP concentrations were quantified using a fluorogenic ALP
assay. Data are presented as the mean ± SD. *P < 0.05, vs. control. **P < 0.01, vs. control. ALP alkaline phosphatase, HA hyaluronic acid
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differentiation markers [19, 20] in DPSCs cultured
with HA for 24 h. We found that BMP-2 and BMP-4
mRNA levels underwent no significant changes, while
DSPP and DMP-1 mRNA levels were markedly in-
creased. The DMP-1 mRNA level increased 7.7-fold,
while that of DSPP increased 6.7-fold (Fig. 3a).
Additionally, we found that HA also increased DMP-
1 and DSPP protein levels (Fig. 3b). These results
suggest that HA stimulated DPSCs toward odonto-
blastic differentiation.

HA-induced odontoblastic differentiation does not
involve Akt, Smad1 or MAPK signaling
The above data suggest that HA stimulates DPSCs
toward odontoblastic differentiation, but the under-
lying mechanism remains unclear. There have been
few studies of signaling in DPSCs, so we next exam-
ined the types of intracellular signaling induced by
HA in DPSCs on the basis of citations provided in a
previous report [21]. We investigated whether HA
could induce Akt phosphorylation, because the induc-
tion of differentiation by HA is thought to occur by
activation of PI3 kinase and Akt in DPSCs [22, 23].
We found that peak levels of Akt and GSK3β phos-
phorylation occurred 30–45 min after treatment with
HA (Fig. 4a), confirming that Akt signaling and
downstream GSK3β signaling were activated in
DPSCs. We then verified that DPSCs were induced to

undergo differentiation into odontoblasts in response
to this Akt signaling by examining whether the
odontoblastic differentiation of DPSCs induced by HA
stimulation was inhibited in the presence of
LY294002, an Akt activation inhibitor [24]. We found
that DMP-1 expression was not inhibited, although
LY294002 did inhibit the Akt and GSK3β phosphoryl-
ation induced by HA treatment (Fig. 4b, c). We also
investigated Smad signaling, as these signals are in-
volved in osteogenic differentiation. Specifically, we
examined whether HA could induce Smad signaling
during odontoblastic differentiation of DPSCs. Smad1
phosphorylation reached a peak after 30–45 min of
treatment (Fig. 5a), similar to findings for Akt. Fur-
thermore, we investigated whether the odontoblastic
differentiation mediated by HA could be inhibited by
culture with DMH-1, a Smad1 phosphorylation inhibi-
tor [25]. Although DMH-1 inhibited Smad1 phos-
phorylation after treatment with HA (Fig. 5b), DMP-1
expression was not inhibited (Fig. 5c).
Others have reported that HA-CD44 signaling in

other cells activates Erk1/2, a mitogen-activated pro-
tein kinase (MAPK) [26, 27]. Therefore, we next in-
vestigated MAPK signaling. HA-induced DMP-1
expression was not affected by the inhibition of Erk1/
2 phosphorylation by SCH772984, a novel inhibitor of
Erk1/2 activation [28] (Fig. 6a–c). We also considered
Wnt/beta-catenin signaling, because others have

Fig. 3 HA induces expression of DSPP and DMP-1 in DPSCs. a DPSCs were treated with HA (10 μg/mL) for 24 h, and then the mRNA levels of
DMP-1, DSPP, BMP2, and BMP4 were measured using relative quantitative real-time PCR. b Protein levels of DSPP and DMP-1 were determined by
western blotting. BMP bone morphogenetic protein, DMP-1 dentin matrix protein-1, DPSCs dental pulp stem cells, DSPP dentin sialophosphoprotein,
HA hyaluronic acid, mRNA messenger RNA
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investigated the importance of this signaling pathway
in odontogenic differentiation in recent years [29].
However, HA did not induce phosphorylation of beta-
catenin (Additional file 1: Figure S1). These findings

indicate that although Smad, Akt and MAPK signaling
were all activated by HA in DPSCs, these pathways were
not involved with the odontoblastic differentiation of
DPSCs.

b

c

Fig. 4 HA induces phosphorylation of Akt in DPSCs. a DPSCs were treated with HA (10 μg/mL) over a time course of 5–360 min, and then examined for
phosphorylation of Akt and GSK3β by western blotting. b DPSCs were treated with HA (10 μg/mL) in the presence of LY294002 for 30 min, and the
inhibition of Akt phosphorylation was validated. c Following inhibition of Akt phosphorylation by LY294002 treatment, DMP-1 expression was determined
by western blotting. DMP-1 dentin matrix protein-1, HA hyaluronic acid
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Odontoblastic differentiation of DPSCs induced by HA
treatment involves CD44 signaling
Because HA is a known ligand of CD44, we investigated
whether HA-mediated DMP-1 expression and odonto-
blastic differentiation arose via CD44 signaling. We pre-
cultured DPSCs with a CD44-neutralizing monoclonal
antibody to inactivate CD44, and evaluated HA-induced
DMP-1 expression levels. Inactivation of CD44 in DPSCs

inhibited HA-induced DMP-1 expression (Fig. 7). This
indicates that DMP-1 expression induced by HA
involves CD44 signaling.

Discussion
We initially aimed to investigate the type of differentiation
induced by CD44 stimulation in DPSCs. Our data show
that CD44 was expressed in approximately 62 % of DPSCs

b

c

Fig. 5 HA induces phosphorylation of Smad1 on DPSCs. a DPSCs were treated with HA (10 μg/mL) over a time course of 5–360 min and then
examined for phosphorylation of Smad1 by western blotting. b DPSCs were treated with HA (10 μg/mL) in the presence of DMH-1 for 30 min,
and the inhibition of Smad1 phosphorylation was verified. c Following inhibition of Smad1 phosphorylation by DMH-1 treatment, DMP-1 expression
was determined by western blotting. DMP-1 dentin matrix protein-1, HA hyaluronic acid
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and that odontoblastic differentiation was promoted by
HA-induced stimulation of CD44 in DPSCs.
Previous studies have suggested that DPSCs have

the potential to regenerate dental tissues [30],
myoideum and nerve tissues [9, 31]. Although dental
pulp-derived induced pluripotent stem cells have been
evaluated for use in clinical applications [32, 33], and
HA stimulation of CD44 is important for differenti-
ation leading to the production of odontoblasts, few

studies have investigated the precise signaling mecha-
nisms operating in DPSCs.
Low molecular weight HA can induce cell prolifera-

tion and induce osteocalcin mRNA expression in a
dose-dependent manner in calvarial-derived mesen-
chymal cells [34]. However, others have reported that
high molecular weight HA can induce mineralization
of dental pulp tissue and dental pulp cells [35, 36].
Our investigation employed a high molecular weight

b

c

Fig. 6 HA induces phosphorylation of Erk1/2 on DPSCs. a DPSCs were treated with HA (10 μg/mL) over a time course of 5–180 min and then
examined for phosphorylation of Erk1/2 by western blotting. b DPSCs were treated with HA (10 μg/mL) in the presence of SCH772984 for 30 min, and
the inhibition of Erk1/2 phosphorylation was verified. c Following inhibition of Erk1/2 phosphorylation by SCH772984 treatment, DMP-1 expression
was determined by western blotting. DMP-1 dentin matrix protein-1, HA hyaluronic acid, MAPK mitogen-activated protein kinase
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HA. Treatment with this high molecular weight HA
increased the proportion of CD44-positive DPSCs
from 62 % to 72 % at 5 min posttreatment. There-
after, cell surface expression of CD44 declined to
22 % at 24 h posttreatment (Fig. 1c). Meanwhile,
CD44 levels in whole cell lysate remained unchanged
following treatment with HA for either 24 h or 1 week
(Fig. 2d and Fig. 7). These findings suggest that CD44
might shift into cells and away from the cell surface
following HA treatment.
Although HA does not induce cell proliferation or

affect the cell cycle in DPSCs (Fig. 2), we clearly demon-
strated that HA signaling via CD44 is important for
odontoblastic differentiation in DPSCs. Interestingly, HA
induced activation of Smad1, Akt and Erk1/2, but not
beta-catenin. The peak of Akt and Smad1 phosphoryl-
ation occurred 30 min after treatment with HA, while
the peak of Erk1/2 phosphorylation occurred 5 min after
HA treatment. Furthermore, degradation of phosphory-
lated Erk1/2 did not occur as was the case for Akt and
Smad1 phosphorylation (Figs. 4, 5, and 6). However,
while HA-induced Erk1/2 activation exhibited different
characteristics to HA-induced Akt and Smad1 activation,
these signaling pathways did not directly promote odonto-
blastic differentiation in DPSCs. This suggests that there
may be another as-yet unexplained signaling mechanism
by which HA induces odontoblastic differentiation via
CD44. Therefore, our present results and those of previ-
ous studies on HA treatment and dental pulp [35, 36]
suggest that HA induces odontoblastic differentiation via
CD44 signaling in DPSCs. Our findings indicate that the
application of HA to dental pulp medicine may be useful
for dental pulp capping or tooth regeneration in the fu-
ture. Despite our best efforts, the mechanisms underlying
CD44-induced differentiation of DPSCs to odontoblasts
remain unclear, and will require further examination in

future studies. Nevertheless, our present study describes
an efficient differentiation method to derive odontoblasts
from DPSCs.

Conclusions
HA induces odontoblastic differentiation of DPSCs via
CD44, but does not promote cellular proliferation. While
HA activates Akt, Smad and MAPK signaling, there is no
clear relationship between these signaling pathways and
the odontoblastic differentiation of DPSCs. These novel
findings further our understanding of DPSC differenti-
ation, and may facilitate advances in dental pulp therapy
by enabling efficient induction of odontoblastic differenti-
ation of DPSCs.

Additional file

Additional file 1: Figure S1. HA does not induce phosphorylation of
beta-catenin on DPSCs. DPSCs were treated with HA (10 μg/mL) over a
time course of 5–360 min and then examined for phosphorylation of
beta-catenin by western blotting. (PPTX 1259 kb)
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