
REVIEW Open Access

Magnetic targeting as a strategy to
enhance therapeutic effects of
mesenchymal stromal cells
Luisa H. A. Silva1, Fernanda F. Cruz1, Marcelo M. Morales2, Daniel J. Weiss3 and Patricia R. M. Rocco1*

Abstract

Mesenchymal stromal cells (MSCs) have been extensively investigated in the field of regenerative medicine. It is
known that the success of MSC-based therapies depends primarily on effective cell delivery to the target site
where they will secrete vesicles and soluble factors with immunomodulatory and potentially reparative properties.
However, some lesions are located in sites that are difficult to access, such as the heart, spinal cord, and joints.
Additionally, low MSC retention at target sites makes cell therapy short-lasting and, therefore, less effective. In this
context, the magnetic targeting technique has emerged as a new strategy to aid delivery, increase retention, and
enhance the effects of MSCs. This approach uses magnetic nanoparticles to magnetize MSCs and static magnetic
fields to guide them in vivo, thus promoting more focused, effective, and lasting retention of MSCs at the target
site. In the present review, we discuss the magnetic targeting technique, its principles, and the materials most
commonly used; we also discuss its potential for MSC enhancement, and safety concerns that should be addressed
before it can be applied in clinical practice.
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Background
Mesenchymal stromal cells (MSCs) obtained from
various sources, including bone marrow, adipose tissue,
placental tissue, and others, have been widely investigated
in regenerative medicine research [1]. Besides their ability
to differentiate into various mesodermal cell lineages,
MSCs also have immunomodulatory properties, acting on
innate and adaptive immune cells with resulting attenu-
ation of the inflammatory response [1, 2] which broadens
their potential clinical applications.
These immunomodulatory effects of MSCs are pre-

dominantly mediated by secretion of paracrine factors
that have anti-inflammatory, anti-apoptotic, antifibrotic,
and angiogenic properties [1]. These factors include serum
proteins, growth factors, hormones, cytokines, extracellu-
lar matrix proteases, lipid mediators, messenger RNAs,

and microRNAs [3]. Additionally, some of these factors
may be secreted into extracellular vesicles—cytosolic
fragments with spheroid morphology enclosed by a lipid
bilayer [3].
Despite the functionality of MSCs, their therapeutic

efficacy in experimental models [4] has not been
observed in human patients [5]. These results can be
explained by two reasons. First, MSCs are not properly
activated in human microenvironments and thus fail to
exert immunomodulation and secrete repairing factors.
Several strategies have been tested to increase MSC po-
tency, such as cultivation of MSCs in hypoxic conditions
[6], in the presence of interferon (IFN)-γ [7], or with
serum extracted from patients with respiratory distress
syndrome (ARDS) [8]. The second reason concerns the
level of difficulty associated with delivery of MSCs and
their engraftment at certain target sites, i.e., few MSCs
reach the myocardium, spinal cord, and joints after sys-
temic administration, which is a preferred noninvasive
route [9]. However, when MSCs were locally adminis-
tered, long-lasting retention in sites of injury did not
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occur [10, 11]. It is known that MSCs are dragged
through the bloodstream when administered directly to
the heart [11]. Since few cells arrive and engraft at the
injury site, fewer repairing factors are secreted, thus
slowing recovery.
To optimize MSC delivery and retention, the

magnetic targeting (MT) technique has been tested.
Initially developed to optimize chemotherapeutic proce-
dures, this technique is based on prior magnetization of
MSCs followed by in vivo targeting with the aid of
magnetic fields. MT would thus enable a larger por-
tion of inoculated cells to reach the site of injury,
providing greater and longer lasting release of media-
tors without the need to increase the cell volume
administered [11].
Based on the foregoing, this review aims to discuss the

MT technique, explaining its principles and the mate-
rials commonly used; we also discuss the potential of
MT for enhancement of MSC properties, and safety
concerns that should be addressed before MT can be
applied in clinical practice.

The magnetic targeting technique
Briefly, MT of MSCs involves three steps: 1) isolation,
growth, and maintenance of MSCs in culture; 2)
magnetization of MSCs; and 3) in vivo guidance of mag-
netized MSCs by static magnetic fields [12]. A schematic
diagram is provided in Fig. 1.

MSC magnetization with superparamagnetic nanoparticles
Magnetization is achieved by diluting magnetic nanopar-
ticles (MNPs) in cell culture medium and cocultivating
them with MSCs. The MSCs internalize the nanoparti-
cles by passive diffusion or endocytosis, generally over a
few hours [13]. Some of the materials commonly used
for the production of these MNPs—iron, nickel, and
cobalt—may be toxic to the cells themselves or for in
vivo application [14]. However, among these, the iron
oxides magnetite (Fe3O4) and maghemite (γ-Fe2O3) are
considered safer components [15]. Furthermore, maghe-
mite MNPs cause less damage to receptor cells com-
pared to magnetite by having iron in an oxidized state
(Fe3+) [16].
MNPs smaller than 30 nm are superparamagnetic, i.e.,

their magnetization only occurs in the presence of an
external magnetic field [16]. This is a desirable property
for biological applications. Thus, these small superpara-
magnetic nanoparticles (SPIONs) are essential materials
for potential clinical applications of MT-augmented
MSC-based cell therapies. In addition, they can also be
used as contrast agents for MSC labeling and tracking in
vivo due to the strong signal they generate in magnetic
resonance imaging (MRI) [16].
Importantly, SPION aggregation in cell culture media

can hinder MSC magnetization since their availability
for contact with the cells decreases; furthermore, when
SPIONs agglomerate, the size of the resulting cluster is
similar to or larger than MSCs, thus resulting in a

Fig. 1 Schematic diagram of magnetic targeting of mesenchymal stromal cells. a In the first step, mesenchymal stromal cells (MSCs) are expanded in
culture and magnetized with magnetic nanoparticles. b Once magnetized, the cells are injected into animals which are exposed to static magnetic
fields generated by magnetic devices. c Magnetized MSCs are better retained in regions where the static magnetic field is present
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physical restriction for MSC uptake [17]. To minimize
such clumping and to promote solubility in aqueous
media and in physiological conditions, SPIONs are
coated with biocompatible substances (dextran, car-
boxidextran, polyethylene glycol, polystyrene, silica,
etc.) [15]. Importantly, the charge of the SPION coat-
ing agent influences their uptake by MSCs: cationic
agents interact electrostatically with the negative cell
membrane and promote adsorptive endocytosis. In
contrast, dextran-coated SPIONs, which are neutral,
are not well captured [18]. However, there are add-
itional strategies to optimize the uptake of neutral
SPIONs which include physical (electroporation,
microinjection, and magnetofection) and biochemical
methods (conjugation of antibodies, peptides, or apta-
mers) [18].
To date, eight different MNPs have been tested for

MT of MSCs (Table 1). Most of these are commercially
available and/or US Food and Drug Administration
(FDA) approved [12]. The commercially available SPION
ferucarbotran (Resovist®, Bayer Schering Pharma AG),
a carboxydextran-coated SPION with crystalline diam-
eter ranging from 45 to 60 nm, has been most
investigated.

Static magnetic fields
Once magnetized, MSCs can be guided in vivo by being
attracted by external static magnetic fields (SMFs). The
intensity of these SMFs is categorized, according to their
power induction, as weak (<0.001 Tesla (T)), moderate
(0.001–1 T), strong (1–5 T), and ultra-strong (>5 T).
Moderate SMFs are those most exploited for clinical
MT purposes [19].

Two types of magnetic devices have been used to gen-
erate SMFs for MT of MSCs: permanent magnets and
electromagnets [12]. Permanent magnets are materials
that produce a persistent magnetic field independently
of any external magnetic fields. In the context of MT,
permanent rare-earth magnets (neodymium-iron-boron)
are usually used to generate SMFs since they are portable,
reach higher field strengths compared to electromagnets
of similar size, and do not require a power supply or
cooling system [12]. These magnets can be placed ex-
ternally above the target site [20] or internally under
the skin [21, 22]. However, most studies opt to place
magnets externally to avoid the risk of implantation
surgery [12, 22] (Table 1). It is also important to
mention that the SMFs provided by permanent mag-
nets decay over distance and, therefore, do not reach
the inner most parts of the body. To address this
issue, placement of multiple permanent magnets in
different positions to extend SMF reach has been
used, enabling cell delivery to regions such as the
spinal cord [20].
Unlike a permanent magnet, an electromagnet only

exhibits magnetism when an electric current is flowing
through it. SMFs generated by electromagnets have been
widely used for MT therapy targeting muscles and
joints, being placed externally on the target region, pro-
moting focused MSC retention [10, 23]. Moreover, elec-
tromagnets can produce much higher field strengths
than permanent magnets; however, they require a con-
stant power supply and must be supercooled to maintain
low resistance and prevent overheating [12].
Computational simulations have shown the potential

of MRI systems to magnetically guide stem cells [12], an

Table 1 Application of magnetic targeting techniques in pre-clinical studies

Target MSC donor MSC recipient Nanoparticle Magnetic device Magnetic device position Reference

Knee joint (cartilage) Human Pigs and rabbits Feridex (Tanabe Seiyaku) Electromagnet External [10]

Rabbit Rabbits Ferucarbotran/Resovist® Permanent magnet External [24]

Meniscus Rabbit Rabbit Ferucarbotran/Resovist® Permanent magnet External [25]

Skeletal muscle Human Rats Risovist® Electromagnet External [23]

Bones Rat Rats Ferucarbotran/Resovist® Permanent magnet External [26]

Spinal cord Rat Rats Poly-L-lysine-coated SPIONs Permanent magnet Implanted [21]

Not reported Rats Not reported Permanent magnet External [20]

Retina Rat Rats FluidMAG-D® Permanent magnet Implanted [27]

Arteries Rabbit Rabbits FluidMAG-D® Permanent magnet External [29]

Heart Rat Rats Ferucarbotran/Resovist® Permanent magnet External [49]

Pig Pigs Gadolinium nanotubes
and Molday ION(–)®

Permanent magnet Implanted [22]

Rat Rats Ferucarbotran/Resovist® Permanent magnet External [11]

Lung Human Mouse DMSA-coated maghemite
nanoparticles

Permanent magnet External [33]

DMSA dimercaptosuccinic acid, MSC mesenchymal stromal cell, SPION superparamagnetic iron oxide nanoparticle
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interesting possibility that would allow magnetically
targeted cells to home to specific portions of the body
while simultaneously providing information regarding in
vivo MSC localization. Therefore, ideally, a SPION
should be chosen that provides localization information
on MRI while making receptor MSCs magnetically
responsive.

Benefits of magnetic targeting in experimental
studies
MT of MSCs has been trialed most often for the repair
of articular cartilages which have limited healing poten-
tial [10, 24] (Table 1). Intra-articular MSC injections into
cartilage defect regions resulted in poor engraftment,
suggesting the need for inoculation of additional cell vol-
umes. However, administration of larger MSC amounts
can generate loose bodies of fibrotic tissue, affecting
joint biomechanics [10]. Therefore, for safe treatment,
appropriate numbers of MSCs must be transplanted effi-
ciently into the joint.
SMFs from extracorporeal permanent magnets placed

next to the knee joint were found to provide better en-
graftment of SPION-labeled MSCs after their injection
into cartilage degeneration sites. Additionally, MT avoids
MSC migration to any major organs and formation of
loose bodies [10, 24].
Likewise, MT with external permanent magnets/electro-

magnets has been shown to enhance MSC engraftment in
other parts of the musculoskeletal system, such as fibro-
cartilages (meniscus) [25], muscles [23], and bones [26]
(Table 1). These areas also have limited regenerative cap-
acity and may be poorly accessible by systemic or local
MSC inoculation.
MT has also been tested in models of central nervous

system lesions. In rat models of spinal cord injury,
SPION-labeled MSCs were administered intrathecally
and guided by implanted [21] or external [20] perman-
ent magnets to the injured sites (Table 1). In one of
these studies, histological analysis showed significantly
higher MSC counts at the lesion site with the aid of im-
planted magnets (9595 ± 2231 cells) than in control
groups (3538 ± 625 cells) 12 h after cell administration
[21]. Importantly, MSC retention was uniform and con-
centrated in regions close to the injury sites [20, 21].
However, whether this enhancement led to clinical im-
provement was not assessed.
In one study, intravenously administered MSCs were

successfully guided into small dystrophic areas of the ret-
ina with the aid of implanted magnets; MSC counts over
the retinal surface were 10-fold greater than in animals
without magnets [27]. Therefore, MT of MSCs resulted in
higher retinal concentrations of anti-inflammatory mole-
cules, such as interleukin-10 and hepatocyte growth factor,

providing evidence of a significant therapeutic benefit in
the dystrophic retina model [27].
In cardiovascular diseases, MSCs retention is less than

10% after 24 h and long-term engraftment is even more
infrequent since these cells are usually delivered by the
intravascular route and, thus, are subject to a washout
effect caused by heart contractions and venous drainage
[28]. Nevertheless, MT may improve cardiac retention
of MSCs through cell magnetization and placement of
magnets either on the heart or injured vessels [28]
(Table 1).
The potential of MSC MT to reduce the risk of resten-

osis and reocclusion of treated vessels after angioplasty
has been assessed [29]. In a femoral artery injury model,
permanent magnets were placed externally on the leg at
the site of injury and remained in place for 24 h while
cells were injected directly into the diseased artery. This
technique led to a sixfold increase in MSC retention,
avoiding the washout effect, and a reduction in resten-
osis 3 weeks after cell injection [29].
Magnetically targeted MSCs were also found to provide

enhanced therapeutic benefit in models of myocardial in-
farction [11, 22]. In one report, transplanted MSC counts
in the ventricular wall were approximately 3.04-times
greater than those measured in control groups (25.8 ± 4.7
versus 8.5 ± 2.0). As a consequence, left ventricular
remodeling was attenuated and cardiac function was
ameliorated [11]. In these studies, the cells were injected
intravenously or locally into the epicardium, while per-
manent magnets were placed internally, close to the target
region, without impairing cardiac function [11, 22].
Some mechanisms may explain why MT potentiated

the therapeutic effects of MSCs in these studies. First,
MT enhances MSC retention in injury sites as a conse-
quence of magnetic interactions between magnetized
cells and SMFs and MSC gene expression changes [13].
One hour after SMF exposure, in vitro, magnetized
MSCs presented increased expression of integrins (alpha
2, alpha 6, and beta 3), adhesion molecules (intercellular
adhesion molecule-2 and platelet endothelial cell adhe-
sion molecule), and other proteins, such as CD93 (in-
volved in innate immunity, inflammation, and adhesion
to endothelium) and cadherin 7 (involved in cell adhe-
sion, dispersion, and migration) [30, 31]. These changes
may contribute to increased adherence and engraftment
to target sites in vivo, which is particularly interesting
for cardiac and orthopedic applications. Therefore,
higher MSC retention would arguably result in greater
release of soluble factors and restorative action.
Secondly, SMFs increase secretion of membrane-derived
extracellular vesicles by MSCs in vitro, as well as induce
changes in their content [32]. The vesicles derived from
MSCs exposed to SMFs are richer in some specific
growth factors, including bone morphogenetic protein 2
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(BMP-2) and vascular endothelial growth factor (VEGF)
[32]. These factors may all play therapeutic roles in
cardiovascular and musculoskeletal disorders.
Although magnetically targeted MSCs have shown

positive effects in vivo, the MT technique has yet to be
extensively investigated in other experimental models,
such as lung and liver diseases (Table 1). In a recent re-
port, MT was found to enhance MSC retention in mur-
ine lungs [33]. For MT, permanent magnets were
attached to the dorsal region, above the thorax, and
SPION-labeled MSCs were immediately administered
via the jugular vein [33]. The findings of this experiment
suggest that MT has potential to guide MSCs to injured
areas in lungs.
There are no reports on the use of MT in cell therapy

for renal diseases. This may be explained by the ease of
access of MSCs to the kidneys after systemic administra-
tion due to capillary trapping, which eliminates the need
for techniques to increase engraftment [9].

Concerns
Even though MT has been shown to potentiate the
therapeutic effects of MSCs in different experimental
models, some safety concerns need to be addressed prior
to conducting clinical trials with this technique. These
include issues of biocompatibility between MSCs and
SPIONs, the influence of SMFs on MSCs, and in vivo
adverse effects.

SPION-MSC interactions
When excess ferric or ferrous ions accumulate in the
cytoplasm in noncomplexed form they catalyze biomo-
lecular oxidation reactions, increasing the rate of free-
radical generation [34]. These radicals can irreversibly
modify amino acids, denature or aggregate proteins,
oxidize nucleotides, and promote lipid peroxidation [34].
Nevertheless, none of the SPIONs used in MSC MT
studies have been shown to exert toxic effects on recipi-
ent cells [33, 35–37].
SPIONs are biocompatible with MSCs due to their

surface chemical modifications. Capping agents are used
not only to ensure SPION stability in physiological
media, but also to keep the iron core isolated from
biomolecules, enhancing the safety of this material for
biological applications [38]. SPION toxicity, therefore, is
dependent on coating agent stability in culture medium
or after cell uptake; if the nanoparticle coating is easily
degraded, the metal core is then free to react with bio-
molecules. Importantly, cationic or anionic capping
agents, such as dimercaptosuccinic acid (DMSA), are
more difficult to remove from the nanostructure
compared to neutral substances, such as dextran or
albumin [38].

Another reason for SPION biocompatibility is that
these nanoparticles may have an activity similar to
that of natural catalases, which, importantly, depends
on the acidity of the surrounding cellular environ-
ment [39].
Looking beyond toxicological issues, the potential

impacts of SPIONs on the fundamental biological fea-
tures of MSCs, such as proliferation, immunomodula-
tion, and differentiation, are less well understood.
Ferucarbotran has been shown to stimulate in vitro
MSC proliferation [40], exert an inhibitory effect on
osteogenesis [41] and chondrogenesis [42], and to
reduce cell migration potential and colony-forming
ability [35]. It is important to note that these studies
used different SPION concentrations and times of ex-
posure, thus precluding comparison of dose-response
and time-response patterns.
Furthermore, infusion of MSCs labeled with a

SPION for MRI tracking purposes in a rat model of
multiple sclerosis led to aggravation of symptoms,
whereas unlabeled MSCs ameliorated symptoms [43].
One hypothesis is that SPIONs increased free-radical
release, intensifying inflammatory responses and ac-
celerating disease progression [43]. Given these obser-
vations, it is important to carry out biocompatibility
tests prior to in vivo experiments and clinical trials
so as to mitigate adverse effects related to SPION-
MSC interactions.

Effects of SMFs on MSC viability and function
Recently, several studies have been conducted to assess
how SMFs influence biological systems [44]. It was
found that SMFs can affect the rotation of cell
membrane phospholipids by virtue of their diamagnetic
properties. This leads to changes in cell shape, cytoskel-
etal rearrangement, and alterations in ion channel func-
tion. Through these ion channel changes, SMFs can
decrease intracellular calcium ion concentrations, which
may explain some of their observed effects, including
modulation of apoptosis, proliferation, and cell viability
[45]. Importantly, the type and extent of modifications
in cell shape and function depends on cell type and age,
field strength, and time of exposure [44].
These facts raise concerns about the potential influ-

ences of SMFs on the biological functions of MSCs and
on patients as a whole. To date, reports of SMF use with
MSCs have demonstrated that moderate SMFs can have
divergent effects (enhancing or inhibiting) on MSC
viability [19, 45], proliferation [45–47], differentiation
capacity [19, 31, 47, 48], colony formation [31], and
extracellular vesicle secretion [19, 46] (summarized in
Table 2 and Fig. 2). In addition, the risk of vascular
embolisms must be considered [49]. In an ischemic rat
model subjected to intracavitary SPION-labeled MSC
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injection, high SMF intensities induced cell accumula-
tion in the vessel lumen [49, 50]. In this study, a per-
manent magnet was placed next to the injured
myocardium for only 20 min (10 min after and 10 min
before cell injection).
Finally, it must be noted that these studies used

MSCs isolated from different tissues, were conducted
in various species, and applied different SMF intensities
during various exposure times. Thus, comparisons are

extremely limited. Nevertheless, the adverse effects of
SMFs on MSCs can be mitigated by reducing exposure
time [28]. For example, MSCs labeled with SPIONs
and subjected to a moderate SMF (0.6 T) for 1 h did
not exhibit changes in proliferation rate over 3 weeks,
indicating viability [30]. Any potential complications
of SMF and SPION effects on MSCs in vitro and in
vivo must be thoroughly investigated and overcome
before clinical use.

Fig. 2 Effects of static magnetic fields (SMFs) on mesenchymal stromal cells (MSCs). The combination of different field intensities (x-axis) and
different exposure times (y-axis) promotes varying effects on these cells

Table 2 Effects of SPIONs and static magnetic fields on mesenchymal stromal cell properties

MSC origin Nanoparticle Magnetic device SMF
strength (mT)

Time of
exposure

Effects of SMFs on MSC
(compared to control groups)

Reference

Human bone marrow Ferucarbotran/Resovist®
(60 μg/ml)

Permanent magnet 600 24 hours and
12 days

Reduction of colony-forming units,
increased adipogenesis, and
osteogenesis inhibition

[31]

Human bone marrow Feridex
(Tanabe Seiyaku)

Electromagnet 600 1 hour Increased expression of integrins
and adhesion proteins

[30]

Murine bone marrow None Electromagnet 4, 7, and 15 1 to 4 days Reduction of MSC viability and
proliferation rates

[45]

Canine and equine
adipose tissue

None Permanent magnet 500 1 to 7 days Increased MSC proliferation rates in
both species; increased secretion of
extracellular vesicles by equine MSCs

[46]

Human bone marrow None Permanent magnet 400 14 days Increased chondrogenesis [48]

Equine adipose tissue None Permanent magnet 500 1 to 7 days Ultrastructural changes; increased
proliferation rate, colony-forming
units, and secretion of extracellular
vesicles; changes in vesicle content.

[32]

Human bone marrow None Permanent magnet 3, 15, and 50 1 to 9 days Increased MSC proliferation rates;
osteogenesis stimulation.

[47]

Murine adipose tissue Feridex (Berlex) Permanent magnet 500 7 days Reduction of MSC viability,
proliferation rates, angiogenic
cytokine release, osteogenesis and
adipogenesis; phenotype shift.

[18]

MSC mesenchymal stromal cell, SMF static magnetic field, SPION superparamagnetic iron oxide nanoparticle
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Conclusions
The intensity and duration of the beneficial effects of
clinical MSC administration may be enhanced by MT,
due to the efficacy of this technique in guiding cells to
disease foci, improving their retention and engraftment,
and, possibly, enhancing immunomodulatory properties.
Therefore, MT is a potentially exciting approach for
improving the efficacy of MSC-based cell therapies.
However, there is still much to learn about the optimal
use of MT with MSCs and minimizing or eliminating
any potential adverse effects.
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magnetic field; SPION: Superparamagnetic iron oxide nanoparticle
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