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Abstract

derived from pESCs.

Background: Embryonic stem cell (ESC) derivatives hold great promise for the construction of tissue-engineered
skin equivalents (TESE). However, harvesting of ESCs destroys viable embryos and may lead to political and ethical
concerns over their application. In the current study, we directed mouse parthenogenetic embryonic stem cells
(PESCs) to differentiate into fibroblasts, constructed TESE, and evaluated its function in vivo.

Methods: The stemness marker expression and the pluripotent differentiation ability of pESCs were tested. After
embryoid body (EB) formation and adherence culture, mesenchymal stem cells (MSCs) were enriched and directed
to differentiate into fibroblastic lineage. Characteristics of derived fibroblasts were assessed by quantitative real-time
PCR and ELISA. Functional ability of the constructed TESE was tested by a mouse skin defects repair model.

Results: Mouse pESCs expressed stemness marker and could form teratoma containing three germ layers. MSCs
could be enriched from outgrowths of EBs and directed to differentiate into fibroblastic lineage. These cells express
a high level of growth factors including FGF, EGF, VEGF, TGF, PDGF, and IGF1, similar to those of ESC-derived
fibroblasts and mouse fibroblasts. Seeded into collagen gels, the fibroblasts derived from pESCs could form TESE.
Mouse skin defects could be successfully repaired 15 days after transplantation of TESE constructed by fibroblasts

Conclusions: pESCs could be induced to differentiate into fibroblastic lineage, which could be applied to the
construction of TESE and skin defect repair. Particularly, pESC derivatives avoid the limitations of political and ethical
concerns, and provide a promising source for regenerative medicine.
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Background

Tissue engineering is an efficient method to construct
functional skin equivalents for the treatment of skin de-
fects resulting from trauma or tumor excision [1]. The
strategy involves the combination of keratinocytes or
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fibroblasts with certain cell seeding scaffolds. Cells seeded
into the scaffolds secrete various growth factors and extra-
cellular matrix (ECM) proteins, which could stimulate
proliferation and differentiation of adjacent epithelial
tissue, and accelerate wound healing. Prepare tissue-
engineered skin equivalents (TESE) with autologous
keratinocytes and fibroblasts would certainly be ideal.
However, the process is time consuming, and several
weeks are required to obtain the large cell numbers
needed, which may put patients in danger of infection and
dehydration. Furthermore, quality control of this custom-
ized therapeutic is difficult. Allogenic keratinocytes and
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fibroblasts for TESE could be harvested from foreskin
circumcision specimens and cadaver skin. Despite the
limited availability of the skin specimens for cell ex-
pansion, application of adult tissue has the risk of
infectious pathogen transmission. Furthermore, these
cells may lose their proliferative capacity and pheno-
type after extensive in-vitro passaging [2].

Embryonic stem cells (ESCs) have unlimited prolifera-
tive capacity and substantial ability to give rise to a var-
iety of differentiated cell types [3]. In these situations,
ESC derivatives are envisioned as promising candidates
for tissue engineering and cell therapy [4, 5]. Great ef-
forts have been made to establish protocols to manipu-
late ESCs to differentiate into specific phenotypes for
the construction of desired tissue, such as bone, cartil-
age, and fat tissues [6—8]. Keratinocytes and fibroblasts
derived from ESCs were also used successfully to con-
struct TESE and stimulate skin defect healing [5, 9].
However, significant political and ethical concerns exist
over the application of ESCs, because most ESCs are
harvested from the inner cell mass of blastocysts and
the process requires the destruction of viable embryos.

Parthenogenesis refers to the embryonic development
of oocytes without fertilization. Uniparental partheno-
genetic embryonic stem cells (pESCs) are a specific ESC
type that could be obtained from the inner cell mass of
blastocysts from chemically activated oocytes [10]. Be-
cause of difficulty in normal placenta formation, par-
thenogenetic embryos are unable to grow into viable
fetuses in primates. This characteristic allows the appli-
cation of pESCs and their derivatives while avoiding the
ethical and political hurdles associated with biparental
ESCs. pESCs possess typical characteristics similar to
ESCs, such as extensive self-renewal ability and pluripo-
tent differentiation capacity [11]. Importantly, uniparental
pESCs are histocompatible because of their homozygosity
in human leukocyte antigen (HLA) genotypes, which are
more readily matched to patients and might reduce the
risk of immune rejection after transplantation of their
differentiated derivatives [12], thus offering significant
advantages for the applications of cell-based therapies.
Directed differentiation studies have shown that pESCs
are capable of generating multiple cell lineages including
cardiomyocytes, hepatocytes, pancreatic endocrine cells,
retinal pigmented epithelial cells, and neural progenitor
cells [11, 13-16]. Only one study has so far reported the
application of pESC derivatives in stimulating damaged
tissue repair [11].

We hypothesized that mouse pESCs could be directed
to differentiate into fibroblasts for the construction of
TESE. In the current experiment, after demonstrating
that mouse pESCs exhibited similar fundamental proper-
ties to ESCs, we employed a stepwise approach to in-
duce pESCs to differentiate into fibroblastic lineage. We
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then constructed TESE with pESC-derived fibroblasts
(pFs) and evaluated the therapeutic effect with a mouse
skin defects repair model.

Methods

Cell culture and characterization

The C57BL/6] pESC and J1 mouse ESC lines were
cultured on dishes coated with 0.1 % (w/v) gelatin
(Sigma-Aldrich, St. Louis, MO, USA) and expanded in
Serum-Free Clonal Grade Medium (Millipore, Billerica,
MA, USA). Cells were passaged every 5 days by 1 %
accutase (Millipore), and observed by phase-contrast
microscope (Nikon, Japan) during the process of culture.

Immunofluorescence staining was performed to detect
stemness marker expression. pESCs and ESCs were
plated on gelatin-coated (Sigma-Aldrich) glass cover lips
and fixed by cold 4 % paraformaldehyde in phosphate-
buffered saline (PBS) for 30 min, followed by washes
three times with PBS and permeabilization with 0.25 %
Triton X-100 (Sigma-Aldrich) for 10 min. Cells were
then blocked with 10 % bovine serum albumin (BSA;
Sigma-Aldrich) for 45 min and incubated overnight at
4 °C with 1:200 diluted primary antibodies, including
goat anti-OCT3/4, rabbit anti-NANOG; and mouse anti-
SSEA-1 (all from Santa Cruz Biotechnology, Santa Cruz,
CA, USA). After three washes with PBS, the cells were
incubated for 30 min at room temperature with fluores-
cein isothiocyanate (FITC)-labeled secondary antibodies
(Invitrogen, Carlsbad, CA, USA). Nuclei were counter-
stained with 4,6'-diamidino-2-phenylindole (DAPL; Invi-
trogen). Images were obtained with a laser confocal
microscope (FV1000; Olympus, Japan).

To confirm whether pESCs and ESCs possessed pluri-
potent differentiation capacity in vivo, ESCs and pESCs
were dispersed using 1 % accutase, and 1 x 10° cells were
resuspended in 100 pl Dulbecco’s modified Eagle’s
medium (DMEM; Gibco, Grand Island, NY, USA) and
injected subcutaneously into nude mice. After 4 weeks,
the specimens were harvested and fixed in 4 % parafor-
maldehyde, dehydrated through a graded ethanol, embed-
ded in paraffin, sectioned at 7 pum, deparaffinized and
stained with hematoxylin and eosin (H&E).

Cell differentiation in embryoid bodies

pESCs and ESCs were dispersed and resuspended in
DMEM supplemented with 20 % fetal bovine serum
(EBS, Gibco), 50 U-pg/ml penicillin-streptomycin (Invi-
trogen). Subsequently, 1 x 10° cells were transferred into
ultra-low attachment dishes (Fisher Scientific, Pitts-
burgh, PA, USA) to form embryoid bodies (EBs). The
medium was changed every 2 days. pESCs and ESCs
were able to form EBs when cultured for 3 days, and
were continuously cultured in suspension before surface
antigen expression detection. EBs in suspension culture



Rao et al. Stem Cell Research & Therapy (2016) 7:156

for 5 days were fixed in 4 % paraformaldehyde, dehy-
drated and embedded in paraffin, sectioned at 5 pm, and
incubated with primary antibodies at 4 °C overnight.
The primary antibodies comprised mouse anti-SSEA-1,
rabbit anti-CD151 and cytokeratin (Santa Cruz Biotech-
nology), and rat anti-CD73 (eBioscience, San Diego, CA,
USA). After removal of primary antibodies with three
washes with PBS, FITC-labeled secondary antibodies
(Invitrogen) were added and incubated for 1 hour at
room temperature. The cells were washed three times
with PBS and counterstained with DAPI, observed under
a laser confocal microscope.

Cell differentiation during adherent culture

EBs cultured in suspension for 5 days were plated onto
0.1 % (w/v) gelatin-coated dishes and cultured with DMEM
supplemented with 20 % FBS, 50 U-pg/ml penicillin—
streptomycin, 2 mM L-glutamine (Invitrogen), 1 % nones-
sential amino acids (Hyclone), 1 % [-mercaptoethanol
(Sigma-Aldrich). To measure the expression of three germ
layer markers, total RNA of adherently cultured EBs at
different time points (5, 10, and 15 day) was isolated
using TRIzol (Life Technologies, Carlsbad, CA, USA)
according to the manufacturer’s instructions. Comple-
mentary DNA (cDNA) was synthesized from 1 pg of
the normalized RNA samples using a RevertAid™ First
Strand ¢cDNA Synthesis Kit (Thermo Fisher Scientific,
Waltham, MA, USA) following the manufacturer’s
protocols. Relative levels of mRNA were determined
from cDNA by quantitative real-time PCR with a SYBR
Green PCR kit (Takara, Japan) in a total sample volume
of 20 ul, and the samples were run in triplicate on a
Bio-Rad CFX96 Real-Time PCR Detection System in
accordance with the manufacturer’s instructions. The pri-
mer sequences and the fragment sizes are presented in
Table 1. All primers were obtained from Takara. Gapdh
was used as the reference gene. Single-peak melting pro-
files were obtained for the amplifications, and the size of
the PCR product was confirmed by agarose gel electro-
phoresis. Each experiment was repeated three times. The
AACT method [17] was used to calculate relative amounts
of transcripts.

Enrichment of MSCs from EB outgrowths
To enrich mesenchymal stem cells (MSCs), EBs cultured
in suspension were adherently cultured as already de-
scribed for 10-15 days. Cells were then cultured and
expanded with MSC medium (MSCM; Lonza, Basel,
Switzerland) for 5-6 passages to enrich spindle-shaped
cells. Cells were passaged at a high ratio of 1:2 during
expansion.

MSCs derived from pESCs and ESCs were named par-
thenogenetic MSCs (pMSCs) and embryonic MSCs
(eMSCs), respectively. Cells were detached from culture

Page 3 of 13

Table 1 Primers of three germ layer genes and the reference
gene for quantitative real-time PCR

Gene Primers (5'-3") Product (bp)
Snail GACCTGTGGAAAGGCCTTCTCTAGG 170
CCTGGCACTGGTATCTCTTCACATC
Hand1 GCTACGCACATCATCACCATCATC 125
CAGCAGCCAGCTCTGGAAGTAAG

Gata? GCCAAAAGAGAGACTGGAGGAAGGG 82
ACACCTCCCACCTTTTAGTCACTCTG

nestin GTTACCAAAGCCTCTTAGAAATGACC 577
CAGATGCAACTCTGCCTTATCCTC

Oct3/4 GTGTGAGGTGGAGTCTGGAG 182
AGCCTCATACTCTTCTCGTTGG

Afp CTCTGGCGATGGGTGTTTAG 175
TGCCTGGAGGTTTCGGGATT

Gapdh GGTGAAGGTCGGTGTGAACG 152
CTCGCTCCTGGAAGATGGTG

dishes by Accutase, collected and washed three times
with ice-cold PBS, and resuspended in PBS. FITC-
conjugated primary antibodies (CD29, CD44, CD73; all
from eBioscience) were added and incubated overnight,
followed by two washes with ice-cold PBS. MSC surface
antigen expressions were then tested by flow cytometry
using FACS Calibur (BD Biosciences) analysis. Isotype-
specific antibodies served as controls. Cells were ana-
lyzed using CellQuest software (BD Biosciences). At
least 1 x 10° cells were analyzed, and three independent
tests were performed for each experiment.

For osteogenic differentiation, pMSCs and eMSCs
were cultured in osteogenic differentiation medium
(DMEM supplemented with 20 % FBS, 50 U-pg/ml
penicillin—streptomycin, 50 pM ascorbic acid (Sigma-
Aldrich), 10 mM p-glycerophosphate (Sigma-Aldrich),
and 50 nM dexamethasone (Sigma-Aldrich)) for 21 days.
The medium was changed every 3 days. After 21 days,
cells were fixed in 4 % PBS-buffered paraformaldehyde
and processed for Alizarin red S, Von Kossa staining, and
reverse transcription-PCR (RT-PCR) assays for alkaline
phosphates (Alp) and osteocalcin (Ocn), to test the osteo-
genic differentiation.

For chondrogenic differentiation, cells were cultured
in chondrogenic medium (DMEM supplemented with
20 % FBS, 50 U-pg/ml penicillin—streptomycin, 50 uM
ascorbic acid, 10 ng/ml transforming growth factor-p1
(TGF-B1; R&D Systems, Minneapolis, MN, USA), and
500 ng/ml insulin-like growth factor (IGF; R&D Sys-
tems)). The medium was changed every 3 days. After
21 days, cells were processed for Safranin O staining and
PCR assays for aggrecan and type II collagen (Col-II).
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For adipogenic differentiation, cells were exposed to
adipogenic induction medium (DMEM supplemented
with 20 % FBS, 50 U-pg/ml penicillin—streptomycin,
200 uM indomethacin (Sigma-Aldrich), and 10 pg/ml
insulin (Sigma-Aldrich)) for 14 days. The medium was
changed every 3 days. Adipogenic differentiation was
indicated by oil-red O staining of lipid droplet formation in
cytoplasm and RT-PCR assays for peroxisome proliferator-
activated receptor gamma (Ppary) and CCAAT/enhancer-
binding protein alpha (C/ebpa).

For fibroblastic differentiation, cells were treated with
DMEM supplemented with 20 % FBS, 50 U-ug/ml peni-
cillin-streptomycin, 50 ng/ml recombinant human con-
nective tissue growth factors (CTGF; BioVendor, Brno,
Czech Republic) and 50 uM ascorbic acid, with medium
changed every 3 days (pMSCs and eMSCs after CTGF
induction were named pFs and ESC-derived fibroblasts
(eFs), respectively). Growth factors in pFs and eFs were
further measured every 5 days by enzyme-linked im-
munosorbent assays (ELISA) in triplicate. After the
medium was removed by gentle aspiration using a vac-
uum manifold, the cells were then washed with PBS, and
lysed with the addition of 1 ml RIPA buffer for total pro-
tein extraction. The cells were removed by scraping, and
transferred into 1.5 ml conical tubes. The mixture was
incubated on ice for 30 min, with occasional vortexing.
The cell extracts were then assayed using mouse EGF,
FGEF, IGF1, VEGE, PDGFa, PDGEP, TGFa, and TGEB1
ELISA™ kits (Lian Shuo Biological, Shanghai, China) in
accordance with the manufacturer’s instructions. Subse-
quently, the OD450 nm value was measured with an
enzyme-labeled instrument (Thermo Fisher Scientific).
The expression levels of mouse fibroblasts (Fs) were
used as controls.

Col-1, Col-III, tenacin-C (Tn-c), matrix metallopro-
teinase-1 (Mmp-1), Vimentin, and fibroblast-specific
protein-1 (Fsp-1) expression was screened by quantita-
tive real-time PCR 20 days after induction. The primer
sequences and the fragment sizes are presented in
Table 2. To further detect the marker of derived fibro-
blasts, immunofluorescent staining was performed for
rat anti-Vimentin (BOSTER), mouse anti-cytokeratin,
goat anti-FSP1, and COL-I (all from Santa Cruz Biotech-
nology). Fibroblasts derived from pESCs and ESCs were
named pFs and eFs, respectively.

Preparation of TESE

To prepare TESE, 150 pl of 10 x DMEM was added into
1 ml ice-cold collagen solution (4 mg/ml type I collagen
from rat tail dissolved in 0.1 % acetic acid). After
neutralization with 500 pl 0.1 % NaOH solution, 100 pl
of cell suspension (5 x 10° cells/ml) was added into the
solution and mixed immediately. The whole operation
was carried out on ice. The mixture was transferred into
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Table 2 Primers of fibroblast phenotypic hallmark genes for
quantitative real-time PCR

Gene Primers (5'-3") Product (bp)

Col-l TCTCCCCCAAGACACAGGAA 103
GCTGGGTAGGGAAGTAGACG

Col-lll ACTGTCCCACGTAAGCACTG 106
CAGGAGGGCCATAGCTGAAC

Tn-c CCTACTGTCACGCGTCTCTC 112
AAGCCACAACGAGTTCCCAA

Mmp1 GAGCCACAGATGAGCACAGA 103
AATCTGAACGCTCGCAGTGA

vimentin CGCTCCTACGATTCACAGCC 189
TGTGGACGTGGTCACATAGC

Fspl CTTCCTGTCCTGCATTGCCA 112
GGCAAACTACACCCCAACAC

dishes (d =35 mm; Fisher Scientific, Pittsburgh, PA,
USA) and then incubated at 37 °C and 5 % CO, for gel-
ling. Twenty-four hours later, 2 ml DMEM was added,
and the TESE was cultured for another 2 days before use
[18]. We prepared TESE from pFs, eFs, and Fs, and
collagen gel without cells acted as control.

TESE grafting onto mouse skin defects

Twenty BALB/c mice were purchased from the Experi-
mental Animal Center of The Fourth Military Medical
University and treated in accordance with the guidelines
provided by the Institutional Ethics Committee of
Northwest University. Mice were anesthetized by intra-
peritoneal injection of pentobarbital sodium (20 mg/kg
body weight). Then 8 % sodium sulfate was used to dep-
ilate the wounding area of animals (instead of shaving)
24 hours before wounding, to ensure synchronization of
hair growth. A circular full-thickness 1.5-cm-diameter
skin defect was created on the back of each mouse using
a biopsy punch (15 mm; purchased from Shanghai LZQ
Precision Tool Technology Co., Ltd, Shanghai, China).
TESE grafts derived from pFs, eFs, Fs, and control (n=5
for each group) were implanted onto the skin defects.
Grafts were covered with vaseline gauze and adhesive
bandages for 3 days. Animal behavior and wounds were
monitored throughout the experiment. Images were re-
corded at days 0, 3, 6, 9, 12, 15, and 18 post operation
with a digital camera (Canon, Japan) to visualize the
wound. The wound area was measured by tracing the
wound margin and calculated using Image-Pro Plus
Software (Media Cybernetics LP, Silver Spring, MD,
USA). Investigators measuring samples were blind to
groups and treatment. The wound closure percentage
was calculated as follows:
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(Original defect area — actual defect area) / original defect area

x 100 %

Animals were sacrificed at day 18, and the regenerated
skin specimens (including dermis and epidermis) were
fixed in 10 % buffered formalin for paraffin embedding.
Sections were cut at 7 pum, deparaffinized, and stained
with H&E. Sections were also stained with a mouse
Cytokeratin-14 antibody (1:200; Santa Cruz Biotechnol-
ogy), and a secondary Alexa-Fluor 594-labeled goat anti-
mouse IgG (1:500; Invitrogen) was used.

Statistical analysis

Data are expressed as mean + SD of at least three inde-
pendent samples. Statistical comparisons between
groups were performed with one-way ANOVA and two-
way ANOVA analysis. p < 0.05 and p < 0.01 were consid-
ered significant.

Results

PESCs exhibit properties similar to the pluripotent J1-ESC
line

ESCs and pESCs could form compact groups and prolif-
erate actively (Fig. 1la). They expressed high levels of
pluripotency gene markers, including NANOG, OCT3/4,
and undifferentiated state marker SSEA-1 (Fig. 1b). Four
weeks after injection of pESC and ESC suspension,
tumor blocks could be observed on the back of the nude
mice. Histological observation revealed that the newly
formed teratomas contained three germ layers of epider-
mis (ectoderm), cartilage (mesoderm), and gut epithe-
lium (endoderm) (Fig. 1c). These results demonstrated
that pESCs exhibit similar fundamental properties to the
well-characterized pluripotent J1-ESC line.

PESCs are capable of differentiating into ectodermal,
endodermal, and mesodermal cells in vitro

pESCs and normal J1 ESCs formed EBs after 5 days of
suspension culture. The immunofluorescent staining of
EBs is shown in Fig. 2a. SSEA-1 expression was undetect-
able, demonstrating the initiation of differentiation. In
addition, cytokeratin (ectoderm), CD73 (mesoderm), and
CD151 (endoderm) expression became detectable. Gene
expression profiles of EBs under adherent culture condi-
tions revealed the programmed expression pattern related
to the differentiation from ectodermal, mesodermal, and
endodermal lineages, successively. The Nestin gene ex-
pression involved in ectoderm increased progressively
5 days after and declined 15 days after EB plating (Fig. 2c).
The expression of mesodermal genes Snaill, Handl, and
Gata2 also upregulated progressively, which peaked at
10 days of pESC-EB plating and at 15 days of ESC-EB
plating (Fig. 2c). This was followed by expression of the
endoderm-specific gene Afp, peaking at 15 days after
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plating. Pluripotent marker Oct3/4 expression decreased
rapidly at 5 days, and was almost undetectable at 15 days
(Fig. 2¢). The expression profile and level of genes in EBs
of pESCs were similar to those of ESCs. Collectively, these
data indicated that EBs from pESCs contained differenti-
ated cells of all three germ layers and could be expanded
during adherent culture.

Enrichment and characterization of pMSCs
Spindle-shaped cells could migrate from EBs 8-10 days
after plating. When cultured in MSC medium in high
density for 5-6 passages, cells derived from EBs exhib-
ited fibroblastic morphology (Fig. 2b). The formation of
MSCs is the intermediate stage during the process of
ESC differentiation. Hence, we enriched eMSCs and
pMSCs, which could be subcultured for up to 10 pas-
sages without obvious morphological changes. FACS
analysis confirmed the positive expression of CD29,
CD44, and CD73, particularly, with more than 95 % of
cells expressing CD73 (mesodermal marker) (Fig. 3b).

MSCs are functionally characterized by their ability to
differentiate into mesenchymal tissues including bone,
cartilage, and fat. Therefore, we tested whether pMSCs
and eMSCs have the same potential. Cells of passage 5
were subjected to osteogenic, chondrogenic, and adipo-
genic differentiation in vitro using the standard protocol
to confirm multilineage differentiation capability. Strong
staining for Von Kossa and Alizarin Red staining 21 days
after induction demonstrated calcium deposition in the
matrix (Fig. 3c), together with upregulation of Alp and
Ocn expression, indicating that pMSCs and eMSCs had
osteogenic potential (Fig. 3d).

After chondrogenetic induction by TGF-p1 and IGF
for 21 days, strong staining for Safranin O could be ob-
served around cells, indicating specific ECM of proteo-
glycan secretion and deposition. Typical mirror image
cells were embedded in the matrix, verifying the chon-
drogenic lineage differentiation of these cells (Fig. 3c).
Chondrogenic differentiation was also confirmed by the
unregulated gene expression of Col-II and aggrecan, two
components of ECM selectively expressed by chondro-
cytes, using RT-PCR (Fig. 3d).

Adipocytic differentiation of pMSCs and eMSCs was
induced under conditions described previously. Appear-
ance of cells harboring fat granules could be observed
after induction for 14 days in culture, which is positive
for Oil Red O staining (Fig. 3c). At the same time, in-
creased expression of Ppary and C/ebpa, markers of adi-
pocytic differentiation, was found upregulated during
the process (Fig. 3d). Collectively, these results demon-
strated that pMSCs and eMSCs have the multilineage
differentiation capacity, and could be directed to differ-
entiate into bone, cartilage, and fat.
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Fig. 1 pESCs exhibit properties similar to the pluripotent J1-ESC line. a Morphological observations of pESCs and ESCs under phase-contrast
microscopy. b Immunocytochemistry staining of embryonic stem cell markers for pESCs and ESCs. ¢ H&E staining of teratoma sections from the

pESCs and ESCs. The staining revealed that pESCs and ESCs possessed the capacity to generate epidermis, cartilage, and gut epithelium tissue
in vivo. Bars =100 um. ESC embryonic stem cell, pESC parthenogenetic embryonic stem cell

Fibroblastic differentiation of pMSCs

As paracrine of growth factors is critical to skin regener-
ation, we compared the secretory profile of eFs, pFs, and
Fs for selected growth factors. ELISA results revealed
that pFs and eFs expressed similar elevated levels of
growth factors including EGF, FGF, IGF1, TGFa, TGFf1,
PDGFa, and PDGEFp after induction with CTGF. Both
pFs and eFs expressed a higher level of PDGFa (15 days
after induction) and a lower level of FGF than Fs. Not-
ably, the expression of EGF in eFs was significantly
higher than that in pFs and Fs (15 and 20 days after in-
duction) (Fig. 4a).

Quantitative real-time PCR detection indicated that
after 20 days of treatment with 50 ng/ml CTGE, the ex-
pression of fibroblast phenotypic hallmarks including
Col-1, Col-III, Tn-c, Mmp1, vimentin, and Fsp! increased
drastically in pFs and eFs (Fig. 4b). Morphological ap-
pearances of fibroblasts derived from pMSCs and eMSCs
are shown in Fig. 4c. Immunofluorescent staining

further demonstrated that these cell were positive for
VIMENTIN, FSP1, and COL-I, but negative for CK
(Fig. 4d).

TESE from pFs promote mouse wound healing in vivo
Gross appearance of TESE prepared from pFs is shown
in Fig. 5c. Phase-contrast microscope observation indi-
cated that cells were homogeneously distributed in the
collagen gels and displayed a rounded morphology
(Fig. 5a). Viable cells stained green could be noticed
after CFDA labeling (Fig. 5b), indicating TESE could be
generated from pFs and eFs.

All of the animals survived and no visible inflamma-
tion occurred during the process of wound healing.
Gross inspections showed an increasing reduction in the
area of the defects in all groups during the experiment
and were digitally recorded on days 0, 3, 6, 9, 12, 15, and
18 after TESE grafting (Fig. 5d). As shown in Fig. 5e, the
wound repair rate after different TESE grafting was
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(See figure on previous page.)

Fig. 2 Characteristics of EB differentiation. a EB immunofluorescent staining of undifferentiated state marker SSEA-1 and surface antigens, including
cytokeratin (CK), CD73, and CD151. Cell nuclei were stained with DAPI. Bars = 100 pm. b Morphological appearance of pESC-derived and ESC-derived
EBs and outgrowths of EBs. Bars = 100 um. ¢ Expression of Oct3/4 (stemness), nestin (ectoderm), Afo (entoderm), and mesoderm markers Snail, HandT,
and Gata?2 in pESC-derived and ESC-derived EB outgrowths. *p < 0.05, **p < 001 vs undifferentiated (UD) cells. Each experiment was repeated three
times. £8 embryoid body, £SC embryonic stem cell, pESC parthenogenetic embryonic stem cell

quantitatively measured. The collagen gel without cells
showed the lowest capacity for the repair of the skin de-
fect and by day 15 the overall wound repair rate was
69.1 %, which was significantly lower compared with the
other groups (p <0.05), and the skin defects were re-
epithelialized by day 18. The F-TESE group exhibited
the highest wound closure rate and most of the skin de-
fect was repaired by day 15 (80.5 % wound closure rate).
Similar to the F-TESE group, wound closure rates were
80.1 % and 77.0 % in the pF-TESE and eF-TESE group,
respectively, and there was no significant difference
compared with the F-TESE group (p>0.05) (Tables 3
and 4). Skin specimens was harvested at day 18 and proc-
essed for histological examination to detect the quality of
the newly repaired tissue. Cytokeratin-14 immunostaining
showed that cytokeratins existed in all groups, indicating
that the skin defects have been re-epithelialized 18 days

post operation. Three cell seeding groups (pFs, eFs, and Fs
seeded into collagen gel) showed better skin structure and
stronger CK-14 staining (Fig. 6).

Discussion

Recent progress in regenerative medicine and tissue en-
gineering has focused on the application of ESC deriva-
tives to improve regeneration of targeted tissues [19, 20],
due to their unlimited proliferative capacity and the po-
tential to give rise to a variety of differentiated cell types.
Several studies have so far reported the successful prepar-
ation of skin equivalents using keratinocytes or fibroblasts
derived from ESCs. However, political and ethical limita-
tions may hinder the application of ESCs and their deriva-
tives. Induced pluripotent stem (iPS) cells obtained by
reprogramming of somatic cell have also drawn much at-
tention [21], and directed differentiation of iPS cells into

-

a Hanging Drops

I Suspension I Gelatin-coated dishes MSC medium I CTGF/ascorbic acid I
L ' ! LL
Da pESCs | 1 - N 177
Y 0 ESCs 3 EBs 5 Spindle-shaped cells MSCs 6 passages Fibroblasts
b g CD29 8 CD44 8 CD73 8 CD29 g CD44 2 CD73

eMSCs

PMSCs

Fig. 3 Multilineage differentiation and characteristics analysis of MSCs. a Schematic outline of pESC and ESC induction and fibroblastic
differentiation flow chart. b Flow cytometry analysis of pMSCs and eMSCs indicates that these cells express MSC surface antigens. ¢ Morphological

appearance of pMSCs and eMSCs before osteogenic, chondrogenic, and adipogenic differentiation. Von Kossa and Alizarin Red S staining 21 days after
osteogenic induction. Safranin O staining 21 days after chondrogenic induction. Oil Red O staining 14 days after adipogenic induction. Bars = 100 pm.
d RT-PCR analysis of the gene expression profiles related to osteogenic, chondrogenic, and adipogenic differentiation. £8 embryoid body, eMSC MSC
derived from ESC, ESC embryonic stem cell, MSC mesenchymal stem cell, pESC parthenogenetic embryonic stem cell, pMSC MSC derived from pESC
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Fig. 4 Fibroblastic differentiation of MSCs and growth factor expression evaluation. a Protein expression levels of growth factors in induced and
undifferentiated (UD) pESCs and ESCs by ELISA. **p < 0.01 and *p < 0.01 vs Fs. Each experiment was repeated three times. b Quantitative RT-PCR
assay of fibroblast phenotypic hallmarks including Col-|, Col-lll, Tn-c, Mmp1, vimentin, and Fsp1 expression 20 days after fibroblastic differentiation.

¢ Morphological appearance of fibroblasts derived from pMSCs and eMSCs after CTGF induction under microscopy analysis. Bars =100 pm.

d Immunofluorescent staining of fibroblasts derived from pMSCs and eMSCs for VIMENTIN, CYTOKERATIN (CK), FSP1, and COL-I. Cell nuclei were stained
with DAPI. Bars =100 um. ef ESC-derived fibroblast, eMSC MSC derived from ESC, ESC embryonic stem cell, MSC mesenchymal stem cell,
pESC parthenogenetic embryonic stem cell, pF pESC-derived fibroblast, pMSC MSC derived from pESC

>several cell lineages have also been reported in detail [22,  conditions including large burns, heart failure, bone, and
23]. But the major limitations for iPS cells is timely alloca-  cartilage injuries.

tion (usually within weeks to several months), which make PESCs are derived from the blastocysts of chemically ac-
them inapplicable for the treatment of acute disease tivated and subsequently developed oocytes. Because
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Fig. 5 Preparation of TESE and grafting onto mice. a Homogeneous cell encapsulation in the collagen gels. Bars =100 pm. b CFDA labeling
shows the high viability of embedded cells in the collagen gels. Bars =100 um. ¢ Gross appearance of prepared TESE before use. d Gross
appearance of skin defect repair. @ Mean wound closure percentage for each group in a time manner. Error bars represent SDs, n =5 for each
group. Statistical results are presented in Table 4. ef embryonic stem cell-derived fibroblast, F mouse fibroblast, pf parthenogenetic embryonic
stem cell-derived fibroblast

Table 3 Wound repair rate (%) after different TESE grafting in a time manner

3 days 6 days 9 days 12 days 15 days 18 days
No cell 19.77 £ 246 29314746 4134+822 59.57+3.10 69.05+2.26 79.38£0.76
Fibroblasts 23.14+4.28 34.09 +3.81 5087 £2.34 60.85+4.98 80.5+3.10 9292+ 196
eMSCs 20.71 £1.66 36.12+1.02 5332+198 71914263 77.01£052 8920+ 0.71
pMSCs 19.70+£3.23 3086+ 7.14 50.59 +6.03 69.25+4.12 80.06 +2.74 90.20+0.78

Data presented as mean + SD
eMSC mesenchymal stem cell derived from embryonic stem cell, pMSC mesenchymal stem cell derived from parthenogenetic embryonic stem cell, TESE tissue-
engineered skin equivalents
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Table 4 Statistics analysis of wound repair rate between groups
15 days after different TESE transplantation

No cells Fs efs
Fs p<0.05
efs p <0.05 p>0.05
pFs p <005 p>0.05 p>0.05

F mouse fibroblast, eF embryonic stem cell-derived fibroblast, pF parthenogenetic
embryonic stem cell-derived fibroblast, TESE tissue-engineered skin equivalents

parthenogenetic blastocysts are not able to develop into
an embryo, the ethical concerns relating to the application
of ESCs derived from fertilized oocytes could be avoided
[10]. Importantly, haploid identity of major histocompati-
bility complex (MHC) of pESCs may increase immune tol-
erance after allogeneic cell transplantation and decrease
the number of cell lines needed for therapeutic cell bank-
ing [24-26]. One of the main challenges in using pESCs
for regenerative medicine is the difficulty of directing
pESC differentiation into the interested phenotype. In a
pioneer study, Michel et al. induced pESC differentiation
toward the cardiac lineage and tested its application in
tissue-engineered heart repair [11]. The results showed
that cardiomyocytes could be obtained to facilitate engin-
eering of force-generating myocardium and demonstrated
the utility of this technique in enhancing regional myocar-
dial function after myocardial infarction. Importantly,
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their results also demonstrated the immunological accept-
ance of pESC allografts in related and unrelated recipients
with matched MHC. We have successfully fabricated in-
jectable adipose tissue with pESC-derived adipocytes [27].

In the current study, we aimed to determine whether
pPESCs could be directed to differentiate into fibroblasts
in vitro, and to evaluate the application in tissue-
engineered skin defect repair. We first demonstrated that
PESCs and ESCs had similar fundamental differentiation
potential. The teratoma formation test demonstrated that
both pESCs and ESCs could differentiate into epidermis
(ectoderm), cartilage (mesoderm), and gut epithelium
(endoderm) in vivo. Importantly, hyaline cartilage could
be observed in the teratoma tissue after pESC injection,
indicating that pESCs have strong potential to differentiate
into mature mesenchymal tissue (Fig. 1). PCR and im-
munofluorescent observation demonstrated that cells in
EBs could spontaneously differentiate into cells of three
germ layers, as indicated by gene expression of nestin
(ectoderm), Afp (endoderm), and Snaill, Handl, and
Gata2 (mesoderm) (Fig. 2). Interestingly, we found pESC-
EB outgrowth underwent earlier differentiation compared
with ESC-EB. As indicated by RT-PCR assay, the expres-
sion of mesodermal genes from pESC-EB outgrowth
peaked at 10 days after plating, while expression peaked at
15 days after ESC-EB plating (Fig. 2c). In accordance with

No cells Fs

(2]

CK 14+DAPI

Fig. 6 H&E and immunofluorescent staining of repaired skin tissues 18 days after TESE grafting onto mouse skin defects. a Low-power and

b high-power magnificent H&E staining of repaired skin tissues 18 days after grafting. Bars = 100 pm. ¢ Immunofluorescent staining of repaired
skin tissues 18 days after grafting for cytokeratin-14 (CK 74). Cell nuclei were stained with DAPI. Bars =100 um. eF embryonic stem cell-derived
fibroblast, F mouse fibroblast, pF parthenogenetic embryonic stem cell-derived fibroblast
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this result, the expression of Oct3/4 in pESC-EB out-
growth was much lower than that of ESCs-EBs at 10 days
of plating.

We then directed pESCs to differentiate into fibro-
blasts with stepwise induction. Adherent culture is crit-
ical to obtain targeted cell numbers for application.
After adherent culture of EBs for 10 or 15 days, MSC
culture medium was applied and cells were subcultured
for 5-6 passages in high density to enrich MSCs from
EB derivatives. Flow cytometry detection indicated that
pMSCs and eMSCs expressed MSC markers (Fig. 3).
Multipotent differentiation investigation showed that the
expanded cell populations could be induced to differen-
tiate into osteogenic, chondrogenic, and adipogenic line-
ages (Fig. 3¢, d), respectively, which were in agreement
with the results from Hwang et al. [28].

It has been reported that adult MSCs can also differenti-
ate into fibroblastic lineage under the induction of CTGF
[29]. We next tested whether pMSCs and eMSCs possess
this potential under the conditions described previously.
After treatment with CTGE, fibroblast phenotypic hall-
marks drastically increased, including Col-I, Col-11I, Tn-c,
Mmpl, vimentin, and Fspl (Fig. 4b, c). Importantly, these
cells also expressed a high level of growth factors
after induction, which is critical for skin defect repair
and wound healing. Compared with normal fibro-
blasts, pFs exhibited a similar or higher expression
level of EGF, IGF1, VEGF, TGF«, TGFp1, PDGEp, and
PDGFa (Fig. 4a).

Finally we tested pF-derived and eF-derived TESE for the
repair of skin defects. In accordance with our hypothesis,
pFs were similar to Fs and eFs not only phenotypically but
also in functional terms. In-vivo experiments indicated that
pF-derived TESE are as efficient as normal fibroblasts and
eF-derived TESE for the re-epidermalization of the
skin defects (Fig. 5d, e). More than 80 % of skin de-
fects (80.06 +2.74) were repaired 15 days after pF-
derived TESE transplantation (Table 3).

Conclusions

One of our key findings in the current study is that pESCs
could be directed into a fibroblastic lineage via the middle
stage of MSCs, facilitating for tissue-engineered skin de-
fect repair. pMSCs have strong potential to differentiate
into osteogenic and chondrogenic lineages, suggesting
that pMSCs are also facilitated for bone and cartilage
tissue engineering. Compared with ESCs and iPS cells,
pESCs have ethical, immunological, and technical (no
genetic manipulation required) advantages. Collectively,
these characteristics, together with the ease and high
efficiency of directed differentiation, warrant pESCs as
an optimizing source for tissue engineering and regen-
erative medicine.
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