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Abstract

The functionality of stem cells is tightly regulated by cues from the niche, comprising both intrinsic and
extrinsic cell signals. Besides chemical and growth factors, biophysical signals are important components of
extrinsic signals that dictate the stem cell properties. The materials used in the fabrication of scaffolds provide
the chemical cues whereas the shape of the scaffolds provides the biophysical cues. The effect of the
chemical composition of the scaffolds on stem cell fate is well researched. Biophysical signals such as
nanotopography, mechanical forces, stiffness of the matrix, and roughness of the biomaterial influence the
fate of stem cells. However, not much is known about their role in signaling crosstalk, stem cell maintenance,
and directed differentiation. Among the various techniques for scaffold design, nanotechnology has special
significance. The role of nanoscale topography in scaffold design for the regulation of stem cell behavior has
gained importance in regenerative medicine. Nanotechnology allows manipulation of highly advanced
surfaces/scaffolds for optimal regulation of cellular behavior. Techniques such as electrospinning, soft
lithography, microfluidics, carbon nanotubes, and nanostructured hydrogel are described in this review, along
with their potential usage in regenerative medicine. We have also provided a brief insight into the potential
signaling crosstalk that is triggered by nanomaterials that dictate a specific outcome of stem cells. This
concise review compiles recent developments in nanoscale architecture and its importance in directing stem
cell differentiation for prospective therapeutic applications.
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Background
The critical feature of stem cells is their ability to proliferate
and differentiate using niche-dependent cues provided by
signaling molecules, intercellular communication, and their
neighboring extracellular matrix (ECM). Any of these
components can be modulated to obtain specific lineage
outcomes [1].
The insight in this review would provide reasonable

approaches for researchers and clinicians to obtain a
programmed cellular lineage by biomaterial structural
modifications.

Stem cells and biomaterials
A key area of research that has gained significant attention
over the past several years is tissue engineering—an allied
field of regenerative medicine. The science of biomaterials
has evolved from a cell carrier tool to one that can direct
cellular differentiation. Biomaterials can now be molded
into three-dimensional (3D) scaffolds to promote cell
proliferation and/or differentiation for regeneration [2].
Mechanical factors such as matrix stiffness, matrix
nanotopography, microgeometry, and extracellular forces
significantly influence stem cell activities. Based on the
source of derivation, biomaterials can be grouped under
natural and synthetic polymers. Some of the natural
scaffolds used in tissue engineering include collagen, silk
fibroin, alginate, chitosan, keratin, and decellularized tis-
sues such as de-epithelialized human amniotic membrane
[3]. Biodegradability and a biologically active nature are
the major advantages of natural scaffolds over synthetic
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scaffolds. Cells cultured on natural scaffolds reveal a good
cellular response with enhanced tissue growth and host
tissue integration on transplantation. One of the major
drawbacks of natural scaffolds is their inherent ability to
become cross contaminated from the source.
Synthetic scaffolds represent the largest group of bio-

degradable polymers with consistent properties apart from
a high surface to volume ratio, versatility in chemical
composition, and biological properties that show good
malleability and processability [4, 5]. Polymers of diverse
properties have been used for fabrication of scaffolds to be
used for different applications. One of the major drawback
of the synthetic scaffolds is the local inflammation initiated
by the release of acids as their degradation byproduct [5].

Influence of the biophysical microenvironment on
stem cell response
A cell responds to its environmental cues through the
cellular mechanotransduction pathway. The soluble and
insoluble cues regulate/modulate various genes and their
downstream effectors. The physiological outcome of a
cell growing on a scaffold is defined by three factors—-
biological, biochemical, and biomaterial. [6]. Different
techniques with different architectures are used for
synthesizing scaffolds for a specific biological or clinical
application. (Figure 1). In the following section we have
listed a few methods that impart architectural unique-
ness to scaffold design and their limitations with respect
to stem cell applications.

Fig. 1 Cellular response to the biophysical microenvironment. Biomaterials with (a) fibrous architecture, (b) nano grooves/ridges, (c) surface
roughness and varying nanotopographical features, (d) nanodotted surface, and (e) concave and convex curvatures inside a porous scaffold.
These microenvironmental mechanical cues have the ability to influence cell adhesion, alignment, proliferation, differentiation, and migration
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Nanoscale platforms
One of the major challenges in biomaterial science is to
generate a substrate topography that mimics the in vivo
microenvironment composed of pores, ridges, and channels
that provide physical cues to cells at a nanoscale level. Scaf-
folds are generated by the techniques described below.

Electrospinning
Electrospinning is one of the most widely used fabrication
techniques. Nanofibers of sub-microscale diameter are gen-
erated by ejecting electrically charged polymer solutions
through a needle on to a grounded collector surface [7].
Usage-dependent customized nanofibers of different archi-
tectures and shapes can be fabricated using patterned
collectors on electrospinning. Since the fiber diameter is
lesser than the cell surface area, it is a perfect platform for
the cells to organize and spread around the nanofibers with
numerous focal adhesion points [6]. Pores of variable sizes
can be introduced during the generation of electrospun
scaffolds by incorporating porogens or sacrificial fibers that
get dissolved after fabrication [8, 9]. A wide range of
polymers of both natural and synthetic materials are
employed for manufacturing scaffolds [10]. Though the
biological materials promise better clinical applications it is
difficult to maintain the integral chemical features of the
material during the electrospinning process. For example,
collagen loses its physicochemical properties when fluoroal-
cohol is used as a solvent to generate nanofibers [11]. It is
much more challenging to precisely control the dimension
and morphology of silk fibroin as 3D electrospun scaffolds
for specific biomedical and dental applications [12]. Some
drawbacks of this method are the possibility of cells squeez-
ing into smaller pores thereby limiting their growth poten-
tial and the lack of precise control of fiber alignment.
Modifications to the electric charges and the introduction
of high-speed rotation mandrels have overcome this limita-
tion [13]. Cells seeded on a nanofiber structure tend to
maintain the phenotypic shape and a guided growth ac-
cording to nanofiber orientation. Yin et al. differentiated
human tendon stem/progenitor cells to tendons using
electrospun poly-L-lactic acid (PLLA) nanofibers [14]. The
cellular morphology was defined by the nano-architecture;
cells were more stellate-patterned on random nanofibers
and elongated and spindle-shaped fibroblastic phenotype
with the aligned nanofibers [14]. Independent of the
differentiation factors, the scaffold architecture is capable of
directing lineage specification. For example, human bone
marrow stromal cells (hBMSCs) cultured on nanofibrous
poly-ε-caprolactone (PCL) scaffolds adopted an elongated,
highly branched, osteogenic morphology [15]. Morelli et al.
have reported that polylactic acid (PLA) and composite
PLA-nanohydroxyapatite electrospun scaffolds were equally
efficient in differentiating human mesenchymal stem cells
(MSCs) to osteogenic and osteoclastogenic differentiation

[16]. Kai et al. in a recent study demonstrated that electro-
spun composite PCL-gelatin scaffolds encapsulated with
vascular endothelial growth factor promoted differentiation
of MSCs for myocardial regeneration [17]. Furthermore,
Mohtaram et al. found that electrospun PCL scaffolds with
a smaller diameter loop mesh induced higher neuronal
differentiation compared to thicker loops from neural
progenitors [18]. Electrospun nanofibrous scaffolds of
polylactic-co-glycolic acid (PLGA) and gelatin with embed-
ded epidermal growth factors have been used for tissue
engineered skin scaffolds [19]. Recently, Ortega et al. used a
combination approach of electrospinning and microstereo-
lithography to generate corneal membranes that mimicked
the limbal region of the eye that harbor ocular stem cells
[20]. Embedding guidance cues with gradient concentration
on electrospun fibers can provide a polarized effect on the
cultured cells and tissues. Similarly, techniques such as air
brushing are now being used to eliminate the use of organic
solvents for the preparation of polymer solutions. One of
the salient feature of electrospinning is controlling the fiber
alignment, which has been achieved for proper control of
cellular functions through control of cellular morphology
and alignment [21, 22]. The release of encapsulated drugs
and biomolecules is being tailored through the use of core-
shell fibers [23].
Though the technique is widely popular, the process of

electrospinning depends on the polymer solution properties
such as viscosity, surface tension, conductivity, and dielec-
tric constant [24]. The viscosity of the solution maintains
the ejecting fiber without breakages [25]. Voltage applied,
flow rate of solution, type of collector, needle diameter, and
the distance between the needle and the collector are
factors that determine the pattern of the fibers [26].
Environmental factors such as temperature, humidity, and
pressure can have some minor effects on the patterning of
fibers by electrospinning [27]. The number of factors
affecting the scaffold outcome generated by electrospinning
is numerous, making it difficult to form a standard operat-
ing protocol for repeatability of scaffold architecture. The
infiltration of cells within electrospun fibers is rather
limited. The fibers are typically unable to serve as scaffolds
for load-bearing tissues [28].

Soft lithography
Soft lithography fabrication uses elastomeric stamps,
molds, and conformable photomasks ranging from mi-
crometer to nanometer scale for scaffold generation. The
synthesizer, based on the application, can customize the
spatial distribution of polymer molecules placed on the
substrate to aid specific outcomes such as nanodots,
nanoridges, and grooves in the range from 30 nm to
several microns [29, 30]. This spatial distribution of the
polymer molecules also aids in spreading and shaping indi-
vidual as well as groups of cells [31–33]. Embryonic stem
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cells are cultured in embryoid bodies and further differenti-
ated using conditioned culture methods for lineage specifi-
city [34, 35]. In an attempt to identify a stem cell delivery
system, murine muscle satellite cells were cultured on 3D
polyglycolic acid (PGA) scaffolds fabricated from a
combination of soft lithography and thermal membrane
lamination. Cells delivered by scaffold show higher integra-
tion to the damaged tibialis anterior muscles in compari-
son to cells injected intramuscularly [36]. Grooved patterns
of micro- or nanoscale structures promote cell alignment
and differentiation, especially with human embryonic stem
cells, into neuronal lineage without the need for any sup-
plements [37]. Hollow spheres are fabricated by injecting
liquid drops into noncured polydimethylsiloxane (PDMS)
mixtures. Furthermore, such drops provide a cell culture
environment for growing embryoid bodies [38]. Micropat-
terned PDMS scaffolds generated by soft lithography have
been used for mimicking musculoskeletal junctions con-
necting aligned myotubes with acetylcholine receptors
[39]. However, the major limitation with this technique is
that it provides a limited and narrow range of ECM signals
for the cells to perceive, which can be highly inconsistent
in comparison to the vast in vivo microenvironmental cues.
This is further substantiated by the in vitro study where
PLGA substrates of different groove depth promoted hu-
man tenocyte alignment with simultaneous upregulation in
the expression of chondrogenic and osteogenic genes. On
the contrary, in a rat patellar tendon model, neither of the
grooved topographies induced ECM orientation parallel to
the substrate. This indicates that cell phenotype mainten-
ance is well established by two-dimensional (2D) imprint-
ing technologies only in an in vitro condition. In an in vivo
scenario, the neotissue formation and organization is estab-
lished by multiple factors [40]. Another study deciphered
the 2D imprinting technique exclusively to assess cell func-
tion in vitro for phenotype maintenance of human primary
osteoblast phenotype on substrates of different grooves.
Furthermore, in the in vivo sheep model, none of these
topographies promoted osteogenesis [41].
Soft lithography is limited by distortion in the fabrica-

tion of single-layer structures [42]. The defects formed,
which arise from dust particles, poor adhesion to the
substrate and poor release from the stamp, must be con-
trolled. Another drawback is the formation of a thin film
of polymer under the nanometer-sized features. This
layer is removed through ion etching but leads to dam-
age of small nano-features generated on the fabricated
scaffold. Integration of large and small features in phase-
shift lithography is extremely difficult [43].

Microfluidics
Microfluidic devices make an excellent platform to study
cells under various microenvironmental conditions such as
stress capillary flow, chemical gradients, and the effects of

single/low cell numbers on the temporal and spatial reso-
lution. In microfluidics, the capillary flow maintains a con-
stant soluble microenvironment and has a large surface area
to volume ratio similar to biological systems [44]. This has
been used extensively to study cell biological aspects such as
cellular adhesion forces, the cytoskeleton, and for in vitro cul-
ture techniques. Microfluidics are used for high-throughput
screening because of the capacity to culture a limited number
of cells in a controlled manner. Such a system can thereby
standardize culture conditions for differentiation without al-
tering the cell number. Major limitations of microfluidics in
long-term stem cell cultures are because of liquid
evaporation, protein adsorption, leaching of non-reactive
compounds, and hydrophobic recovery. Despite the afore-
mentioned limitations, microfluidics provide a potential for
simultaneous multi-parametric analysis with respect to the
differentiation paradigm [45]. Mouse embryonic stem cell
(mESC) differentiation studies using microfluidic systems
have elucidated the decisive roles of fibroblast growth factor
(FGF)4 and notch signaling during neuroectodermal lineage
[46]. Three-dimensional microfluidics mimic the in vivo situ-
ation more closely, hence this microenvironment would be
ideal for studying organogenesis and differentiation.
Much like soft lithography, the field of microfluidics

employs strategies wherein the cells are grown on a sub-
strate in 2D format and subjected to fluid flow. Designing
microfluidic systems for 3D scaffolds remains a challenge
and is just starting to be investigated. This fluidic strategy
has to be utilized much more for clinical application [47].

Nanoparticles in nanotechnology
Nanoparticles have contributed immensely in altering the
physicochemical properties of the scaffold because of their
variable size and shapes. Most of the properties attributed to
nanoparticles are driven by their high surface to volume ra-
tio, improved solubility, electrical and heat conductivity, and
improved catalytic activity on the surface [48]. These nano-
particles can be used for altering the scaffold architecture
either by decorating the scaffold surface to impart surface
features and varying surface chemistry as well as being incor-
porated in the matrix during scaffold synthesis to vary mech-
anical properties, electrical conductivity, and so forth. The
most widely used nanoparticles in this field can be classified
into five groups based on their nature: carbon based, inor-
ganic base, metal based, nanostructured hydrogels and
quantum dots based [49, 50].

Carbon nanotubes
Carbon nanotubes (CNTs) derived from graphene sheets are
prepared with precise control of orientation, alignment,
nanotube length, diameter, purity, and density. They are con-
structed as single-walled (SWNTs) or multi-walled carbon
nanotubes (MWNTs). CNTs have tunable chemical and
mechanical properties, like conductivity, biocompatibility,
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and nanoscale dimensions, that serve as topographical cues
and to generate electrophysiological properties [51, 52]. Com-
posites with polycarbonate membrane and collagen sponges
promote the osteogenic potential of stem cells. Interactions
with fibroblasts were noted to be enhanced in polyurethane
composite scaffolds. Better adherence and enhanced prolifer-
ation could be observed in endothelial cells cultured on
composite polyurethane scaffolds. Polyacrylic acid composites
aided in neuronal differentiation from embryonic stem cells
[52–56]. The major drawback of CNTs is the presence of
impurities of carbonaceous particles such as nanocrystalline
graphite, amorphous carbon, fullerenes, and different metals
(typically Fe, Co, Mo or Ni) used as catalysts during the
synthesis phase, and also concerns with toxicity as they are
resistant to degradation in vivo [51, 57]. More recently, other
forms of carbonaceous nanoparticles such as graphene and
nanodiamonds are also being investigated [58, 59].

Metal and metal oxide nanoparticles
Metal oxide nanoparticles provide structural variabilities by
exhibiting conductor or insulator characters. Oxide nano-
particles display unique chemical and physical properties
with differential charge on the center and corner of the
nanoparticle [60]. They have mostly been used in tracking
stem cells post-transplantation [61–63]. MSCs incubated
with magnetized iron oxide nanoparticles promoted calcium
nodule formation in the presence of osteogenic culture
medium [64]. Superparamagnetic iron oxide nanoparticles
quench H2O2 and thereby promoted growth of MSCs [65].
Delcroix et al. showed that rat MSCs, when loaded with
superparamagnetic iron oxide nanoparticles coated with 1-
hydroxyethylidene-1.1-bisphosphonic acid and injected,
showed migratory behavior only on creating a lesion [66].
Copper oxide nanoparticles did not show any effect on the
differentiation potential of rat MSCs to osteogenic and
chondrogenic lineage. Enhanced genotoxicity could be ob-
served in the MSCs with increasing dosage of copper oxide
nanoparticles [67].

Inorganic based
These are ceramic-based nanoparticles synthesized by a
combination of a metal and a non-metal component.
These are formed under higher temperature and pres-
sure [68, 69]. These materials have high mechanical
strength and low biodegradability. Hydroxyapatite and
tricalcium phosphate nanoparticles have been shown to
promote bone formation [70]. Silica nanoparticles en-
hance actin polymerization and promoted osteogenesis
from MSCs [71]. Furthermore, these nanoparticles
coated on scaffolds promote cellular growth of adipose-
derived stem cells in culture through Erk kinase activa-
tion [72]. Fibrin-poly(lactide-caprolactone) nanoparticle-
based scaffolds enhance the human adipose-derived
stem cell seeding efficacy and promote cell growth and

chondrogenic differentiation [73]. Embryonic stem cells
cultured on polystyrene nanoparticles differ in their
morphology based on their culture density. At lower
density, the embryonic stem cells transform to embryoid
bodies, whereas at higher density they became fibroblas-
tic when cultured on polystyrene nanoparticles [74].

Quantum dots based
These are nano-sized semiconductors that can emit light
in different colors. These comprise atoms for releasing
electrons and cadmium as one of the chemicals. Most of
their usage is limited to tracking stem cells undergoing
differentiation and migration [75, 76]. These are photo-
stable and have longer longevity. So far there have been
no reports on the effect of quantum dots in altering
stem cell proliferation or differentiation [77].
A major concern with the use of nanoparticles is their

toxicity and environmental effects. The environmental
effect during production of nanoparticles itself is a glo-
bal concern [78]. Moreover, when used in scaffolds, the
long-term effect in vivo is not well understood.

Nanostructured hydrogels
Hydrogels are 3D polymeric materials of a hydrophilic
nature capable of holding large amounts of water. Co-
polymerization/crosslinking free-radical polymerizations
are commonly used to produce hydrogels by causing
hydrophilic monomers to react with multifunctional
crosslinkers to form a network. Hydrogels can be further
classified into nanogels and micellar gels [79]. Nanogels
are hydrophobic in nature and hence can be used to de-
liver products to cells. Nanostructured hydrogels are self-
assembled injectable carriers of cells and proteins [80].
Chemically or physically crosslinked nanostructure scaffolds
are fabricated by photo-irradiation of vinyl monomer conju-
gated to polyethlyne glycol, pluronic copolymers, and hyalur-
onic acid [80]. The degree of crosslinking determines the
mechanical strength, durability, and swelling properties on the
nanostructured hydrogels [81]. Most of the nanostructured
hydrogels are primarily used for carrying genes and proteins
to be delivered [82]. The environmental conditions are pivotal
for crosslinking the monomers in a temperature- or pH-
responsive crosslinking strategy [83]. This ability of the nano-
structured hydrogels to transform from sol to gel form makes
them the smart hydrogels. Mesenchymal stem cells cultured
on nanostructured PEG-based hydrogels with nano-sized mi-
celles showed an elevated gene expression of mesenchymal
stem cell marker compared to those cultured without micelles
[82]. Neural stem cells of human origin showed enhanced ad-
hesion and proliferation when cultured on self-assembling
peptide-based nanostructured hydrogels [84]. Nanostructured
hydroxyapatite along with demineralized bone matrix were
used for generating nanostructured hydrogels for growing
mesenchymal stem cells. These cells showed increased
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osteocalcin production with alkaline phosphatase indicating
higher osteogenic specific differentiation [85]. Nanostructured
hydrogel with porous baghdadite shows sustained release of
dexamethasone disodium phosphate, promoting osteogenic
regeneration [86]. The in situ forming smart hydrogel can be
functionalized by bioactive molecules to enhance growth and
other functionality of stem cells. The sol-gel transition of the
nanostructured hydrogels serve as carriers for drug and pro-
tein delivery in supporting regenerative medicine.

The spatial shape and alignment in stem cell function
All techniques used for generating scaffolds provide a geo-
metrical control of the morphology of cells. The effects of
geometrical forces on cells are explained using theoretical
models of network and continuum mechanical models.
While a continuum mechanical model describes the distri-
bution of adherent cells, a network model is based on the
contractile cytoskeleton deciphering the relationship be-
tween the force distribution and shape of adherent cells.
Studies have revealed modulation of cellular functions

such as proliferation and differentiation based on cell-
specific locations in tissues with certain geometry. Stem
cells in a 3D matrix respond to 3D architectural features
at different scales from nanometers to micrometers and
further to millimeters with differing functions in

apoptosis, proliferation, and differentiation. The domin-
ating effect of matrix geometrical force on cell fate in-
citement is pivotal in tissue-specific regeneration
(Fig. 2).
Since cell shape and function are tightly linked together,

scaffolds that modulate cell shape can dictate cell functions,
for example the long body of neurons for effective delivery of
signals, and the spherical shape of adipocytes for lipid storage.
Human MSCs grown on microcontact-printed PDMS show
osteogenic characteristics at the edges of the matrix and adi-
pogenic nature towards the inner region of the scaffold [87].
Microenvironmental cues including mechanical forces

are important for the formation of “stem cell niches”.
Indeed, mechanical forces appear to either promote or
block differentiation signals induced by growth factors and
cytokines and they supersede the influence of soluble fac-
tors. To investigate the effects of mechanical forces on
MSC differentiation, Kurpinski et al. used a micropatterned
strip to align the cells along the direction of the uniaxial
strain. They found an increased expression of calponin 1 (a
smooth muscle marker) and a decrease in the expression of
cartilage matrix marker. However, when the cells were
aligned perpendicularly to the direction of the strain, the
changes in gene expression were diminished [88]. This ex-
periment suggests that mechanical strain has an im-
portant role in gene expression and fate of stem cells.

Fig. 2 Schematic representation defining the importance of various scaffold architectures in determining the specific lineage of stem cells. Stem cells
cultured on various nanostructured scaffolds yeild different differentiated cell types, such as a bone marrow stem cells grown on nanofibrous PCL
scaffold promotes osteogenic fate, b embryonic stem cell cultured on annosclae ridge or groove promote neuronal fate, c tendon stem cells culutred
on aligned and random PLLA directed tendon and stellate lineage, respectively, d mesenchymal stem cells on PDMS promote osteogenic as well as
adipogenic fate.
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An amalgamation of methods with a microengineered
platform comprising of a soft hydrogel can be used for in-
ducing differentiation of stem cells (Fig. 3). The outcome
of stem cell lineage specification has been tabulated with
specific biomaterials in Table 1.

Biophysical regulators of stem cell fate
Stem cells respond to biophysical cues using cell signaling
crosstalk, receptors and ligand interaction, protein modifi-
cations, protein-protein interactions, and transcriptional
and translational regulations. The cell membrane envelop-
ing the nanofeatures can result in increased intramembra-
nous tension and rearrangement of cortical cytoskeleton
thereby influencing cell morphology and behavior. Various
mechanotransduction pathways have been proposed, such
as the MAPK, the PI3K/Akt, RhoA/ROCK, Wnt/β-ca-
tenin, and the TGF-β pathways that rely mostly on the
interaction of the cell with its biophysical environment.
Significantly, all these mechanotransduction pathways are
coupled with many other potent growth factor-mediated
signaling pathways to regulate stem cell fate.

Mechanotransduction pathways to regulate stem cell fate
As an external signal, nanotopographical features of the
ECM is capable of governing stem cell fate determination,
but how this biophysical cue is translated into intracellular
signaling remains elusive. Stem cells sense and respond to
these insoluble biophysical signals through integrin-
mediated adhesions and the interplay between integrin
molecules is a controlling step in signal transduction. The
force balance between the endogenous cytoskeleton con-
tractility and external mechanical forces that are transmit-
ted across cell ECM adhesions regulate such signaling.
Through the arrangement of adhesion epitopes available to
the cell, the topographical features on the substrates such
as grooves/pillars of micrometer to nanometer size are
sensed by cells [89, 90]. The size of the adhesive area is the
most significant physical signal to determine cell fate as it is
mediated by the integrins [91]. The various integrin-
mediated signaling mechanisms are described below.

MAPK pathway
The Ras/MAPK pathway is activated when the biophys-
ical signal is through integrin-mediated focal adhesion
signaling. The key molecules that participate in this
mechanotransduction system are focal adhesion kinase
and Src family kinases (fyn) [92–94]. Furthermore, the
Ras-Raf-MEK-ERK pathway gets triggered, but the exact
molecular mechanism is not well known yet. Several pos-
sible pathways have been postulated, such as integrin-
FAK-Grb2-SOS-Ras [95], integrin-fyn-Shc-Grb2-SOS-Ras
[96], through the epidermal growth factor (EGF) receptor
[97]. The MAPK pathway plays a critical role during the
different stages of stem cell differentiation; for instance,

temporal MAPK signaling dictates adipocyte differenti-
ation [98]. Neural stem cells spontaneously differentiate
into neurons when cultured on hydrogen terminated
ultra-nanocrystalline diamond films with fibronectin in-
tegrin beat-1, focal adhesion kinase, and the MAPK
pathway plays a decisive role [99]. Osteoblast differenti-
ation on micro/nanotextured topography and titanium
implant surface as well as magnesium alloy coated with
porous b-tricalcium phosphate is modulated by the
activation of the MAPK pathway [100, 101]. Gold
nanoparticles interact with the cell membrane of MSCs
inducing mechanical stress, thereby activating p38 MAPK
signaling which promotes osteogenic specific gene ex-
pression in lieu of adipogenic signals [102]. Hence, MAPK
signaling pathway plays a vital role in spatial and temporal
differentiation of stem cells.

PI3K/Akt
This is a downstream pathway of Ras, and can also be
activated through the integrin-mediated signaling in both
embryonic stem cells and somatic stem cells [103–105].
Pharmacological blockage of the PI3K pathway reduces the
expression of Nanog, a key transcription factor of pluripo-
tency [106]. Mechanical strain induces integrin activation
mediated by the PI3K pathway, enabling the binding of
integrins to ECM proteins to activate the further down-
stream functionality [107]. In response to the extracellular
signals, PI3K is crucial for inducing critical alteration to de-
termine the cellular functions. An enumerate transcription
factor, kinase, and regulatory molecule activity becomes reg-
ulated upon the phosphorylation of the key downstream ef-
fector of PI3K, i.e., serine-threonine kinase [108]. Upon
binding to the cell surface receptors, growth factors such as
insulin-like growth factor (IGF)-1 and neurotrophins (NGF)
can trigger the activation of the PI3K pathway promoting
survival and self-renewal of stem cells [109]. Woo et al. gen-
erated a composite scaffold of hydroxyapatite and polymer
PLLA to study the properties of MSCs which survived bet-
ter in the presence of an increased P13/Akt activity [110].
Zhang et al. also showed that a scaffold of PCL attached
with Arg-Gly-Asp enhanced the proliferation of MSCs with
the activation of the PI3K/Akt pathway via integrin [111].
Schwann cells cultured on carboxymethylated chitosan
reveal that the proliferation is regulated by the intracellular
signaling mechanism of Erk1/2 and PI3/Akt kinase path-
ways [112]. Mesenchymal stem cells under mechanical
strain induced bone morphogenetic protein (BMP)2 that
could be blocked in the presence of blockers of PI3 kinase
[113]. Composite scaffolds of porous β-calcium silicate with
poly-D,L-lactide-glycolide enhance the osteogenic and
angiogenic potential of MSCs and endothelial cells by re-
cruitment of AMP-activated protein kinase, Erk1/2 and
PI3K/Akt pathways [114]. Polylactide-co-glycolide scaffolds
impregnated with fibronectin and type I collagen induce
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Fig. 3 Various nanoscale platforms for directing stem cell fate. Scaffolds with (a) nanofibrous architecture, (b) soft lithography, (c) hydrogel, and
(d) carbon nanotubes. These microenvironmental cues direct stem cell differentiation to a specific lineage
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osteogenic lineage of cultured MSCs via MAPK and PI3
kinase pathways [115].

RhoA/ROCK
RhoA acts through Rho-kinase (ROCK) and is a key mo-
lecular regulator of actin cytoskeleton tension and focal
adhesion formation. By the activation of focal adhesion
kinase through integrin-mediated signaling, this pathway
acts as a downstream target [116]. RhoA can be activated
by different growth factors and cytokines as well as bio-
physical signals from the cellular microenvironment [117].
High RhoA activity associated with high actomyosin con-
tractility induces osteogenesis, while low RhoA activity
leads to adipogenesis [118]. Parekh et al. have demon-
strated that the osteogenic differentiation of hBMSCs in
2D polyethylene glycol hydrogel in the absence of supple-
ments is triggered through elevated expression levels of
actin and myosin filaments [119]. The RhoA/ROCK path-
way influences the stem cell differentiation through the
regulation of Sox-9 as the transcription factor [120].

Wnt/β-catenin
Wnt/β-catenin signaling regulates the fate decisions of
almost all stem cell types in a spatio-temporal regulated
manner. For example, a dosage-dependent Wnt signaling
results in either maintenance of the pluripotency or pro-
motion of neural differentiation [121]. Biophysical sig-
nals have been shown to directly regulate Wnt signaling
as demonstrated in osteoblasts in a time-dependent
manner [122]. The signaling crosstalk between Wnt and
integrin signaling has been postulated through two inde-
pendent frameworks, where integrin-linked kinases and
focal adhesion kinases are ascertained to play a signifi-
cant role [123]. Both the pathways promote the accumu-
lation and translocation of β-catenin in the nucleus
independently [124].

Conclusions
Tissue engineering is a promising field that has been devel-
oping intensely due to its potential for clinical application
in cellular maintenance/differentiation. Scaffold functionali-
zation tuned for specific application and cell response is the
targeted approach. Despite advances in the development of
biomimetic nanofibrous scaffolds for tissue engineering ap-
plications, several challenges still remain. Various factors
from the extracellular environment known to control cell
adhesion, proliferation, and differentiation have been incor-
porated into the design of biomaterials to achieve the ob-
jective of creating increased communication between
biomaterials and their surrounding biological environment.
The effects of these material modifications on cell activity
are dose dependent as well as spatio-temporal dependent.
One of the major challenges is to develop complex clinically
relevant 3D porous scaffolds using a composite combin-
ation of materials. Additionally, it is crucial to develop a
strategy to produce fibers with a diameter identical to that
of native ECM fibers while maintaining high porosity for
cell infiltration and migration. Research is now focused on
developing an efficient biocompatible scaffold using com-
binatorial approaches, which could pave the way for devel-
oping scaffolds mimicking tissue junctions such as
neuromuscular junctions and bone-cartilage junctions. De-
veloping combinatorial signaling crosstalk with a dosage
gradient would be a big asset in the branch of developmen-
tal biology where the axis, orientation, as well as
polarization of the cells and matrix are important. These
scaffolds could be used for studies related to gradient sig-
naling, which is essential in tissue junctions. These areas of
new and expanding research demonstrate the vastness as
well as the challenges encountered in this multidisciplinary
field. Newer technologies can offer better clinical outcomes
and expand commercial arenas.
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