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Abstract

Background: The success of cochlear implantation may be further improved by minimizing implantation trauma. The
physical trauma of implantation and subsequent immunological sequelae can affect residual hearing and the viability
of the spiral ganglion. An ideal electrode should therefore decrease post-implantation trauma and provide support to
the residual spiral ganglion population. Combining a flexible electrode with cells producing and releasing protective
factors could present a potential means to achieve this. Mononuclear cells obtained from bone marrow (BM-MNC)
consist of mesenchymal and hematopoietic progenitor cells. They possess the innate capacity to induce repair of
traumatized tissue and to modulate immunological reactions.

Methods: Human bone marrow was obtained from the patients that received treatment with biohybrid electrodes.
Autologous mononuclear cells were isolated from bone marrow (BM-MNC) by centrifugation using the Regenlab™
THT-centrifugation tubes. Isolated BM-MNC were characterised using flow cytometry. In addition, the release of
cytokines was analysed and their biological effect tested on spiral ganglion neurons isolated from neonatal rats. Fibrin
adhesive (Tisseal™) was used for the coating of silicone-based cochlear implant electrode arrays for human use in order
to generate biohybrid electrodes. Toxicity of the fibrin adhesive and influence on insertion, as well on the cell coating,

was investigated. Furthermore, biohybrid electrodes were implanted in three patients.

Results: Human BM-MNC release cytokines, chemokines, and growth factors that exert anti-inflammatory and
neuroprotective effects. Using fibrin adhesive as a carrier for BM-MNGC, a simple and effective cell coating procedure for
cochlear implant electrodes was developed that can be utilised on-site in the operating room for the generation of
biohybrid electrodes for intracochlear cell-based drug delivery. A safety study demonstrated the feasibility of autologous
progenitor cell transplantation in humans as an adjuvant to cochlear implantation for neurosensory restoration.

Conclusion: This is the first report of the use of autologous cell transplantation to the human inner ear. Due to the
simplicity of this procedure, we hope to initiate its widespread utilization in various fields.
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Background

According to the World Health Organization, about 5 % of
the world’s population, i.e., more than 300 million people,
suffer from disabling hearing loss. For rehabilitation of
severe to profound hearing loss, patients are treated with
cochlear implantation. Currently, four manufacturers
(MedEl, Advanced Bionics Cooperation, Cochlear
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Cooperation and MXM/Neurolec/Oticon) are FDA
approved and provide different electrode designs [1, 2]. In
addition, novel companies providing cochlear implants, e.g.,
the Venus cochlear implant system provided by Nurotron
Biotechnology, are emerging. All available implants share
common key features: an external device for conversion of
acoustic energy into an electrical signal [1-4]. This signal is
transmitted subcutaneously to an implanted internal signal
receiver that is used to drive the stimulation of the spiral
ganglion neurons [3]. An electrode carrier consisting of
platinum contacts embedded in silicone is connected to this
implanted device and is inserted into the scala tympani of
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the cochlea [3]. Differences between the devices include the
length, the stiffness, and the design of the electrode. For
electrical stimulation of the auditory system, a full circuit
loop from an active electrode to a second return electrode
is necessary [1]. The mode of activation is either monopolar
or bipolar [3]. An inactive reference electrode located out-
side the cochlea is needed for monopolar stimulation,
whereas bipolar stimulation is performed by using two
neighbouring intracochlear electrodes [3]. A recent survey
has evaluated the complications after cochlear implantation
showing that the overall incidence is about 20 % [5]. Infec-
tion of the skin flap covering the implant, seroma or
hematoma, foreign body reaction, tinnitus, disequilibrium,
device failure, neurological complications such as facial
palsy or dysgeusia, cholesteatoma, migration of the device,
recurrent otitis media, and chronic headaches are among
the reported complications [5-7]. A systematic review of
the literature showed that severe complications related to
infection leading to mastoiditis and meningitis are very rare
when performed by an experienced surgeon [6]. The inci-
dence of disequilibrium is higher in elderly patients aged
75 years or above [8]. Vestibular complications show the
highest incidence when regarding delayed complications
after cochlear implantation [6]. Overall, cochlear implant-
ation is considered as a safe surgical technique for hearing
restoration [5].

Speech understanding among cochlear implant listeners
is highly variable and rarely predictable. The quality of the
interface between the electrodes and the spiral ganglion
neurons is one of the main factors affecting speech under-
standing [9]. The position of the electrode array within
the cochlea and the trauma resulting during electrode
insertion strongly influence the nerve-electrode inter-
action and therefore can affect speech perception [9-13].

Despite significant advancements in electrode design
and surgical implantation techniques, insertion trauma
still has the potential to negatively impact hearing out-
comes. Direct tissue damage as well as immunological
reactions after implantation lead to fibrotic and osteo-
genic [14] alterations of the scala tympani. The amount
of fibrous and osseous tissue is negatively correlated
with residual spiral ganglion neuron counts in humans
[10]. Temporal bone pathology studies have shown that
outcome measures such as word recognition scores de-
pend on the number of residual spiral ganglion neurons
[10, 12]. Thus, insertion trauma may affect the outcome
of sensory restoration [15] and require higher electrical
stimuli for effective neurostimulation [13]. Other nega-
tive outcomes of trauma include increased energy con-
sumption and aberrant spread of current resulting in
cross-channel interactions [9, 13]. Atrophy of the stria
vascularis arising from tissue damage or ageing also can
impair implant performance since it influences the
health of the organ of Corti and consequently also the
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state of the neurons to be excited by the cochlear
implant [16].

Cells derived from the bone marrow possess the innate
capacity to induce repair of traumatised tissue and to
modulate immunological reactions [17-19]. The micro-
environment of bone marrow includes a mixed popula-
tion of stromal cell types that are possible sources of
chemokines, growth factors, and cytokines [20]. Diverse
studies have evaluated the use of mesenchymal progeni-
tor or embryonic stem cells [18, 19, 21, 22] and only a
few considered hematopoietic progenitor cells for the
restoration of the inner ear [22, 23]. However, none of
these cells have yet been used in the clinical setting for
inner ear therapy. Hematopoietic progenitor cells are
able to migrate into the cochlea even after intravenous
transplantation of whole bone marrow [22]. This effect
has not been observed for mesenchymal progenitor cells
(MPC). MPC secrete a variety of neuroprotective growth
factors [17] and reduce scarring by downregulation of
excessive fibroblast proliferation [24]. The secretome of
progenitor cells isolated from the bone marrow can
stabilise traumatised tissue [17]. Injuries occur during
electrode insertion and are responsible for ossification of
the cochlea [14]. Therefore, anti-inflammatory treatment
may be crucial for hearing preservation and for the pre-
vention of fibrotic tissue formation [25].

Potentially, this anti-inflammatory treatment could be
achieved by delivering autologous progenitor cells along
with a cochlear implant. The aim of the present study
was to develop a clinically feasible protocol for the gen-
eration of a biohybrid electrode using autologous mono-
nuclear cells derived from the bone marrow (BM-MNC).
The term BM-MNC includes all cells with unilobulated
or rounded nuclei that lack granules in the cytoplasm
[26]. Due to their density and size, BM-MNC can be
easily separated from myeloid cells and erythrocyte pro-
genitors [26]. They consist of hematopoietic progenitor
cells at different stages of maturation [27]. Other cells
contributing to the BM-MNC are cells with multipotent
capacity such as mesenchymal stromal cells [20, 27],
very small embryonic-like stem cells [28, 29], multipo-
tent adult progenitor cells [30], endothelial progenitor
cells [31], and tissue-committed stem cells [27]. In
addition to the progenitor cells, lymphocytes, plasmatic
cells, monocytes, and macrophages also reside in the
bone marrow and can be identified in the mononuclear
fraction [26]. Due to their capacity to exert neuroprotec-
tion, immunomodulation, neurorestoration, and neuro-
genesis, autologous BM-MNC were transplanted into
patients with cerebral palsy and led to a reduction in
disability and to an improvement in the quality of life
[32]. In addition, a short-term benefit of infusing bone
marrow-derived cells into patients with chronic heart
failure has been observed, and this effect seems to be



Roemer et al. Stem Cell Research & Therapy (2016) 7:148

related to the secretome of these cells [33]. Thus, BM-
MNC have been widely used in human studies as an im-
mune modulator and source of protective growth factors.
The goal of the this study was to demonstrate the feasibil-
ity and safety of this approach in human cochlear implant-
ation. As part of this study, autologous BM-MNC were
attached to cochlear implant electrodes using fibrin glue.
For each patient, safety readouts consisted of regular phys-
ical examination, impedance measures of the electrode in
the implanted ear, and comparison to the contralateral, pre-
viously implanted ear. An aliquot of BM-MNC from each
patient was used to study persistence of cells on a coated
electrode in vitro and to assay their protective qualities.

Methods

Human BM-MNC were used for all experiments and pro-
cedures and were isolated from the cochlear implant
recipients described below. Ethical approval from the ethics
committee of the Hannover Medical School was obtained,
as well as written informed consent from all patients.

Isolation of BM-MNC
In order to obtain bone marrow from cochlear implant pa-
tients, a sternal puncture was performed under general an-
aesthesia just prior to insertion of the cochlear implant. All
instruments which were in contact with the bone marrow
were washed with heparin solution (100 U/ml). About 8-
10 ml bone marrow was obtained through aspiration and
8 ml was transferred into a RegenKit*-THT (Regen Lab,
Lausanne, Switzerland) tube. The tube was centrifuged in
the Regenlab Centrilab® (Regen Lab) at 3300 rounds per
minute for 10 mins. By inverting the tube gently three to
four times, the mononuclear cell fraction was re-suspended
in the supernatant. This cell-containing supernatant is re-
ferred to as a mononuclear cell suspension.

One aliquot was used for the generation of the biohy-
brid electrode and subsequent implantation. Another
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aliquot of the supernatant prior to re-suspension of the
mononuclear cell fraction as well as the remaining cell
suspension were collected for the in vitro experiments
described below.

For experimental in vitro studies, the cells were cultured
in a medium consisting of 78 ml DMEM (Biochrome
GmbH, Berlin, Germany), 1 ml penicillin (30 U/ml,
Biochrome GmbH), 20 ml fetal calf serum (FCS; Hyclone,
Thermoscientific, Waltham, Massachusetts) and 1 ml
Hepes-buffer solution (Invitrogen, Germany). This medium
is referred as to MNC medium.

Experimental in vitro studies

Analysis of the BM-MNC

For cellular analysis of the components of the BM-MNC
of the first two patients, a novel flow cytometric assay
was used to characterise different cell fractions on a 10-
colour flow cytometer (Navios, Beckman Coulter). Cell
counting was carried out with an automated Hemocounter
(Coulter ACTdiff, Beckman Coulter). The cells were ana-
lysed for viability by flow cytometry (7-aminoactinomycin
D (7-AAD); Beckman Coulter) to distinguish viable from
dead/apoptotic cells whereas cell debris were discriminated
by cell scatter properties (forward and side scatter) and
setup adjustments via the cell discriminator integrated in
the Beckman Coulter software (Navios™Cytometry List
Mode Data Acquisition&Analysis software). In vitro
diagnostic (IVD)- and/or analyte-specific reagent (ASR)-
fluorescence-conjugated monoclonal antibodies (mABs),
especially CD166, CD105, CD73, and CD90, were used as
known markers for putative mature mesenchymal stem
cells after depletion. CD45, CD3, CD34, and CD14 were
utilised to discriminate the negative from the positive cell
phenotypes of the different leukocyte (CD45") and non-
leukocyte (CD457) cell subpopulations in the cytometric
measurements. All mABs were purchased from Beckman
Coulter and Pharmigen™ and are listed in Table 1. After

Table 1 Content of mesenchymal and hematopoietic stem cells in human bone marrow-derived mononuclear cell fraction

Conjugated antibody Catalog number/Company IVD/ASR/RUO Fluorochrome Clone
CD3-ECD A07748/Beckman Coulter VD ECD UCHT
CD14-PB PN B00846/Beckman Coulter ASR PB RMO52
CD34-PE A07776/Beckman Coulter VD PE 581
CD45-KO IM3548/Beckman Coulter VD PC7 J33
CD73-FITC 561254/BD Pharmingen™ RUO FITC AD2
CD90-FITC PN IM1839U/Beckman Coulter ASR FITC F15-42-1-5
CD105-APC 562408/BD Pharming™ RUO APC 266
CD166-PE PN A22361/Beckman Coulter ASR PE 3A6
HLA-DR-PB PN A74781/Beckman Coulter ASR PB Immu-357

Process performance was estimated by evaluations of the CD45~ and CD45" cell recovery (%), and viability (%) of collected samples from two runs after bone marrow
depletion. Individual values are represented from both processes including the percentage of total CD45" and CD45 cells, and the characterisations of viable
progenitor cells with positive and negative discrimination markers among viable CD45™ cells. RUO research use only, IVD in vitro diagnostic, ASR analyte specific reagent,
ECD electron coupled dye, PB pacific blue, PE phycoerythrin, PC7 phycoerythrin cyanin 7, FITC fluorescein isothiocyanate, APC allophycocyanin
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staining with these multiple mABs (15 mins, room
temperature), the labelled cell samples were treated with
lysing solution (15 min, IOTest 3, room temperature;
Beckman Coulter) to eliminate red blood cells; 5000 to
10,000 events were acquired after discrimination of debris
for 7-AAD~, CD45" and accordingly CD45~ cell regions.

Proteomics studies

For identification of chemokines, cytokines, and growth
factors, 200 ul supernatant was obtained after 24 h of
cultivation of the suspension of BM-MNC in MNC
medium and frozen immediately until analysis. Cytokine
levels were measured using the BioRad Bio-Plex Human
Angiogenesis Assay (Bio-Rad Laboratories, Inc., Hercules,
USA) and Luminex two-laser array reader (Bioplex200,
Bio-Rad Laboratories, Inc.). Bioplex Manager 6.1 (Bio-Rad
Laboratories, Inc.) was used to acquire standard curves
and concentrations.

Co-cultivation with spiral ganglion neurons

Spiral ganglion neurons (SGN) were dissected from neo-
natal Sprague-Dawley rats of both sexes (postnatal days
3-5). After decapitation and removal of the scalp, the
skull base was bisected. Under microscopic view, the
membranous cochlea was removed and ganglia were col-
lected in an Eppendorf vial filled with Hepes buffer.
After centrifugation, Hank’s balanced buffered solution
(HBSS; Gibco Invitrogen, Germany) was replaced with
0.01 % trypsin (Biochrom GmbH, Germany) and 0.01 %
DNase I (Roche, Germany) in HBSS for the enzymatic
dissociation of 30-40 ganglia/2 ml. The solution was
incubated at 37 °C for 15 min with intermediate shack-
ing and the cells centrifuged by short-spin followed by
the addition of 200 ul FCS (Invitrogen, Germany) in
order to stop enzymatic dissociation. The supernatant
was removed and the pellet washed three times and re-
suspended with serum-free culture medium. Cell yield
was defined by counting the cell number in a Neubauer
chamber (Brand GmbH, Germany) using trypan blue
(Sigma Aldrich, Germany).

The serum-free SGN culture medium consisted of Pan-
serin 401 (Pan Biotech) supplemented with penicillin (30
U/ml; Biochrome GmbH, Germany), phosphate-buffered
saline (PBS), 1 M Hepes-buffer (Invitrogen, Germany),
glucose (40 %/ml; B. Braun, Germany), insulin (4 mg/ml;
Biochrome, Germany), and N2-supplement (Invitrogen,
Germany).

In each well of a 48-well-plate, 100 pl spiral ganglion
cell solution (containing 0.2 x 10° cells/100 ul) were
seeded. Wells were primed with 100 pl supernatant (i.e.,
the plasma supernatant obtained before re-suspending
the MNC by shaking), with 100 ul BM-MNC dissolved
in supernatant (BM-MNC), with 100 pl supernatant (i.e.,
conditioned medium) obtained from BM-MNC cultures
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after 24 h (cond. med. 24) and with 100 pl supernatant
obtained from BM-MNC cultures after 48 h (cond.
med. 48). The positive control contained SGN medium
supplemented with brain-derived neurotrophic factor
(BDNF; 50 ng/ml) and the negative control contained
only serum-free culture medium. Each condition was
tested in triplets and three independent experiments
were performed (n =9).

Cytotoxicity tests of fibrin glue

To exclude cytotoxicity of the fibrin adhesive, we tested
the fibrin glue composition on spiral ganglion cells
(SGC) and MPC. In order to obtain MPC via plastic ad-
hesion from the bone marrow, human BM-MNC were
seeded immediately after isolation from the bone mar-
row (100 pl of the suspension obtained after shaking of
the THT tubes) in 48-well plates. After changing the
medium, the resulting cell culture consisted only of the
cells that attached to the culture well plate via plastic ad-
hesion. These cells were used for the cytotoxicity
experiments.

For the cytotoxicity assay, cells (SGC and MPC) were
either cultured as a pure cell suspension or mixed with
the fibrinogen component of the two-component fibrin
adhesive (Tisseal, Illinois, USA) as well as with both
components.

The MPC were incubated for 5 days under daily
microscopic control. The SGC were cultivated for 2 days.
The SGC were fixed after termination with acetone/
methanol (AppliChem/Merck, Darmstadt, Germany) 1:1
and labelled with anti-neurofilament antibody for the
identification of the neurons. Visualisation was per-
formed after staining with Vectastain ABC kit (Vector)
as described in the manual.

The MPC were trypsinised with 0.025 % trypsin-EDTA
solution and stained with trypan blue (Biochrome,
Germany) 10 %. Quantification of the cells was per-
formed with a Fuchs-Rosenthal counting chamber.

Generation of biohybrid (cell-coated) electrodes for in vitro
analysis
Nucleus contour advance practice electrodes (Cochlear,
Sydney, Australia) were used for these experiments. This
electrode consists of 22 half-banded platinum electrode
contacts embedded in silicone. An aliquot of 0.5 ml of the
BM-MNC suspension was mixed with 0.5 ml of the
fibrinogen component of the two-component fibrin adhe-
sive (Tisseal, Illinois, USA). The cochlear implant elec-
trode was pulled through this solution and thereafter
through the thrombin component of the two-component
fibrin adhesive in order to cover the electrode with a thin
layer of cells trapped within.

These model electrodes were used for subsequent ex-
periments. Insertion experiments using a human cochlear
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model were performed. In addition, coated electrodes
were cultivated in MNC medium and microscopic con-
trols were performed regularly up to 4 weeks in order to
evaluate the coating success and the biocompatibility of
the fibrin adhesive.

Measurement of insertion forces during electrode
implantation in a three-dimensional cochlear model

Five Nucleus contour advance practice electrodes
(Cochlear, Sydney, Australia) were used in a special in-
sertion force-measurement apparatus (designed by
Cochlear, Sydney, Australia), a synthetic (polytetraflour-
ethylene) three-dimensional model of the human scala
tympani [34]. This model has a depth of 1.5 mm and
was constructed using inner and outer wall measure-
ments from silastic casts of human scalae tympani as
described by Todd and Naghdy [35]. For each measure-
ment, the electrode was adapted in the special insertion
tool and pre-insertion was performed for the first
7 mm. This point was referred to as the starting inser-
tion point and was set at 0 mm. The artificial cochlea
was filled with PBS and calibrated. As the electrode was
further inserted to its full length, the forces on the
outer cochlear wall were measured by INSTRON 5542
(Instron, Massachusetts, USA). Two electrodes were
inserted and measured without any coating, whereas
three electrodes were coated with BM-MNC as de-
scribed above. Each electrode was repeatedly inserted
and measured five times.

Microscopic evaluation of changes in cell morphology due
to the coating
In order to assess the proliferation of cells on the electrode
surface, MPC were stained with 5(6)-carboxyfluorescein N-
hydroxysuccinimidylester (CFSE; Abcam, Cambridge, UK)
according to the protocol provided by the manufac-
turer. Briefly, cells were cultured at standard cell condi-
tions (37 °C, 5 % CO,) until they reached confluence
(cell number approximately 1 x 10°). Cells were then
trypsinised and re-suspended several times in fresh cul-
ture medium. Thereafter, cells were centrifuged at
800 rpm for 4 min and the supernatant was discarded.
Cells were re-suspended with 1 ml PBS containing
10 uM CFSE and were allowed to rest in the solution
for 10 min at room temperature. To stop the staining
procedure, 1 ml of serum containing MNC medium
was added to the cell suspension and pipetted several
times prior to centrifugation for the removal of
unbound CEFSE. Finally, cells were re-suspended with
culture medium and the success of the CFSE staining was
evaluated using a fluorescence microscope (Olympus,
Shinjuku, Japan).

Coating of the electrodes was performed as described
above using the stained cells and cultivated for 10 days.
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Fluorescence microscopy was applied on the 3rd, 7th,
and 10th day after coating. Therefore, the medium was
replaced with pre-heated PBS and the dye was excited
with a light and was detected using the standard FITC
filter of the microscope.

Protocol for human application of biohybrid electrodes
Subjects

Three severely hearing-impaired individuals (male; age
range 21-43 years) were recruited to receive autologous
progenitor cells during their cochlear implantation as
salvage treatment. All patients had received a cochlear
implant in the contralateral ear with limited success.
The audiologic evaluation was performed using our clin-
ical standard procedure as described below. Inclusion
criteria were: 1) age 21 years or older; and 2) medical
indication for the treatment with a second cochlear
implant with expected limited outcome. Exclusion
criteria were: 1) ossification of the cochlea after meningi-
tis; and 2) history of malignancy. The choice of the elec-
trode was determined by the contralateral implant type
that was used for the first implantation.

Patient 1

Patient number 1 (male, 43 years old at the time of the
implantation of the biohybrid electrode) suffered from
progressive deterioration of hearing after being exposed
to hypoxia during birth. The first implanted side showed
intelligibility for monosyllabic words measured in silence
of 30 % at 65 dB. The left side was considered for
implantation with the biohybrid electrode since this side
was more severely affected in terms of degree and dur-
ation of deafness.

The first side (right side) was provided in 2013 with a
Concerto implant with Standard electrode and an Opus2
processor manufactured by MED-EL (Med-EL Elektrome-
dizinische Gerite GmbH, Innsbruck, Austria). The second
side (left ear, biohybrid) was implanted with a Synchrony
implant with Standard electrode and a Sonnet processor
also manufactured by MED-EL.

Patient 2

With a long history of progressive hearing loss, patient
number 2 received a cochlear implantation as well as
revision surgery on the left side (Pulsar implant with
Tempo-+/later Opus2 processor, CIS strategy, MED-EL
GmbH and Nucleus CI24RE(CA) implant with Freedom
processor, ACE strategy, Cochlear Ltd.). In 2010, he also
received a cochlear implant (Nucleus CI512 implant
with CP810 processor, Cochlear Ltd.) on the right side.
He presented to our clinic for a second re-implantation
on the left side (Nucleus CI512 Profile implant with
CP910 processor, Cochlear Ltd., also using ACE strategy)
due to insufficient speech understanding. The treatment
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with BM-MNC was therefor considered for this patient.
At the time of the last implantation with the biohybrid
electrode, he was 43 years old.

Patient 3

With hearing impaired from early childhood, patient
number 3 received a cochlear implant on the right side
in 2014 at the age of 19 (Nucleus CI24RE (CA) with
CP910 processor and MP3000 strategy, Cochlear Ltd.).
He wished an implantation on the contralateral side at
the age of 21. There is no documentation available about
the duration of deafness at the left side and it is thus not
known whether this was a pre-, peri- or postlingual deaf-
ness. In preoperative tests, he reported some sensation
after electrical stimulation of the left cochlear nerve.
However, it was not specified whether this was an audi-
tory sensation. Due to the poor performance with the
first implant we offered him the implantation in combin-
ation with BM-MNC treatment. Thus, he was provided
with a Nucleus CI512 Profile implant and a CP910 pro-
cessor using MP3000 strategy.

Surgical procedure

All cochlear implantations were performed in our insti-
tution by a single surgeon according to international
cochlear implant standards. The standard surgical pro-
cedure involves a retroauricular approach, mastoidec-
tomy, posterior tympanotomy, and cochleostomy.

After completion of the cochleostomy, the sternal
puncture was performed and the BM-MNC were iso-
lated directly in the operating theatre as described above
(see Isolation of BM-MNC). An aliquot of 0.5 ml of the
progenitor cell suspension was mixed with 0.5 ml of the
fibrinogen component of the two-component fibrin
adhesive (Tisseal, Illinois, USA). The cochlear implant
electrode was pulled through this solution and thereafter
through the thrombin component of the two-component
fibrin adhesive in order to cover the electrode with a thin
layer of cells trapped within. This biohybrid electrode was
inserted immediately in a standard procedure.

To ensure correct electrode function, the electrodes
were tested electro-physiologically before insertion, after
insertion, and on the second postoperative day.

The electrode position was controlled after insertion
via cone beam computed tomography.

Audiological evaluation

The evaluation prior to cochlear implantation is stan-
dardized and includes pure tone audiogram, speech
audiometry with and without the patient’s own hearing
aid, acoustic immittance audiometry, otoacoustic emis-
sions, brainstem evoked response audiometry, electroco-
chleography, and promontory stimulation testing. Also,
the function of the vestibular system was evaluated by
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the caloric test and posturography (EquiTest). All pa-
tients underwent preoperative MRI and CT scanning.

During cochlear implant surgery, an impedance meas-
urement was performed. The impedances of the implant
electrodes were determined by telemetric measurements
according to manufacturer specifications.

Freiburg Speech (polysyllabic numbers and monosyl-
labic words) at 65 dB as well as a sentence test under
quiet and noise conditions (Hochmair-Schulz-Moser;
HSM) were used for the assessment of speech discrimin-
ation. Measurements were performed 5 weeks and
5 months after implantation. The patients will be evalu-
ated again after 8 months and thereafter annually.

Data analysis

Statistical analysis was performed with ORI-GIN 8.0
(OriginLabs, Massachusetts, USA) and GraphPad
PRISM (GraphPad Software Inc., California, USA). Re-
peated measures ANOVA was used with the Bonferroni
post hoc test for the correction of p values. Data are
presented as median or mean with standard deviation.

Ethics
The therapeutic protocol for autologous BM-MNC trans-
plantation was presented to and approved by the Institu-
tional Review Board of Hannover Medical School. All
performances were done in accordance with the ethical
principles for medical research in humans (Declaration of
Helsinki). All participants gave a written informed consent
after in-depth consultation concerning the possible risks
and potential complications of the procedure (e.g., tumour
induction, meningitis, and ossification of the cochlea).
Animal studies were approved by the Institutional
Animal Care and Research Advisory Committee and by
the local state authorities. The study was conducted in
accordance with the German ‘Law on Protecting Ani-
mals’ and with the European Communities Council Dir-
ective 86/609/EEC for the protection of animals used for
experimental purposes.

Results
Characterisation of BM-MNC based on flow cytometry
Flow cytometry-based characterization of the BM-MNC
suspension showed a substantial amount of hematopoietic
progenitor cells mixed with mesenchymal and epithelial
progenitor cells usable for human application (Fig. 1).
Enrichment of the portion of MPC was achieved using
commercially available sterile centrifugation tubes (Regen-
Tube, Regenlab, Lausanne, Switzerland). This resulted in a
14 log (24.9-fold) augmentation of CD45™ cells and a 2.9
log (-827.7-fold) depletion of the CD45" leukocyte cell
fraction (Table 2). Human BM-MNC were used for
further in vitro analysis as well as for transplantation into
the human cochlea.
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Anti-inflammatory and neuroprotective properties of BM-
MNC in vitro

To characterize the function of the transplanted cells,
we assayed a panel of cytokines, chemokines, and angio-
genic factors from the transplant material (Fig. 2a). Since
demonstration of neuroprotective effects in vivo in
humans is currently impossible, a well-established
in vitro model derived from neonatal rats was used to
study the impact of BM-MNC on the survival of SGN. A
neuroprotective effect similar to the one achieved by
treatment with BDNF (positive control) was observed by
treating the cultures with the cell suspension or with the
plasma supernatant obtained from the bone marrow
(Fig. 2b). Ex vivo monitoring of the number of neurons
showed significantly increased survival when the cul-
tures were treated with conditioned medium harvested
after 24 or 48 h (cond. med. 24 or 48) cultivation of
BM-MNC. A mean neuronal survival of 112.63 +57.14
(mean + SD) cells per well was observed after the treat-
ment with supernatant collected 48 h after seeding of

the BM-MNC. This treatment condition led to the
highest survival determined, and nearly doubled the
effect achieved by BDNF (Fig. 2b; p<0.001). After
treatment with supernatant obtained after 24 h cultiva-
tion of BM-MNC, 83.88 +34.53 cells per well were
counted. Compared to the positive control group (i.e.,
treatment with BDNF; 65.38 + 28.40 cells per well), a
highly significant increase of survival was obtained (p <
0.001). The growth factors, cytokines, and chemokines
that were released from BM-MNC (Fig. 2a) could be re-
sponsible for the observed neuroprotective effect. We
therefore could expect these cells to operate as a neuro-
protective and immunomodulatory agent in the vivid
inner ear system.

Biocompatibility of fibrin adhesive

For transplantation of autologous MNC to the inner ear
during cochlear implantation, a simple and effective
coating procedure was developed. In order to facilitate
local factor delivery without migration of the cells off
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Table 2 List of mononuclear antibodies

BM-MNC
Patient 1 Patient 2
Characterisation of depleted bone marrow
Total CD45 cells (%) 649 984
Total CD45" cells (WBCs) (%) 350 17
Viability (%) 97.1 99.7
CHECK CD457/7AAD™ cells (SS/FS) (%) 234 17.3
Viable CD45%/7AAD /CD34" cells (%) 0.55 096
Characterisation of progenitor cells among
Viable CD457/7AAD /CD105" cells (%) 08 0.1
Viable CD457/7AAD/CD73" cells (%) 0.5 10
Viable CD457/7AAD/CD166" cells (%) 0.1 0.01
Viable CD45/7AAD/CD90" cells (%) 0.5 0.2
Viable CD457/7AAD/CD14" cells (%) 04 0.6
Viable CD457/7AAD/CD3" cells (%) 0.03 0.1
Viable CD45/7AAD /CD34" cells (%) 0.1 0.01

7AAD 7-aminoactinomycin D, BM-MNC bone marrow-derived mononuclear
cells, FS forward scatter, SS side scatter, WBCs white blood cells

the surface, a fibrin adhesive was added to the cultures
of human mesenchymal progenitor cells and isolated
spiral ganglion neurons. Neither cell type was negatively
influenced by the fibrin adhesive (Fig. 2c and d).

Similar insertion forces of biohybrid and regular cochlear
implant electrodes

Coating of the electrodes with a cell-containing fibrin
layer leads to a discrete thickening of the radius of the
electrode. To rule out increased insertion forces and
therefore an increase in structural trauma due to the
coating, insertion forces were determined utilizing an
artificial cochlear model. The insertion forces and, there-
fore the mechanical properties of the implant, were not
altered due to the coating, as was demonstrated by re-
peated measures (Fig. 3). Thus, insertion trauma due to
the coating could be precluded.

Behaviour of cells under electrode coating
Fibrin adhesive mixed with BM-MNC built a thin cell-
containing layer on the cochlear implant electrode
(Fig. 4) allowing proper insertion (Fig. 3).

The biocompatibility of commercially available fibrin
adhesive was not only demonstrated in cell culture as-
says (Fig. 2c and d), but also by determining the survival
of encapsulated BM-MNC on the surface of the elec-
trode in vitro using live staining (Fig. 4). Cells survived
up to 3 weeks within the fibrin layer in vitro (Fig. 4) and
died thereafter. Based on these data, in vivo survival is
estimated to be less than 4 weeks.
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Human studies

Based on previous reports on the safety and efficacy of
BN-MNC in other human diseases [36, 37], we set out to
test the safety of the cells in conjunction with cochlear im-
plantation. The protocol used for the isolation of BM-
MNC and for the generation of a biohybrid electrode was
demonstrated to the local authorities and received suc-
cessful approval for general clinical use without any re-
strictions. In our human studies, the isolated BM-MNC
were added as described above to the fibrin solution and
were used to coat the cochlear implant electrode immedi-
ately before insertion into the inner ear (Fig. 5a). Patients
with profound hearing loss who were candidates for bilat-
eral cochlear implantation were selected for the initial
studies. Electrode position was verified using cone beam
computed tomography, showing no signs of tip fold-over
or any other signs of malpositioning of the electrode
(Fig. 5b). The biohybrid electrode performance was com-
pared to the standard non-coated cochlear implant used
in the other ear. The electrode impedances and the speech
perception were compared between the two implanted
ears. All three patients had developed satisfactory speech
perception and showed similar impedances on both sides
(Fig. 5¢). In one of the patients, the speech perception
with the biohybrid implant exceeded the performance on
the other ear (patient 2), in one it was similar (patient 1),
and in one the standard implant outperformed the biohy-
brid implant (patient 3). None of the subjects demon-
strated any adverse effects 5 months after implantation.

Discussion
In this study, a protocol for the generation of clinically feas-
ible biohybrid electrodes utilizing autologous mononuclear
cells (MNC) isolated from bone marrow was developed
and tested in vitro. Prior safety studies using MNC in
clinical applications have demonstrated the general clinical
feasibility of these cells. Thus, the biohybrid electrode has
been advanced towards clinical application. Here, for the
first time, we provide safety data for the implantation of
biohybrid electrodes in cochlear implant patients pre-
senting with challenging conditions prone to poor results.
It has been shown that MNC are involved in the repair
of the central nervous system [38—41]. They can be de-
rived from peripheral blood or from the bone marrow,
and consist of different cell types including hematopoietic
and mesenchymal progenitor cells. The unique capacity of
progenitor cells to exert different therapeutic actions de-
pending on the context in which they are transplanted has
been reviewed recently [17, 42]. Intrinsic properties of
progenitor cells allow for the modulation of the immune
system and enable complete regeneration without scar
formation after damage or loss of tissue in some species
or organs [24, 43]. The decision whether healing will
occur with scar tissue formation or whether it may result
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Fig. 2 Demonstration of the immunomodulating and neuroprotective secretome of BM-MNC in vitro and generation of biohybrid electrode
arrays. a Proteomic analysis of bone marrow supernatant. Immediately after centrifugation of the bone marrow, the BM-MNC-containing plasma
supernatant was obtained and stored ice-cold until proteomic analysis. Different cytokines, chemokines, and growth factors were present at
biologically relevant concentrations in the supernatant. Among these, factors that promote wound healing and modulate and control neuroinflammation
were identified. b Neuroprotective effect of BM-MNC. Surviving spiral ganglion neurons (SGN) were quantified for each treatment condition and compared
to the medium (serum-free culture medium; neg. control) and to the positive control (medium supplemented with BDNF; pos. control). Supernatant was
obtained immediately after centrifugation of bone marrow using the RegenKit-THT tubes from each patient. The term BM-MNC denotes the mononuclear
cell fraction re-suspended in supernatant. Conditioned medium was obtained after 24 or 48 h (cond. med. 24/48) cultivation of the BM-MNC solution in
serum-free culture medium. When compared to the negative control, significantly increased survival was determined in the positive control as well as after
treatment with conditioned medium. ¢, d Biocompatibility of fibrin adhesive tested in well-established in vitro culture assays. Human MPC and SGN isolated
from rodents were treated with fibrin adhesive and the survival was compared to the positive control (medium supplemented with BDNF) as well as to
cultivation in medium without supplements (neg. control). Cell survival was not altered in the presence of fibrin adhesive when compared to the medium
control. Values are presented as the mean with standard deviation. *p < 0.1, **p < 0.01, ***p < 0.001. FGF fibroblast growth factor, MNC mononuclear cells,

in scarless tissue healing with functional preservation
strongly depends on the quality of the immune reaction
[44]. Control of inflammation seems crucial for hearing
preservation and for the prevention of fibrotic tissue
formation [25] in cochlear implant patients. Thus, immu-
nomodulatory approaches are an attractive therapeutic
option [45]. Bone marrow seems to be the most reasonable
and natural source of MNC, containing a high percentage
of progenitor cells. After depletion of the red blood cells,
MNC can be isolated from the bone marrow. Bone
marrow-derived MNC (BM-MNC) are known to be neuro-
protective [40, 46] and they are able to modulate immune
response in favour of the induction of healing and regen-
erative processes [20, 46, 47]. Utilizing BM-MNC, molecu-
lar plasticity (i.e., trophic support and immunomodulation)
could potentially be mediated in the inner ear during

cochlear implantation. These cells are known for the release
of a diversity of cytokines and growth factors [32, 48] and
we have analysed a defined panel of cytokines involved in
angiogenesis. The cytokines CCL3 and CCL4 modulate
neuroinflammation [49, 50]. They also induce the expres-
sion of CXCL6 (IL-6). As a mediator for the balance in pro-
and anti-inflammatory processes, CXCL6 is known to be
neuroprotective [50] and could help restore the physio-
logical environment of the cochlea after damage. Moreover,
CXCLS8 (IL-8), vascular endothelial growth factor (VEGF)
and fibroblast growth factor (FGF)—all known to induce
angiogenesis [51, 52]—were produced by MNC isolated
from the bone marrow and may be able to increase trophic
support in the injured cochlea [53]. FGF is involved in the
step-wise differentiation of inner ear sensory epithelia from
embryonic stem cells in the mouse [54]. Furthermore, focal
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Fig. 3 Determination of insertion forces in a cochlear model. a Electrode insertion for the measurement of force development due to implantation of
a cell-coated electrode compared to uncoated electrode. Human-adjusted cochlear models were used. Electrodes were pre-inserted for 7 mm prior to
the start of the measurements. This depth denoting the actual start of the registration of the insertion forces was defined as 0 mm. b At the maximum
insertion depth of 12 mm, the electrode is regularly jollied. A total of five electrodes (two non-coated (Cl) and three coated (biohybrid) cochlear implant
electrodes) were used for the measurement of insertion forces. Each electrode was inserted repeatedly five times. ¢ The insertion force was measured
from 0 to the 12-mm insertion depth. Here, the mean forces measured at first insertion of each electrode without coating (blue) and with coating (red)
are shown. There was no difference in the insertion forces between the coated and the non-coated electrodes. d One electrode was analysed for its

stiffness compared to the coating, performing five measures without coating. Then, after coating of the same electrode with the fibrin cell solution,
another measurement of insertion forces was performed showing that there are no increases in insertion forces due to the fibrin coating. e The first
insertion of each biohybrid electrode (biohybrid) is depicted here (No.1-3) as well as the mean and standard deviation of all first biohybrid insertion
forces. f The first insertion of each regular cochlear implant electrode (Cl) is depicted here (No.1 and 2) as well as the mean and standard deviation of
all first insertion forces. None of the electrodes showed increased insertion forces. g Each electrode is depicted here for direct comparison of the
behaviour of uncoated and coated electrode. h The mean forces (including standard deviation) of each repeated insertion of biohybrid, as well as C,
electrodes show that there is no difference between the coated and the uncoated electrodes

delivery of FGF may be able to restore synaptic connections
in the inner ear and to promote neuronal outgrowth from
spiral ganglion neurons [55]. In addition, it controls the
number of progenitor cells [56]. Chemokines such as CCL-
2 (MCP-1), CCL3 (MIP-1a), and CCL4 (MIP-1b) were also
produced by the isolated cells (Fig. 2a). These factors are
known to be involved in neuronal migration, mediation of
neuroinflammation, cell proliferation, and in synaptic activ-
ity [49, 50, 57] as well as in the chemotaxis and differenti-
ation of neuronal progenitor cells [57]. After noise-induced
damage, synaptic connections in the inner ear can be
restored [58]. Chemokines and growth factors delivered by
BM-MNC may present one approach for synaptic restor-
ation. In addition, such factors could be used to induce or
control differentiation processes of local stem cells [59, 60].
Mesenchymal progenitor cells secrete—either constitu-
tively or upon activation [61-65]—large amounts of mi-
cro- and nanovesicles, which may contribute to
neuroprotection and anti-inflammation. These vesicles are
filled with miRNA, proteins, and surface markers that

might differ from the ones found in the cell. In an experi-
mental setting, they were able to protect against renal in-
jury in a murine remnant kidney model, supporting renal
repair and inhibiting apoptosis [62]. In addition, they have
been shown to exert neuroprotection [61, 66]. In this
study, the neuroprotective effect of BM-MNC on spiral
ganglion neurons was demonstrated in a well-established
in vitro model (Fig. 1). However, which cells add to the
neuroprotective effect observed in vitro or whether micro-
or nanovesicles released from mesenchymal progenitors
are responsible for the benefits needs further clarification.
A sophisticated in vivo model for electrode insertion
trauma has been presented recently [15]. Future studies
based on this model are necessary in order to closer inves-
tigate the neuroprotective effects and to demonstrate a
potential benefit of BM-MNC transplantation for the pre-
vention of insertion trauma in vivo.

Fibrin has frequently been used as a scaffold for tissue
engineering, enabling the supply of nutrients and there-
fore the survival of encapsulated cells [67]. With its



Roemer et al. Stem Cell Research & Therapy (2016) 7:148

Page 11 of 14

alll

\

Fig. 4 Live-staining of biohybrid electrodes. Light microscopy of the electrodes (/) depicting the fibrin layer. Live staining allowed the visualisation
of single cells entrapped in the fibrin layer (// and /ll). Cells survived on the surface of the electrode without any migration as shown in the micrographs
of the same area of the electrode array 3 (a), 7 (b), and 10 (c) days after coating

excellent biocompatibility [68], it realises a cost-effective
and easy to handle approach as a matrix for cell coating.
The addition of a fibrin layer on the electrode surface
did not alter the insertion behaviour as has been demon-
strated in insertional studies (Fig. 3).

Mononuclear cells derived from bone marrow or per-
ipheral blood have been used without any adverse effects
in humans for various purposes [26, 32, 36, 37]. Thus,
the safety of transplantation of BM-MNC has been dem-
onstrated over the past several years even in closed
fluid-filled spaces such as the joints without any adverse
effects [36]. In addition, BM-MNC have been success-
fully implanted recently for the treatment of patients
with cerebral palsy [32]. A plethora of in vivo and
in vitro studies has concentrated on the use of mesen-
chymal progenitor or embryonic stem cells [18, 19, 69—
71], but only a very few have considered hematopoietic

progenitor cells for cell-based therapies for the inner ear
[22, 72]. All studies confirm that there is no induction of
fibrosis or ossification of the cochlea after local trans-
plantation of progenitor cells. To date, no clinical cell-
based applications that target the human inner ear have
been developed. We here provide initial safety data after
autologous transplantation of BM-MNC via a biohybrid
electrode. The short processing time for isolation of
BM-MNC from the bone marrow did not induce any
delay in surgery. The coating procedure was simple and
was performed by the surgeon immediately prior to
insertion. Insertion was uncomplicated as was expected
from the insertional studies in a human cochlear model.
Utilizing this procedure for the isolation of bone marrow-
derived progenitor cells could minimize potential epigen-
etic effects that may occur as a result of plastic adhesion
and in vitro expansion. Initial safety requirements have
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Fig. 5 Generation of a biohybrid electrode for human implantation and comparison of performance with standard (Cf) and cell-coated electrodes
(biohybrid). a Dipping procedure for the intraoperative coating of the electrode with a fibrin cell layer prior to implantation. The BM-MNC solution was
mixed with the fibrinogen solution and used for the dip-coating of the electrode. A second dipping into the thrombin solution allowed the
stabilization of the coating by conversion of the fibrinogen to fibrin. b Cone-beam computed tomography was utilized to check the electrode
position immediately after insertion in the operating room. The micrograph shows the correct intracochlear position of the electrode array
without any displacement. ¢ (Left panels) Impedances and speech perception (monosyllables and numbers) of patient one. The patient
received a MedEl Synchrony Standard electrode and showed an overall good performance; slightly impaired results on the side with long-term deafness
that was treated with the biohybrid electrode are evident. (Middle panels) Impedances and speech perception (monosyllables and HSM sentence test) of
patient two. The patient received a Cochlear Nucleus CI512 Profile. The results compared favourably to the contralateral side. (Right panels) Impedances
and speech perception (monosyllables and numbers) of patient three. The patient received a Cochlear Nucleus CI512 Profile electrode. His results with the
biohybrid electrode exceeded expectations, taking into consideration the presence of peri/prelingual idiopathic deafness on the side that was treated with

the biohybrid electrode. OP operation, 2D initial test (only impedances) on the second day after surgery, 5 W first fitting week performed 5 weeks after
operation, 5 M control testing 5 months after operation, respectively about three months after the first fitting

been met in all cases presented here after 6 months, dem-
onstrating a lack of complications and the clinical feasibil-
ity of the approach. Further investigations will concentrate
on the enhancement of the effect of BM-MNC.

Conclusion

The herein presented procedure utilizing autologous cells
for local factor delivery via biohybrid electrodes in pro-
foundly deaf patients is an initial step towards cell-based
regenerative therapies for hearing disorders. Various in-
novative efforts based on progenitor cells, gene, or molecu-
lar therapy for the inner ear have been developed recently
[73-75] and could be combined with our procedure for the
development of clinically relevant future therapies.
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