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Abstract

lineage.

Mesenchymal stromal cells

Background: Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are gaining increasing interest as an
alternative source of stem cells for regenerative medicine applications. Definitive endoderm (DE) specification is a
prerequisite for the development of vital organs such as liver and pancreas. Hence, efficient induction of the DE
lineage from stem cells is crucial for subsequent generation of clinically relevant cell types. Here we present a
defined 3D differentiation protocol of WJ-MSCs into DE cells.

Methods: WJ-MSCs were cultured in suspension to generate spheroids, about 1500 cells each, for 7 days. The
serum-free differentiation media contained specific growth factors, cytokines, and small molecules that specifically
regulate signaling pathways including sonic hedgehog, bone morphogenetic protein, Activin/Wnt, and Notch.

Results: We obtained more than 85 % DE cells as shown with FACS analysis using antibodies directed against the
DE marker CXCR4. In addition, biochemical and molecular analysis of bona-fide DE markers revealed a time-course
induction of Sox17, CXCR4, and FoxA2. Focused PCR-based array also indicated a specific induction into the DE

Conclusions: In this study, we report an efficient serum-free protocol to differentiate WJ-MSCs into DE cells utilizing
3D spheroid formation. Our approach might aid in the development of new protocols to obtain DE-derivative
lineages including liver-like and pancreatic insulin-producing cells.
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Background

Wharton’s jelly-derived mesenchymal stem cells (W]J-MSCs)
have attracted tremendous interest in recent years as a po-
tential stem cell source for both research and therapeutic
applications because they displayed a high capacity for self-
renewal, multilineage differentiation, and immune-modular
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properties in earlier studies [1-3]. This unique type of cells
residing in the gelatinous insulator of blood vessels in the
umbilical cord, named Wharton’s Jelly [4], have been studied
extensively in the past decade and have been differentiated
in vitro into a wide spectrum of cell types representing the
three germ layers [1, 5-7].

In particular, endodermic differentiation gained grow-
ing attention in the field because its derived tissues such
as pancreatic and hepatic tissues are heavily affected by
diseases and pathological conditions. The potential of
hepatic-like and pancreatic-like cell types from stem
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cells holds significant potential not only for regenerative
medicine applications but also for drug testing and toxi-
cology studies. Pluripotent stem cells (PSCs) such as em-
bryonic stem cells (ESCs) and induced pluripotent stem
cells (iPSCs) have been successfully differentiated into
definitive endoderm (DE) and their derived lineages
following extensive in-vitro induction protocols. These
protocols have been designed to guide the cells through
the developmental events by mimicking the embryonic
conditions from the primitive streak stage to the DE
stage and its derivative’s lineages [8—11].

The endodermal potential of WJ-MSCs has not been
well established to date because only limited information
has been reported on their endodermal differentiation
capacity. Bhandari et al. [7] reported successful
differentiation of WJ-MSCs into DE, pancreatic foregut,
pancreatic endoderm, and B-cells following a 1-week
differentiation protocol. Another group managed to dif-
ferentiate WJ-MSCs into insulin-producing cells in vitro
[12]. Other groups reported the differentiation of WJ-
MSCs into insulin-producing cells with islet-like morph-
ology, using recombinant adenovirus—PDXI gene
constructs [13, 14]. Despite showing positive indications
toward DE differentiation, these studies reported the use
of animal serum and/or genetic modifications, and re-
sulted in low differentiation capacities. Using stem cells,
adherence to clinical scale standards requires genomic
modification of the free cell type, and the development
of highly efficient differentiation protocols free from
animal products and chemically defined with detailed ac-
knowledgment of the small molecules used to mediate
differentiation.

The ability to direct WJ-MSCs efficiently to the DE
lineage is a crucial step toward the development of
downstream endodermic cells, such as hepatic or
pancreatic B-like cells. WJ-MSCs can overcome the limi-
tations of PSCs such as tumorigenicity, especially when
considering potential clinical applications [15]. In
addition, WJ-MSCs possess hypoimmunogenicity that
makes this cell type a good candidate for potential allo-
genic therapeutic usages [3, 16, 17].

In this study, we present a novel three-dimensional
(3D), fully defined, serum-free, stepwise differentiation
protocol to generate DE from WJ-MSCs. Our 7-day
culture condition utilizes the manipulation of several
signaling pathways. Initially, the activation and inhibition
of RA/KGF and SHH/BMP signaling, respectively, gener-
ated mesendoderm (ME) cells. The second step utilizes
T3, EGF signaling induction, and the inhibition of TGEF-
B/Notch pathways to induce the DE lineage. This ap-
proach resulted in the enrichment of cells expressing DE
markers by day 7. Further, our results demonstrate that
WJ-MSCs can provide an excellent platform for DE
generation.

Page 2 of 11

Methods

Ethical approval and procurement of human samples

The study was approved by the Ethical Review Committee
at the Dasman Diabetes Institute (protocol number: RA-
2013-009) in accordance with the World Medical Associ-
ation Declaration of Helsinki Ethical Principles for Medical
Research Involving Human Subjects and Samples. Human
umbilical cord matrix Wharton’s jelly mesenchymal stem
cells (WJ-MSCs) were purchased from ATCC (PCS-500-
010). We have previously characterized WJ-MSCs and
showed that the cells are self-renewable, express stemness
protein markers, and have multilineage differentiation
properties including adipogenesis, chondrogenesis, and
osteogenesis [1].

WJ-MSC culture and maintenance

WJ-MSCs were maintained in DMEM/Hams’s F-12 (1:1
vol/vol) culture medium supplemented with 10 % MSC-
qualified FBS, penicillin (100 units/ml), and strepto-
mycin (100 pg/ml). Cell culture media and supplements
were purchased from Invitrogen. Cell proliferation was
monitored; upon reaching 70 % confluence, cells were
detached using 0.05 % trypsin/0.02 % EDTA in PBS for
the experimental procedure [1].

3D spheroidal colony formation and differentiation assay
Differentiation into the DE lineage was performed on
WJ-MSCs (P2—-P4) in triplicate, as described by Pagliuca
et al. [18], with major modifications to suit the develop-
mental stage of WJ-MSCs. For RNA extractions and the
time-point differentiation profile, cells were harvested as
described in the prospective study (Fig. 1a) until the end
of each experiment. On the first day of differentiation,
subcultured WJ-MSCs (70 % confluent) were dissociated
into single cells and resuspended in Differentiation
Media A. For the generation of spheroid structures, cells
(1.8 x 10°) were added to a well of the eight-well AggreWell
Plate (Stem Cell Technologies) and incubated at 37 °C in a
5 % CO, incubator [19, 20]. Each well contained 1200
microwells, and accordingly each individual cell cluster was
generated from 1500 cells. After 24 hours, the spheroids
were harvested, washed with 1x PBS, and resuspended in
fresh Differentiation Media A. The cells were then trans-
ferred into ultra-low adherence six-well plates (Corning) at
a lower density, about 300400 cells per well, in order to
avoid spheroid fusion. On day 3, the medium was changed
to Differentiation Media B and the cell clusters were incu-
bated for an extra 4 days with media change every 2 days
(Fig. 1a).

The constitution of the media used in the directed differ-
entiation was similar to that used by Vegas et al. [21] with
major modifications. Differentiation Media A: MCDB131
media was supplemented with 8 mM D-(+)-glucose,
146 mM NaHCO; 1 % fatty acid-free BSA, 2 mM
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Fig. 1 Experimental protocol and 3D colony formation. a Schematic representation of the differentiation protocol including the key manipulated
signaling pathways. b Phase-contrast representative microscope images (Magnification x 200) for WJ-MSCs cultured in TC plate, AggreWell, and
suspension. At days 3-7, cells formed floating clusters in suspension, whereas the control cells were detached and released from generated clusters
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Glutamax, 1 % Pen/Strep (Invitrogen), 1:200 ITS-X in PBS,
250 uM ascorbic acid, 50 ng/ml KGF/FGF-7 (R&D
Systems), 2 uM retinoic acid, 0.5 uM cyclopamine-KAAD
(Calbiochem), 2 pM LDN193189 hydrochloride (Sigma),
and 0.25 puM phorbol 12,13-dibutyrate (Sigma). Differenti-
ation Media B: MCDB131 media was supplemented with
20 mM D-(+)-glucose, 20.9 mM NaHCOs;, 1 % fatty acid-
free BSA, 2 mM Glutamax, 1 % Pen/Strep, 0.5x N, supple-
ment, 0.5x B27 supplement without RA, 1:200 ITS-X in
PBS, 250 puM ascorbic acid, 2.5 pg/ml heparin, 0.5 uM
DAPT, 0.5 pM Alk5ii, 1 uM triiodiothyronine NA salt,
50 ng/ml EGF (R&D Systems), 1 uM LDN193189, 5 mM
nicotine amide, 50 ng/ml Exendin-4 (R&D Systems), and 50
nM phorbol 12,13-dibutyrate.

Immunofluorescence assay

Immunofluorescence assays were performed on sectioned
cell clusters differentiated into DE at days 3 and 7 using
antibodies directed against the ME marker BraT and the DE
markers CXCR4, FoxA2, and Sox17. The cryosection pro-
cessing procedure was adopted from Gomes et al. [22] with
minor modifications. The harvested cell clusters were
washed with 1x PBS and fixed in 10 % formalin solution for
30 min at room temperature. The EBs were then rehydrated
in 1x PBS for 15 min, followed by 30-min sequential incuba-
tion in a serial of sucrose solutions (10, 20, and 30 % in

PBS). The sucrose solution was removed and the EBs were
placed on the mold. OCT was slowly added to the mold to
facilitate the assembling of cell aggregates at the center of
the mold. The mounted cell cluster—OCT blocks were fro-
zen at —80 °C for further cryosectioning using Bright OTF
5000 Cyrostat (Hacker Instruments). The sectioned
spheroids were mounted onto glass slides, heat dried for
10 min to remove the OCT, and then directly used for im-
munofluorescence assay. For immunostaining, the slides
were washed extensively with PBS and then incubated over-
night with the conjugated antibodies. The slides were
washed 24 hours later with PBS and mounting buffer con-
taining Hoechst for nuclei stain. Preconjugated anti-CXCR4
(CD184) antibody was purchased from BD Pharmingen and
used to detect the DE surface marker protein. Anti-human-
Sox17 and FoxA2 (BD Pharmingen) were conjugated with
Alexa Fluor 592 using APEX Antibody Labeling Kits
(Invitrogen) as described by the manufacturers. Fluorescent
and phase-contrast images were captured using Confocal
Laser-Scanning microscope (LSM 710; Zeiss) as described
previously [23]. Additional file 1: Table S1 presents the list
of antibodies used in the study.

RNA extraction, cDNA synthesis, and qRT-PCR reactions
Total RNA was extracted from the cells using the Total
RNA purification Kit (Norgen Biotek, Canada) in
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accordance with the manufacturer’s protocol. First-
strand cDNA was synthesized from 50-100 ng RNA by
reverse transcription using the QuantiTect Reverse
Transcription Kit (Qiagen Inc., USA). Quantitative real-
time PCR (qRT-PCR) reactions were performed as described
previously [24, 25]. Primer pairs with equivalent efficiencies
(Additional file 1: Table S2) were selected from Primer Bank
[26] or were designed using primer3web (http://primer3.u-
tee/) [27] and primer-BLAST tools (http://www.ncbi.nlm.-
nih.gov/tools/primer-blast/) [28]. qRT-PCR was performed
on the ABI7900 system (Applied Biosystems, USA) using
SDS software. Relative gene expression was calculated using
the comparative Ct method as described previously [29, 30].
Results were normalized to the Geo-mean of GAPDH, beta
actin, and 18S Ct values, and averages + SEM are shown
expressed relative to control or day 0 undifferentiated cells,
as indicated. In order to examine the DE specification, fo-
cused PCR-based array plates (PAHS-081y; Qiagen, Biosci-
ences) were utilized. Using SYBR Green-based qRT-PCR
technology in accordance with the manufacturer’s protocol,
quantitative analysis of gene expression from differentiated
day 7 WJ-MSCs were compared with their counterpart un-
differentiated cells at day 0.

Flow cytometry analysis

Flow cytometric analyses were performed as described
previously [1]. A small fraction of undifferentiated,
day 0, and DE-derived spheroids, day 7, were washed
with 1x PBS, and then enzymatically dissociated in
1 pg/ml collagenase type A in a 37 °C incubator. The
enzyme was inactivated with culture media containing
10 % FBS, and cells were washed with 1x PBS and
suspended in FACS buffer. Single cell suspensions
were passed through 50-70 mm cell strainers. Single
cells were incubated with fluorescent-conjugated
CXCR4-PE antibody, diluted in FACS buffer (1:100)
for 45 min, and then were washed three times in
FACS buffer. Flow cytometry records were assembled
as described previously [1] using a FACS Canto Flow
Cytometer device and FACS Diva (BD Biosciences)
software. The excitation and emission spectra were
530 nm and 590 nm, respectively. The cells were
scattered at SSC vs CxCR4-PE and SSC vs FSC. The
background was estimated using unstained cells with
PBS or mouse IgG comparable with the isoform used
with the experimental CXCR4-PE antibody.

Statistical analyses

In this study, WJ-MSC differentiation experiments with
at least three independent cultures were performed. Stat-
istical significance was estimated with a one-tailed
Student’s ¢ test assuming equal variance and the error is
SEM (P < 0.05) [25].
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Results

WJ-MSCs acquire defined spherical structures in 3D
culture conditions

Studies have shown that the generation of embryonic
bodies from human embryonic stem cells (hESCs) and
human induced pluripotent stem cells (hiPSCs) is a con-
venient inductive step leading to downstream differenti-
ation into the three germ layers depending on the
cultural conditions [31-33]. We tested this concept on
WJ-MSCs. As we have reported previously, WJ-MSCs
were grown as a flat monolayer and exhibited an elon-
gated spindle-shape fibroblast-like morphology when
cultured on polystyrene tissue culture plates (Fig. 1b)
[1]. Interestingly, the WJ-MSCs spontaneously generated
homogeneous cell clusters upon culturing in the differ-
entiation media using the micro-AggreWells and subse-
quent cultivation in low attachment plates (Fig. 1b). We
also observed that the generated cell clusters are highly
reliant on the initial seeded cell numbers. Our data
showed that clustering of 1500 cells is sufficient to ob-
tain spheroids with high quality and differentiation out-
come (Fig. 1b, days 0 and 1; data not shown). After
24 hours, transferring the cell clusters to low-adherence
plates representing suspension cultural conditions
(Fig. 1b, days 3 and 7) gave them an appearance suggest-
ing the development of normal systematized aggregate
structures. In contrast, the clustered cells, using regular
growth medium containing FCS, leaned toward attach-
ment to the bottom of the low-adherence plates, where
diffusions of individual cells from the clustered EBs were
observed (Fig. 1a, control day 3).

Sequential generation of ME and DE lineages

WJ-MSCs have developmental plasticity shown by their
ability for multilineage differentiation [2, 34, 35]. The
observed low differentiation efficiency of WJ-MSC mono-
layer cultures is most likely due to improper generation of
DE, which is an essential step toward the potential gener-
ation of specialized organs such as the digestive track,
liver, and pancreas [12, 36-39]. In order to overcome
these limitations, we tested the hypothesis that mimicking
embryonic developmental stages through the generation
of 3D cell culture in a chemically defined serum-free
media may enhance efficient DE differentiation.

In the present study, cell aggregates were generated
from WJ-MSCs and their commitment capacity toward
the DE lineage was monitored (Methods). Under the de-
scribed differentiation conditions, qRT-PCR analyses dem-
onstrated an induction of Brachyury T (Bral) mRNA
starting from day 1 and peaking at day 3, with a 40-fold
increase relative to undifferentiated cells. Similarly, the ex-
pression levels of mesenchyme homeobox 1 (Meox1) were
gradually increased and peaked at day 3 of differentiation,
suggesting commitments toward primitive streak and
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early ME lineages (Fig. 2a) [40]. Notably, the gene expres-
sion profiling revealed that the DE specification is initiated
at day 3 concomitant with a decline in the mesendodermal
markers. The transcript levels of the early DE genes, Fork-
head Box A3 and A2 (FoxA3 and FoxA2), emerged at day
3 and peaked at day 7 (Fig. 2b); whereas expression of the
Sex Determining Region Y-box 17 (Sox17) gene peaked at
day 5, with a 4000-fold increase in mRNA expression
levels relative to undifferentiated cells. The chemokine (C-
X-C motif) receptor 4 (CXCR4) and Goosecoid
homeobox (GSC1) mRNAs were significantly enriched at
day 7 (Fig. 2b). Interestingly, the increase in expression
levels of the bona-fide DE markers ranged between 50-
fold and 4000-fold relative to undifferentiated cells,
suggesting that our approach using 3D and chemically
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defined differentiation conditions has successfully
enriched the DE lineage from WJ-MSCs.

Next, we examined the developmental progression of
the differentiated cells toward the formation of gut tube;
accordingly, the transcript levels of the early posterior
foregut markers Paired Box 9 (Pax9), Hepatic nuclear
factor 1 B (HNF1p), and Paired Box 7 (Pax7) were stud-
ied. The transcripts of these genes were upregulated at
day 3 and peaked at day 7, simultaneously with the DE
markers. However, their expression levels were low, ran-
ging between 10 and 15 %, compared with that observed
for the DE genes, likely due to a possible commitment
of a small cell fraction toward early posterior foregut
lineage and/or the existence of these genes at lower pro-

file in DE cells (Fig. 2b) [40, 41].
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Because WJ-MSCs originate from umbilical cord tissue
and in order to exclude possible generation of extra-
embryonic visceral endoderm lineage, we assessed the gene
expression of this particular developmental stage. qRT-PCR
analysis exhibited a nonsignificant regulation in the tran-
scripts of the visceral endodermal genes, amnion associated
transmembrane protein (Amn) and alpha-fetoprotein (AFP),
during the time course of differentiation (Fig. 2c). The
chronological gene expression dynamics thus particularly re-
capitulate those in ME and DE lineage development.

Targeted microarray analysis was generated to distin-
guish the gene expression signature of undifferentiated
versus day 7 differentiated WJ-MSCs (Fig. 3). In accord-
ance with our previous study, downregulation of the
WJ-MSC surface markers CD44 and CD73 was observed
at day 7 of differentiation, supporting our previous con-
clusion that these two proteins are reliable stemness
markers for WJ-MSCs [1]. On the contrary, CD105 and
CD90 were upregulated in response to DE generation
(Fig. 3). Additionally, genes known to be important regu-
lators of the ectodermal differentiation such as Pax6,
MEIS1, and NCAM1 were depleted, suggesting that the
cellular specification is waived from the ectoderm
formation using the described protocol (Fig. 3). Remark-
ably, as described previously in Fig. 2, a nonconsistent
regulation of the expression of the mesodermal genes
MixL1, BraT, and Handl was observed, marking the
initiation of DE lineage specification. This notation was
further confirmed with the increase in the expression of
the DE genes such as SOX17, GSC1, and GATAs, which
are landmark genes for the DE lineage (Fig. 3).
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Fig. 3 Differential gene expression of undifferentiated and
differentiated WJ-MSCs. Heatmap gene expression regulations at days O
and 7. Alteration in WJ-MSC surface markers, loss of ectodermal markers,
and upregulation of the DE markers suggest a directed differentiation
toward the later lineage
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Efficient generation of DE cells from WJ-MSCs

Gene expression analysis revealed a distinct DE signa-
ture at day 7 of WJ-MSC differentiation. In order to
corroborate the qRT-PCR analysis and evaluate the
differentiation efficiency, we ascertained the protein ex-
pression of the DE markers by immunolocalization and
flow cytometric analysis.

Immunofluorescence with anti-BraT antibodies de-
tected its nuclear protein localization at day 3 of differ-
entiated WJ-MSCs (Fig. 4, Additional file 1: Figure S1),
which was dramatically lost at day 7 (data not shown).
CXCR4 protein was detected predominantly at the cell
membrane of differentiated WJ-MSCs, whereas Sox17
and FoxA2 proteins were expressed at the nuclei of the
generated DE cells at day 7. The chronological elevation
in the expression of FoxA2 proteins at day 7 is consist-
ent with the reduction of the ME marker BraT, and the
increase of the DE markers CXCR4 and Sox17 is indica-
tive of differentiation toward the later lineage (Fig. 4,
Additional file 1: Figure S1).

Immunoreactivity analysis revealed a high expression
of the DE surface protein CXCR4, which inspired us to

Fig. 4 Immunofluorescence of differentiated WJ-MSCs. Confocal
laser representative images for differentiated WJ-MSCs at days 3 and
7 as indicated. Immunofluorescence assays using the APEX-labeling
system for conjugating primary antibodies (BraT-Alexa 488, Sox17-
Alexa 594, and FoxA2-Alexa 594). CXCR4 antibodies are PE

congregated. Magnification x 400
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investigate the differentiation efficiency using flow cy-
tometry. The differentiation protocol resulted in an en-
richment of DE; where 83 + 4.4 % of the total cell count
were positive to CXCR4 protein at day 7, relative to cells
treated with comparable IgG or PBS, which showed
minor backgrounds for CXCR4 expression (1.1-1.5 %,
Fig. 5). In accordance with previous studies performed
on adult MSCs, undifferentiated WJ-MSCs cultured on a
monolayer showed a statistically nonsignificant minor
expression of CXCR4 (6.3 +4.5 % Fig. 5) [42, 43]. Adult
fibroblast cells were also subjected to the same differen-
tiation conditions. At day 7, these cells showed nonspe-
cific expression for CXCR4 relative to IgG-treated and
PBS-treated cells: 17.6+ 1.8 and 9.4+ 7.2, respectively
(Additional file 1: Figure S2).

Scatter-dot plots analysis from undifferentiated, day 0,
and differentiated, day 7, WJ-MSCs were generated. Un-
differentiated WJ-MSCs exhibited high forward-scatter
(FSC) and moderate to high side-scatter patterns (Fig. 6,
day 0), whereas at differentiation day 7 approximately
99 % of the generated DE cells demonstrate low scatter
parameters (Fig. 6), implying a small size and less
granularity. These data support previous reports show-
ing that WJ-MSCs consist of a heterogeneous population
[44, 45], and reflect efficient differentiation toward a
homogeneous population of DE cells, which are charac-
terized with small-sized cells and less granularity [46].
Taking these observations together, the implemented 3D
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differentiation protocol using chemically defined media
efficiently induced the generation of DE cells.

Discussion

In order to develop a protocol for stem cell differenti-
ation toward clinically relevant cell types, the current
strategy is mimicking the cell signaling events associated
with the embryonic developmental process for the
lineage of interest [8, 47, 48]. Nevertheless, in-vitro cell
differentiation does not reflect a stepwise developmental
progression but gives a broad range of outcome lineages
[49]. Accordingly, the development of a protocol that
significantly improves a targeted cell type is of particular
interest. Directed differentiation methods utilize chem-
ically well-defined small molecules, which regulate cell-
signaling pathways, resulting in cellular differentiation
toward a particular lineage [25, 50, 51]. In addition,
studies have shown that the generation of 3D spheroid
structures enhances the cellular programming potential.
These approaches have been successfully applied to
hESCs and hiPSCs [51-53], but have yet to be applied to
other pluripotent cell types, including WJ-MSCs.

In this study, we implemented an optimized two-stage
protocol directed to a stepwise differentiation of WJ-
MSCs toward the DE cell population, the progenitor for
the development of gut tube, pancreatic, and hepatic
cells [8, 38, 54]. For efficient differentiation, WJ-MSCs
were aggregated in suspension to generate uniform
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clusters of differentiated cells mimicking the formation
of embryonic bodies observed with ESCs or iPSCs. Ini-
tially, we applied the recently described protocol used to
differentiate hESCs and hiPSCs by Pagliuca's group [18].
Under 3D conditions, WJ-MSCs were cultured for 3 days
in a differentiation media supplemented with Activin
and WNT3a activators, followed by 3-day incubation in
a media containing retinoic acid (RA) and keratinocyte
growth factor (KGF), in the presence of sonic hedgehog
(SHH) and bone morphogenetic protein (BMP) inhibi-
tors. Time-course RT-PCR analysis revealed an increase
in BraT and Meox1 transcripts, the primitive streak/
mesendodermal (PS/ME) markers [55], following the
second treatment, suggesting that Activin/Wnt signaling
failed to induce PS/ME lineages in WJ-MSCs (data not
shown). Accordingly, we eliminated the Activin/Wnt ac-
tivator treatment step in the subsequent experiments
(Fig. 1). Activin A has been defined to trigger PS/ME lin-
eages in both ESCs and iPSCs [41, 56—58]; however, it
maintains multipotency in MSCs [59]. The differences in
the role of Activin A are related to the differences in
stem cell origins and their developmental stages. Further,
undifferentiated WJ-MSCs were reported to secrete
Activin A as an immunosuppression agent reducing
natural killer-mediated IFN-y production [60, 61], which
supports our results that Activin A signaling is not re-
quired for WJ-MSC differentiation.

Interestingly, our results revealed a combination of the
RA/KGF inducers and SHH/BMP signaling inhibitors to

be sufficient to enhance WJ-MSC-mediated PS/ME
lineage inductions. Reports have indicated that each sig-
naling molecule is involved in a particular lineage gener-
ation; for example, KGF induces MSC differentiation
into sweat gland-like cells [62]. RA and SHH molecules
were reported to mediate osteogenesis and abolish adi-
pogenesis in MSCs independently [63-65]. However,
synergistic RA and SHH signaling promotes the gener-
ation of sensory neurons [66]. On the contrary, BMP sig-
naling acts as an inhibitor for the early stages of human
ESC-mediated DE development [67, 68]. Consequently,
cells respond differentially to multiple changes in the
extracellular environment [69, 70]. It is important to
note that the differentiation protocol used in this study
is serum free. Thus, no extracellular signaling molecules
were involved in the generated PS/ME lineages other
than the interplay between the four described signaling
pathways.

WJ-MSC-mediated DE formation was enhanced by
thyroid hormone, exendin-4, and EGF; inhibition of both
TGEF-p and Notch pathways was also effective to en-
hance the yield of this lineage. Cvoro et al. reported that
during DE induction from hESCs and hiPSCs, thyroid
hormone suppresses notch-signaling genes through the
activation of the Kruppel-like factor KLF-9 [71, 72]. Both
exendin-4 and EGF direct the DE differentiation toward
primitive gut tube endoderm, and enhance proinsulin
biosynthesis and expansion of pancreatic progenitor at
later stages of hESC and hiPSC differentiation [18].
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Recently, Nekoei et al. [73] reported the generation of
insulin-producing cells from WJ-MSC cultured in a
serum-dependent differentiation containing exendin-4
[24], yet the efficiency of insulin induction was relatively
low most likely due to absence of the stepwise differenti-
ation process. Similarly, Kadam et al. [74] reported a low
yield of pancreatic p-cell-like clusters generated from
monolayer cultures of placenta-derived MSCs. Inhibition
of TGF-B receptor ALK5 was reported to mediate hu-
man ESC differentiation into the early gut and induce
Pdx1-expressing endodermal cells [69, 75].

Unlike the traditional 2D adherent cell cultures, 3D
cellular clustering provides the cells with physiological
conditions similar to those occurring in embryos. Re-
markably, WJ-MSCs generated stable spheroidal bodies
upon culturing in AggreWell plates, which showed an
improved differentiation capacity into DE lineage. In
both ESCs and iPSCs this technique has been proven to
efficiently mediate the differentiation toward different
developmental lineages [8, 24, 25], but it has not been
tested in WJ-MSCs. Notably, differentiating WJ-MSCs in
monolayer cultures toward insulin-producing cells re-
sulted in the generation of cell aggregates; while
remaining attached to the plate surface, cells within the
cluster-like morphology showed a significant differenti-
ation property [73, 76].

Conclusions

We established a differentiation method that induces DE
cells from WJ-MSCs with high efficiency. The 3D cul-
tural environment and serum-free media administered
with controlled extracellular signaling pathways resulted
in more than 85 % enrichment of DE cells, the progeni-
tor germ layer for pancreatic and hepatic cells. Accord-
ingly, in addition to their advantage over other stem
cells, WJ-MSCs provide an excellent platform for DE
and downstream lineage differentiation.

Additional file

Additional file 1: Table S1. Presenting primary antibodies used for flow
cytometry characterization of differentiated cells, Table S2 presenting
oligonucleotide sequences of primers utilized for real-time qRT-PCR, Figure
S1 showing immunofluorescence of the differentiated WJ-MSCs as confocal
laser representative images for differentiated WJ-MSCs at days 3 and 7 as
indicated, and Figure S2 showing flow cytometric analysis of the definitive
endoderm bona-fide marker CXCR4 at day 7. (PDF 519 kb)
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