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Abstract

Background: In this study we evaluated the interactions of human adipose tissue-derived stem cells (ADSCs) and
different human breast cancer cell lines (BRCAs) with regard to the safety of cell-assisted lipotransfers for breast
reconstruction and a thereby unintended co-localization of ADSCs and BRCAs.

Methods: ADSCs were co-cultured with five different human BRCAs (MCF-7, MDA-MB-231, SK-BR-3, ZR-75-30, and
EVSA-T) and primary BRCAs from one patient in a transwell system, and cell-cell-interactions were analyzed by
assessing doubling time, migration and invasion, angiogenesis, quantitative real-time polymerase chain reaction
(PCR) of more than 300 tumor-associated genes, and multiplex protein assays of 20 chemokines and growth factors
and eight matrix metalloproteinases (MMPs). Results of co-culture were compared to those of the respective
monoculture.

Results: Quantitative real-time PCR revealed remarkable changes in the expression of multiple tumor-associated
genes in co-culture compared to monocultures of both ADSCs and BRCAs. Concomitantly, the concentration of
several tumor-associated proteins, such as cytokines and MMPs, were strongly increased in co-culture. Furthermore,
exclusively in co-culture with ADSCs, the different BRCAs were exposed to several important tumor-modulating
proteins, such as CCL2, HGF, or interleukins.

Co-culture did not significantly affect cellular proliferation of either ADSCs or BRCAs (p > 0.05). The migration of
MCF-7 and MDA-MB-231 BRCAs was significantly increased in co-culture with ADSCs by a mean of 11% and 23%,
respectively (p=0.04 and 0.012), as well as that of ADSCs in co-culture with MDA-MB-231, ZR-75-30, and EVSA-T
(+11-15%, p = 0.035-0.045). Co-culture with MDA-MB-231, SK-BR-3, and EVSA-T BRCAs significantly increased the
invasive behavior of ADSCs by a mean of 24-41% (p = 0.014-0.039). There were no significant differences in the
in vitro invasive properties of BRCAs in co-culture compared to monoculture. An in vitro angiogenesis assay
revealed an increased tube formation of conditioned media from co-cultured BRCAs and ADSCs compared to the
respective monocultures.
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Conclusion: This study further elucidates the possible interactions of primary human ADSCs with human BRCAs,
pointing towards a potential increased oncological risk which should not be neglected when considering a clinical

use of cell-assisted lipoaspirates in breast reconstruction.

Keywords: Mesenchymal stem cells, Adipose tissue, Breast cancer, Breast reconstruction, Cell-assisted lipotransfer

Background

Adipose tissue has been used for tissue augmentation
for a long time, with Neuber being the first to describe
such a procedure in 1893. Ever since, surgeons and
scientist have tried both to optimize the clinical outcome
and to understand the basic science behind the survival
or failure of different fat grafts. Over time, the import-
ance of the included undifferentiated progenitor cells,
e.g., adipose tissue-derived mesenchymal stem cells
(ADSCs), has been emphasized.

ADSCs have been shown to secrete various growth fac-
tors transmitting tremendous effects on vascular growth,
cell migration and differentiation, and presumably fat graft
survival, through a paracrine fashion. Due to that, an
increase in ADSC number per volume (cell-assisted lipo-
transfer (CAL)) has been thought to be beneficial to fat
graft survival and overall clinical outcome of lipotransfer
[1-3]. In general, adipose tissue transplantation is regarded
as a safe and advantageous procedure for breast augmenta-
tion or re-shaping in different clinical situations [4]. Based
on this, more and more lipotransfers are performed in
women with a history of breast cancer, either as a sole
procedure or in combination with, for example, implant
devices. With regard to the paracrine activity of ADSCs,
the question arises whether there is an interaction of
ADSCs with potentially remaining local tumor cells in the
breast and how that might affect the clinical outcome.
Overall, so far, the use of “regular” fat transplants without
an additional increase in stem cell number has not shown
a significantly increased risk of invasive breast cancer re-
currence or a reduced outcome compared to alternative
treatments [4]. This, however, might not be true for
CALs with an increased number of ADSCs. When
aiming for an increased number of stem cells per
volume, such as with a CAL, the suctioned fat is further
processed, mainly by centrifugation or enzymatic diges-
tion. With this, stromal cells, such as stem cells, are
dislocated from their former natural niche and sepa-
rated from their main cell-cell contacts. This micro-
environment, however, is of crucial importance for the
fate and behavior of mesenchymal stem cells [5]. By
adding isolated cells to a native fat sample, the added
stromal cells initially are not anchored in a controlling
niche and are thus prone to migration, e.g., towards
chemotactic signals of adjacent tumor cells, or changes
in proliferation, gene, or protein expression.

It has already been shown that the microenvironment of
breast cancers, which is crucial for tumor progression,
contains recruited mesenchymal stem cells, also from adi-
pose tissue [6, 7]. The surrounding adipose tissue with its
ADSC-containing stromal vascular fraction is supposed to
especially contribute to the vascular and fibrovascular
stroma of adjacent breast tumors [8]. BRCAs can stimu-
late the secretion of the chemokine (C-C motif) ligand 5
(CCL5) from bone marrow-derived mesenchymal stem
cells (BMSCs), which then act in a paracrine fashion on
the BRCAs enhancing their motility, invasion, and metas-
tasis [9]. Furthermore, Jotzu et al. have shown that breast
cancer cells are able to induce a change in ADSC
morphology and function to a myofibroblast-like cell
type, similar to cancer-associated fibroblasts (CAFs)
[10]. CAFs have been suggested to enhance tumor
growth by secreting stromal-derived factor-1, which
directly stimulates cancer cell growth and motility, to
support angiogenesis by recruiting endothelial precur-
sor cells into the tumor microenvironment, and to pro-
mote epithelial-to-mesenchymal transition (EMT) of
tumor cells, a key event in cancer progression [6].

To gain further insight into the respective interactions,
we co-cultured primary human ADSCs with five differ-
ent BRCAs cell lines and primary BRCAs (pBRCAs). We
analyzed the proteins secreted in their shared media,
quantified the changes in proliferation, migration, inva-
sion, angiogenesis, and gene expression of both cell
types, and compared each of the results to that of the
respective monocultures of the same cell type.

Methods
All chemicals, if not noted separately, were purchased
from Sigma-Aldrich, Munich, Germany.

Donor specification

This study was conducted under the guidelines and with
the approval of the ethical committees of the University of
Heidelberg and of the medical association of the local dis-
trict Baden-Wuerttemberg, Germany (Reference numbers
S$-462/2010 and S-022/2013). After informed consent,
freshly excised subcutaneous adipose tissue of three men
and three women with an age range of 18-42 years
(median age 27.5 years) undergoing elective plastic
surgery was used for isolation of ADSCs.
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Primary BRCAs were isolated from ascites aspirate of
a female breast cancer patient (58 years old) with metas-
tasized bilateral invasive lobular breast cancer.

ADSC isolation and culture

Isolation of ADSCs

ADSCs were isolated from freshly excised subcutaneous
adipose tissue or liposuction using a procedure modi-
fied from Hauner et al. [11]. In brief, the adipose tissue
was washed in 1% bovine serum albumin (BSA)/phos-
phate-buffered saline (PBS), minced, and digested enzy-
matically by collagenase (collagenase CLS, 220 U/mg;
Biochrom AG, Berlin, Germany; 1.5 mg/ml in 1% BSA/
Krebs-Ringer solution) for 45 min under constant shaking
at 37 °C. Mature adipocytes and connective tissue was
separated by centrifugation (700xg, 7 min, at room
temperature). The sedimented cells were resuspended,
passed through a 100-pm mesh filter (Neolab, Heidelberg,
Germany) and washed twice with 1% BSA/PBS. After
erythrocyte lysis (3 min, 155 mM ammonium chloride,
10 mM potassium bicarbonate, 0.1 mM EDTA) cells were
washed again twice and plated at a density of 2 x 10* cells/
cm? in an expansion medium (see below). After 24 h the
medium was changed to remove nonadhered cells.

Expansion of ADSCs
ADSC were cultivated in an expansion medium consisting
of 60% Dulbecco’s modified Eagle’s medium (DMEM) low
glucose (1 g/l p-glucose) (Invitrogen, Life Technologies,
Darmstadt, Germany), 40% MCDB-201, 1 x insulin, trans-
ferrin, selenous acid (ITS; Becton Dickinson), 107® M
dexamethasone, 0.1 mM ascorbic acid-2-phosphate, 2%
fetal calf serum (FCS; Biochrom), 100 U/ml penicillin
(Biochrom), 0.1 mg/ml streptomycin (Biochrom), 10 ng/
ml recombinant human epidermal growth factor (EGF),
and 10 ng/ml recombinant human platelet-derived growth
factor-BB (rhPDGEF-BB; CellSystems, Troisdorf, Germany).
The medium was changed every other day. Once the cells
reached 70% confluence they were detached with 0.25%
trypsin-EDTA (Biochrom) and replated with 3.5 x 10% cells
per cm®. ADSCs were incubated at 37 °C with 5% CO,
and cultured to passage four.

Passage four cells of all six donors were mixed equally
and used as a pool for the following experiments.

Determination of ADSC stemness

Adipogenic differentiation and Oil Red Staining

Adipogenic differentiation was induced as described previ-
ously [12]. In brief, ADSCs were seeded in expansion
medium at a density of 24,000 cells/cm® After reaching
90% confluence adipogenesis was induced by the alternated
use of basal medium (10% FCS/DMEM) supplemented
with IDI-mix (500 uM 3-isobutyl-1-methylxanthine, 1 uM
dexamethasone, 1 uM indomethacin) for 2 days followed
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by basal medium plus 10 pg/ml insulin for 1 day. The
induction cycle was repeated three times. To confirm the
successful adipogenic differentiation, cytoplasmic triglycer-
ide lipid droplets were stained with the Oil Red O staining
method as described previously [13].

Osteogenic differentiation and Alizarin Red Staining
Osteogenic differentiation was induced as described previ-
ously [12]. After seeding at a density of 24,000 ADSC/cm?,
cells were grown in expansion medium to 90% confluence.
Osteogenic induction was initiated by changing the
medium to DMEM containing 10% FCS, supplemented
with 50 uM L-ascorbate-2-phosphate, 0.1 pM dexametha-
sone, and 10 mM PB-glycerophosphate disodium salt. On
day 28 calcium deposition was demonstrated histochemi-
cally by Alizarin red staining as follows: monolayers of
mineralized mesenchymal stem cells were washed twice
with excess PBS and fixed with pre-chilled 70% ethanol
for 1 h at —20 °C. After a short washing step with H,O the
cell layer was incubated with 40 mM Alizarin red (pH 4.2)
for 5 min at room temperature. After aspiration of unin-
corporated dye, cells were washed twice with H,O and
once with PBS before microscopic analysis.

Flow cytometry

ADSC:s of all donors were expanded separately to passage
four, pooled, and examined once for surface marker expres-
sion using flow cytometry as a pool of six donors. The fol-
lowing monoclonal antibodies conjugated to fluorochromes
were used: anti-CD11b-APC, anti-CD13-APC, anti-CD29-
PE, anti-CD31-FITC, anti-CD34-FITC, anti-CD44-APC,
anti-CD45-FITC, anti-CD63-FITC, anti-CD73-PE, anti-
CD90-APC, anti-CD105-FITC, anti-CD106-APC, anti-CD-
166-PE, and anti-CD235a (all from Becton Dickinson,
Heidelberg, Germany). Isotype antibodies were included for
all fluorochromes.

Cells were detached with 0.25% trypsin-EDTA, washed
in FACS buffer (1% FCS, 0.1% NaNj; in PBS), incubated
with directly conjugated monoclonal antibodies (5 pl/
100,000 cells) in FACS buffer for 30 min on ice, washed
twice with FACS buffer, and fixed with 1% paraformalde-
hyde/PBS. Cells were analyzed using a FACSCanto flow cy-
tometry system (Becton Dickinson). Data acquisition was
performed with Diva software (Becton Dickinson) and data
were analyzed using FCS express V3 (De Novo Software).

ADSC-BRCA co-culture

BRCA cell lines MDA-MB-231, SK-BR-3, MCF7, and
ZR75-30 were purchased from American Type Culture
Collection (ATCC), Manassas, USA (Catalog No. CRM-
HTB-26, HTB-30, HTB-22, and CRL-1504), and EVSA-T
was purchased from Leibniz-Institute DSMZ GmbH,
Braunschweig, Germany (Cat. No. ACC-433).
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After informed consent, primary BRCAs were iso-
lated from ascites aspirate of a female breast cancer
patient with metastasized bilateral invasive lobular
breast cancer. In brief, the ascites aspirate was centri-
fuged at 490 x g for 10 min and the aspirate super-
natant was collected for preparation of conditioned
medium consisting of 40% aspirate plus 60% RPMI-
1640. The cell pellets were washed in RPMI without
supplements and plated on tissue culture plates in
RPMI. After an incubation time of 1 h at 37 °C and
5% CO, macrophage adherence occurred, the super-
natant containing the nonadherent cells (tumor cells
included) was centrifuged and plated on new tissue
culture dishes in conditioned medium at a density of
1 x10° cells/cm® The cells which were adherent after
3 days of culture were expanded to passage four and
applied to the co-culture system as primary BRCA
cells. The cells were initially analyzed for their cell
surface prolife in flow cytometry and were EpCAM-
positive, HER2-positive, and negative for estrogen and
progesterone receptors (data not shown).

Co-culture of tumor cells and ADSCs was performed
in a transwell system. Either 2 x 10* ADSCs or BRCA
cell lines (2 x 10* of MDA-MB-231, 4 x 10* of SK-BR-
3, MCE-7, and EVSA-T, or 1 x 10° of ZR75-30, with a
preculturing of 3 days for SK-BR-3, MCF-7, and ZR75-
30), respectively 3 x 10* ADSCs or 1.4 x 10° primary
BRCAs, were seeded onto in a polyester membrane
transwell-clear insert (Corning; pore size 0.4 pm)
while the corresponding other cell type was seeded
onto the bottom of a six-well cell culture plate at the
cell density described above.

Cells were cultured for up to 5 days in 4 ml ADSC ex-
pansion medium (for co-cultures with MDA-MB-231,
SK-BR-3, MCF-7, EVSA-T, ZR75-30) or a medium con-
taining DMEM low glucose (1 g/l D-glucose) (Invitrogen,
Life Technologies, Darmstadt, Germany) supplemented
with 10% FCS (Biochrom), 10 mM Hepes (Gibco, Life
Technologies, Darmstadt, Germany), 1% nonessential
amino acids (Gibco, Life Technologies, Darmstadt,
Germany), 100 U/ml penicillin (Biochrom), and 0.1 mg/
ml streptomycin (Biochrom) for co-cultures with pri-
mary BRCAs without medium change. Each day cell
culture supernatants were harvested and the cell number
was determined after trypzinization and trypan blue
staining. BRCAs as well as ADSCs alone (either in
transwell inserts or on six-well culture plates) served
as control and were treated as for the co-culture. For
further analysis, the exponential growth phase of the
cells was determined and the supernatants of day 4
(MDA-MB231, SK-BR-3, MCE-7, and EVSA-T) or day
5 (ZR-5-30, primary BRCAs) were analyzed in a pro-
tein assay while the corresponding cells were used for
gene expression studies.
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Determination of cell proliferation

In order to obtain separate growth kinetics during the
exponential growth phase for both separate and co-
cultured cells, cells of six wells per condition (ADSCs
alone, BRCAs alone, and both cell types in co-culture)
were harvested with trypsin/EDTA once every 24 h from
day 1 to day 5. The cells were stained with trypan blue
and the viable cells were counted with a Neubauer
chamber. The generation time was calculated by the for-
mula: G (in hours) = (log2 x T)/(logY - logX), with T =
time in culture (in hours), Y = number of cells at the end
of T, and X = number of cells at the beginning of T. The
mean generation time was calculated for each condition
and the results were evaluated using student’s ¢ test.

Analysis of cell migration

In order to determine the migration capacity of ADSCs
and BRCAs alone and in co-culture, the QCM 24-Well
Colorimetric Cell Migration Assay (Merck Millipore #
ECM 508) was performed. For this purpose, cells of each
type were seeded in expansion medium either on the
bottom of the supplied 24-well plate (6000 cells per well)
or onto the membrane of the transwell insert (6000 cells
per insert). Nine wells per condition were seeded and
analyzed. Cells were cultured separately for 24 h before
co-culture conditions (ADSCs on the well plate bottom,
BRCAs in the transwell inserts and vice versa) were
established for a further 24 h. Both cell types alone in
the inserts without the respective second cell type on
the bottom plate served as controls. For evaluation of
the assay, the medium was removed and the inserts
transferred into new wells containing 400 pl cell stain
for 20 min. The inserts were washed with water and the
nonmigrated cells were removed from the interior of the
inserts with cotton-tipped swabs. The dried inserts were
transferred into 200 ul of Extraction Buffer for 15 min
and the optical density of 100 pl extracted dye was
measured at 560 nm. The results were evaluated using
student’s ¢ test.

In vitro analysis of invasive behavior

The invasion capacity of ADSCs and BRCAs was tested
in a Cell Invasion Assay Kit (QCM ECMatrix Cell Inva-
sion Assay, Merck Millipore # ECM 550). Cells of each
type were seeded in expansion medium either on the
bottom of the supplied 24-well plate (6000 cells per well)
or onto the membrane of the transwell insert (6000 cells
per insert). Nine wells per condition were seeded and
analyzed. Cells were cultured separately for 24 h before
co-culture (ADSCs on the bottom and BRCAs in the
inserts and vice versa) was induced for a further 72 h.
Both cell types alone in the inserts without the respect-
ive second cell type on the bottom plate served as con-
trols. Next, the medium was removed, the noninvading
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cells of the interior of the inserts were cleared with
cotton-tipped swabs, and the inserts transferred into
500 ul of staining solution for 20 min. Inserts were
washed with water, air-dried, and transferred into 200 pl
of extraction buffer. The optical density of 100 pl
extracted dye was measured at 560 nm. The results were
evaluated using student’s ¢ test.

Quantitative real-time polymerase chain reaction (PCR)
The analysis of gene expression was carried out for 261
different genes in three main tumor associated areas:
chemokines, cancer regulation by Stathminl, and metas-
tasis. Real-time PCR was performed at the end of the
exponential growth phase of the respective cell cultures.
This was identified by daily counting of cell numbers in
parallel sets of equivalent cell cultures. This exponential
growth phase ended at day 5 for ZR-75-30 and pBRCAs,
and at day 4 for all other cell types.

Total RNA was isolated from ADSCs and BRCAs,
either cultured alone or in co-culture for 4 days (MDA-
MB-231, SK-BR-3, MCF7, and EVSA-T) or 5 days
(ZR75-30, primary BRCAs), using the Trizol plus Kit
(Life Technologies, Carlsbad, USA). Cells from six separ-
ate culture wells per condition were analyzed. The RNA
concentration was calculated by Quant-iT RNA-Assay
(Life Technologies) and 1 pg was subjected to cDNA
synthesis by the High Capacity cDNA Reverse Tran-
scription Kit (Life Technologies). Gene expression ana-
lysis was performed on a Step One Plus Instrument (Life
Technologies) using TagMan Real Time PCR technol-
ogy. Gene expression was analyzed using predesigned
TagMan 96-well array plates each containing 92 differ-
ent genes of interest and four endogenous controls with
10 ng cDNA per well (Human Chemokines #4418729,
Human Tumor Metastasis #4418743, Human Breast
Cancer Regulation by Stahminl #4418757; Life Tech-
nologies, Carlsbad, USA). In order to further investigate
a potential EMT of the cells during co-culture the gene
expression of E- and N-cadherin was analyzed using
specific TagMan gene expression assays (Hs01023894
for E-cadherin, Hs00983056 for N-cadherin) with 17 ng
of ¢cDNA per sample. In addition, a potential receptor
modulation of estrogen receptor, progesterone receptor,
and ErbB2 was investigated by analyzing 17 ng of cDNA
per sample with appropriate TagMan gene expression
assays (Hs00174860 for ESR1, Hs01100353 for ESR2,
Hs01556702 for PGR, Hs01001580 for ERBB2; Life
Technologies, Carlsbad, USA).

Calculating the difference between the cycle threshold
(CT) of the genes of interest and the CT of the endogen-
ous controls from the same sample provided delta-CT
values. The PCR analysis was performed three times
with equal samples.
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Human cytokine magnetic 30-plex panel

In order to quantify the level of 30 cytokines (CCL2,
CCL3, CCL4, CCL5, CXCL-9, CXCL-10, EGF, Eotaxin,
fibroblast growth factor (FGF)-2, granulocyte colony-
stimulating factor (G-CSF), granulocyte-macrophage
colony-stimulating factor (GM-CSF), hepatocyte growth
factor (HGF), interferon (IFN)-a, interleukin (IL)-1,
IEN-y, IL-1ra, IL-2, IL-2r, IL-4, IL-5, IL-6, IL-7, IL-8, IL-
10, IL-12, IL-13, IL-15, IL-17, tumor necrosis factor
(TNF)-a, and vascular endothelial growth factor
(VEGF)), seven different matrix metalloproteinases
(MMP1, 2, 3, 7, 8, 9, 10) as well as the extracellular
matrix metalloproteinase inducer (EMMPRIN) were
simultaneously measured in samples of each ADSC
monoculture, BRCA monoculture, and ADSC-BRCA
co-culture, in a human cytokine magnetic 30-plex
(LHC6003M, Life technologies, Carlsbad, USA) and a
human MMP magnetic Luminex Performance Assay
(FCSTMO07-7, LMPM000, LMPM972; R&D Systems,
Minneapolis, USA) according to the manufacturers’
instructions. Conditioned media from six separate
culture wells per culture condition were collected,
pooled, and measured in six technical replicates.
Samples were analyzed with a Luminex 200 instru-
ment (BioRad). The median fluorescent intensity was
determined and the cytokine/MMP concentration
ascertained based on the standard curves for each
cytokine/MMP. Prior to the analysis of the conditioned
media of our human co- and monocultures we con-
firmed the specificity of the test for human proteins
and excluded crossreactivity with bovine proteins,
especially from FCS.

Analysis of angiogenic properties
In order to determine the proangiogenic effect of
ADSCs and BRCAs alone or in co-culture, superna-
tants of six separate culture wells of each condition
were collected at day 5 of cell culture, pooled, and an-
alyzed for induction of tube formation in six separate
wells in a tube formation assay kit with human umbil-
ical vein endothelial cells (HUVECs; Merck Millipore
# ECM 625) according to the manufacturer’s instruc-
tions. In brief, wells of a 96-well plate were coated
with an ECM matrix solution and HUVEC cells were
resuspended in the different conditioned media from
ADSCs, BRCAs, or ADSC-BRCA co-cultures; 7500
HUVEC cells in conditioned medium were seeded
onto the matrix in each well and incubated for 9 h.
Tube formation was visualized with a light microscope
at a magnification x 20. A positive control was induced
by phorbol 12-myristate 13-acetate (PMA; Abcam,
Cambridge, UK, no. ab120297).

Three representative pictures of each culture (mono-
culture, co-culture) were microscopically analyzed in a
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blinded fashion by four independent examiners. Dif-
ferences in the angiogenic properties between co-
culture and the respective monocultures were ranged
in three categories (increased =1, equal =0, decreased
angiogenesis = —1) according to number, length, and
sprouting of tubes, as well as formation of loops.
Mean scores from 0.25 to 0.33 were determined as
light change, scores from 0.34 to 0.66 were determined
as medium change, and scores above 0.66 were stated
as strong change. Scores below 0.25 were determined
as no significant change.

Statistical analysis

The results of cellular proliferation, migration, and invasion
assays were evaluated by SigmaStat Software (SYSTAT)
using student’s ¢ test. P values <0.05 were stated as signifi-
cantly different. If the normality test failed a Wilcoxon
signed rank test was performed.

Results

Determination of stemness

The stemness of the applied ADSCs was determined
according to the joint statement of the International
Federation for Adipose Therapeutics and Science (IFATS)
and the International Society for Cellular Therapy (ISCT)
[14] by analysis of distinct surface markers in flow cytom-
etry and analysis of adipogenic and osteogenic differenti-
ation with oil red and alizarin red staining, respectively.

Flow cytometry

ADSCs were positive for CD13, CD29, CD44, CD63,
CD73, CD90, CD105, and CD166. ADSCs were negative
for CD11b, CD31, CD34, CD45, CD106, and CD235a
(Additional file 1: Figure S1).

Differentiation

Adipogenic and osteogenic differentiation were induced
to evaluate the multipotent differentiation potential. In all
donors, adipogenically induced cells showed a remarkably
higher oil red staining than noninduced control cells
(Additional file 2: Figure S2a). Osteogenically differenti-
ated ADSCs showed remarkably higher extracellular cal-
cium deposition than noninduced control cells, analyzed
with alizarin red stain (Additional file 2: Figure S2b).

Proliferation

Cell proliferation was determined by analyzing the doub-
ling time of cells during the exponential growth phase
(in general from day 2 to 4) (Fig. 1). Data are given as
mean with standard deviation (SD).

ADSC-BRCA co-culture
Co-culture did not significantly affect cellular proliferation
of either ADSCs or BRCAs or pBRCAs (p > 0.05).
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Quantitative real-time PCR

Co-cultured ADSCs and BRCAs showed distinct differ-
ences in the gene expression levels compared to a
monoculture of ADSCs or BRCAs/pBRCAs (Table 1).
To facilitate clear data presentation, only the results of
the ADSCs on plates/BRCAs or pBRCAs in transwell
inserts (co-culture), and changes in gene expression
twofold or greater are displayed.

Co-culture of EVSA-T and ADSCs

In the co-cultured ADSCs, a change of the gene expres-
sion level could only be found in the expression of
ETV4 (2.3-fold upregulation) compared to the respective
monoculture. There was no remarkable change in the
gene expression of the EVSA-T cells.

Co-culture of MCF-7 and ADSCs

In the co-cultured ADSCs, a clear increase of the gene ex-
pression level could be found in WISP-1 (21-fold), CCL-
28 (6.0-fold), CXCL-12 (5.8-fold), CX3CL-1 (4.4-fold),
PTGS2 (3.6-fold), TNFSF-10 (3.0-fold), IL-6 (2.3-fold),
and E-Cadherin (CDH-1, from undetermined to CT 36.1)
compared to the respective monoculture. A downregula-
tion was determined for MMP-1 (4.4-fold), TLR2 and
GDF-5 (2.6-fold), and GPR81/HCARI1 (2.1-fold).

When MCF-7 BRCAs were co-cultured with ADSCs the
expression of TNFSF-10 (4.6-fold) was upregulated in the
MCE-7 BRCAs, and the expression of IL-18 (2.1-fold) was
downregulated compared to the respective monoculture.

Co-culture of MDA-MB-231 and ADSCs

In the co-cultured ADSCs, a clear increase of the gene
expression level could be found in CXCL-1 (10-fold),
CXCL-6 (9.7-fold), CSF-3 (8.3-fold), IL-8 (4.6-fold),
CXCL-3 (3.2-fold), IL-6 (3.0-fold), CCL-8 (2.4-fold), and
CXCL-2 (2.3-fold) compared to the respective monocul-
ture. A downregulation was determined for MMP-1
(2.6-fold).

When MDA-MB-231 BRCAs were co-cultured with
ADSCs the following genes were upregulated in the
MDA-MB-231 BRCAs: MMP-10 (7.2-fold), MMP-3
(4.8-fold), IL-8 (4.7-fold), CXCL-3 (4.2-fold), CXCL-2
(3.7-fold), PSCA (3.5-fold), IL-6 (2.3-fold), and TLR-2
(2.0-fold). No genes analyzed were remarkably downreg-
ulated in co-cultured MDA-MB-231 BRCAs.

Co-culture of SK-BR-3 and ADSCs

In the co-cultured ADSCs, a clear increase of the gene
expression level could be found in TNFSF10 (3.3-fold)
and CXCL-12 (2.4-fold) compared to the respective
monoculture. A downregulation was determined for
CSF-3 (5.7-fold), IL-8 (5.5-fold), CXCL-3 (5.0-fold),
CXCL-1 (3.5-fold), PTGS2 (3.2-fold), TLR2 (2.6-fold),
SERPINB5 and CCL20 (2.4-fold).
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Fig. 1 Effect of ADSC-BRCA co-culture on the proliferative activity of cells. a ADSC-EVSA-T co-culture: the growth of both cell types was not significantly
affected (p > 0.05). b ADSC-MCF-7 co-culture: the growth of both cell types was not significantly affected (p > 0.05). ¢ ADSC-MDA-MB-231 co-culture: the
growth of both cell types was not significantly affected (p > 0.05). d ADSC-SK-BR-3 co-culture: the growth of both cell types was not significantly affected
(p>0.05). @ ADSC-ZR75-30 co-culture: the growth of both cell types was not significantly affected (p > 0.05). f ADSC-pBRCA co-culture: the growth of both
cell types was not significantly affected (p > 0.05). ADSC adipose-derived mesenchymal stem cell

When SK-BR-3 BRCAs were cocultured with ADSCs
the following genes were upregulated in the SK-BR-3
BRCAs: STAT4 (7.7-fold), MMP-2 (4.4-fold), CCL26 and
CEACAM-1 (3.0-fold), CXCL-1 (2.6-fold), CCL20 (2.5-fold),
TMPRSS4 (2.7-fold), EPHB2 (2.3-fold), TNFSF10 (2.2-fold),
MCAM (2.1-fold), and TLR-2 (2.0-fold). SERPINB5 (2.9-
fold), CSF-3 (2.4-fold), and RECK (2.0-fold) were remark-
ably downregulated in co-cultured SK-BR-3 BRCAs.

Co-culture of ZR75-30 and ADSCs

In the co-cultured ADSCs, a clear increase of the gene
expression level could be found in CX3CL-1 (4.6-fold),
CXCL-10 (3.0-fold), and CXCL-14 (2.0-fold) compared
to the respective monoculture. A downregulation was
determined for CXCR4 (3.2-fold), PSCA (2.3-fold), and
MET (2.0-fold).

When ZR75-30 BRCAs were co-cultured with ADSCs
the following genes were upregulated in the ZR75-30
BRCAs: STAT4 (5.1-fold), FXYD5 (3.0-fold), and CCL2
(2.3-fold). PSCA (7.9-fold), CXCL-14 (7.4-fold), MMP-2
(5.4-fold), and MET (4.4-fold) were remarkably down-
regulated in co-cultured ZR75-30 BRCAs.

Co-culture of pBRCAs and ADSCs

In the co-cultured ADSCs, a strong increase of the gene
expression level could be found for WISP-1 (33-fold),
MMP-1 (17-fold), MMP-3 (13-fold), CD82 (10-fold),
SERPINE1 (8.0-fold), and CCL-7 (7.5-fold), and a mod-
erate increase for FGF-2 (3.9-fold) and EPHB2 (2.1-fold).
A downregulation was determined for KISS1R (8.6-fold),
PSCA (4.3-fold), TNFSF-10 (3.5-fold), GNRH1 (2.1-fold),
CD44 and S100A4 (2.0-fold).
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Table 1 Changes in the gene expression levels of ADSCs and
BRCAs/pBRCAs in co-culture compared to monoculture

Gene name

Fold-change
(monoculture/co-culture)

Up-/downregulation

Co-culture of ADSCs and EVSA-T

Changes in the gene expression of ADSCs

ETV4

23 (0.0)

Co-culture of ADSCs and MCF-7

Changes in the gene expression of ADSCs

CCL-28
CCNA2
CCNB1
CDC2/CDK1
CDH-1
CX3CL-1
CXCL-12
E2F2

GDF-5
GPR81/HCAR1
IL-6

KDR

MMP1

TLR2
TNFSF-10
PPP1R1B
PTGS2
TUBA4A
WISP-1

6.0 (0.3)
30

30

35
Undetermined — CT 36.1
44 (1.1)
58(0.2)
4.2

26 (0.1)
2.1 (0.0)
23 (0.1)
6.2

44 (0.1)
26 (0.6)
3.0(02)
87
36(02)
30

21 (1.8)

Changes in the gene expression of MCF-7

IL18
KDR
TNFSF-10

2.1(0.7)
30
4.6 (0.5)

Co-culture of ADSCs and MDA-MB-231

Changes in the gene expression of ADSCs

CCL-8
CSF-3
CXCLA1
CXCL-2
CXCL-3
CXCL-6
IL-6
IL-8
MMP1

Changes in the gene expression of MDA-MB-231

CXCL-2
CXCL-3
IL-6

24 (0.1)

37(0.1)
42 (0.1)
23(0.1)

D D P > e e e D e e = > > 4 — — >

R e e e T S
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Table 1 Changes in the gene expression levels of ADSCs and
BRCAs/pBRCAs in co-culture compared to monoculture

(Continued)
IL-8 47 (0.1) 1
MMP-3 48(02) 1
MMP-10 7.2 (0.8) T
PSCA 35(07) 1
TLR-2 20 (03) 1
Co-culture of ADSCs and SK-BR-3
Changes in the gene expression of ADSCs
CCL-20 24 (0.5) |
CXCL-1 35(00) !
CSF-3 5.7 (04) 1
CXCL-3 5.0 (0.1) 1
CXCL-12 24 (00) 1
IL-8 55(02) {
PTGS2 32(0.1) 1
SERPINBS 24 (1.0) |
TLR2 26 (04) !
TNFSF-10 33(0.) 1
Changes in the gene expression of SK-BR-3
CCL-20 25(0.0) i
CCL-26 0(03) 1
CEACAM-T 0(03) 1
CSF-3 4(0.5) !
CXCLA1 6 (0.1) I
EPHB2 3(02) 1
MCAM 1(0.1) 1
MMP2 4(0.1) 1
SERPINBS 907 !
RECK 0(0.2) |
STAT4 7(12) 1
TLR-2 0(03) 1
TNFSF-10 2(02) 1
TMPRSS-4 2.7 (04) I
Co-culture of ADSCs and ZR75-30
Changes in the gene expression of ADSCs
CX3CLA1 46 (0.7) 1
CXCL-10 3.0 (06) i
CXCL-14 20 (0.3) 1
CXCR4 32(02) !
MET 20 (0.1) |
PSCA 23(0.) |
Changes in the gene expression of ZR75-30
CcCL2 23(0.1) 1
FXYD5 30(0.1) 1



Koellensperger et al. Stem Cell Research & Therapy (2017) 8:121

Table 1 Changes in the gene expression levels of ADSCs and
BRCAs/pBRCAs in co-culture compared to monoculture
(Continued)

PSCA 79(0.2) l
CXCL-14 74 (1.5) 1
MET 44 (1.0) !
MMP-2 54(19) l
STAT4 5.1(0.7) 1
Co-culture of ADSCs and primary BRCAs
Changes in the gene expression of ADSCs
CcCcL-7 75(02) 1
CD44 20 (0.0) l
D82 10 (04) 1
EPHB2 2.1(0.1) 1
FGF-2 39 (0. 1
GNRH1 2102 l
KISSTR 86 (2.5) l
MMP-1 17 (08) 1
MMP-3 13(13) 1
PSCA 43(03) l
S100A4 20(0.1) l
SERPINE1 80 (0.1) 1
TNFSF-10 35(0.2) 1
WISP1 33 (0.7) 1

Changes in the gene expression of primary BRCAs

CD82 2.1(0.2) 1
DARC 28 (0.1) l
GNRHT1 23(0.) T
MMP-1 23(0.1) 1
MMP-3 34(03) T
MMP-7 5.1 (0.5) 1
TIMP-4 76 (1.8) 1
TNFSF-10 30(03) !
TMPRSS4 Undetermined — CT 324 1
TWIST1 2.0 (0.0) 1
WISP1 29 (0.9) T

GUSB was used as referring housekeeping-gene. Only changes twofold or higher
are displayed. Arrows mark an up- (1) or downregulation (|) of the gene
expression compared to the referring monoculture. Values in parentheses
indicate the respective standard deviation

CT cycle threshold

When pBRCAs were co-cultured with ADSCs the
gene expression of WISP (29-fold), TIMP4 (7.6-fold),
and MMP-7 (5.1-fold) was strongly upregulated. Further-
more, a moderate increase in the gene expression of
MMP-3 (3.4-fold), GNRH1 (2.3-fold), MMP-1 (2.3-fold),
CD82 (2.1-fold), TWIST1 (2.0-fold), and TMPRSS4 (from
undetermined to CT 32.4) was detected. The expression
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of DARC (2.8-fold) and TNFSF-10 (3.0-fold) was down-
regulated on co-culture compared to the respective
monoculture.

Multiplex protein analysis (Table 2)
Co-culture of EVSA-T and ADSCs
In co-culture with ADSCs, EVSA-T BRCAs experienced
a strong increase in the protein levels of MMP-3 (233-
fold), and MMP-10 (12-fold), and a moderate increase in
EMMPRIN (4.0-fold), and MMP-9 (2.2-fold). Exclusively
in co-culture, EVSA-T BRCAs are exposed to CCL2,
HGE, IL-6, -7, -8, MMP-1, -2, -7, and VEGF.
Co-cultured ADSCs were not exposed to major dif-
ferences in protein levels compared to the respective
monoculture.

Co-culture of MCF-7 and ADSCs

In co-culture with ADSCs, MCF-7 BRCAs experienced a
strong increase in the protein concentration of MMP-1,
MMP-3, and MMP-10 (5.8-596-fold changes). Exclusively
in co-culture, MCF-7 BRCAs were exposed to CCL-2, HGF,
IL-6, IL-8, IL-12, INF-a, MMP-2, and VEGF. ADSCs were
not exposed to major changes in the protein levels in co-
culture compared to monoculture (0.4-2.0-fold changes).

Co-culture of MDA-MB-231 and ADSCs

In co-culture with ADSCs, MDA-MB-231 BRCAs expe-
rienced a strong increase in the protein concentration of
CCL2, IL-8, HGF, MMP-1, and MMP-3, and a mild
increase in IL-6 and MMP-10 (2.6-395-fold changes).
Exclusively in co-culture, MDA-MB-231 BRCAs were
exposed to MMP-2. ADSCs were not exposed to major
changes in the protein levels in co-culture compared to
monoculture (0.5-1.8-fold changes).

Co-culture of SK-BR-3-BRCAs and ADSCs

In co-culture with ADSCs, SK-BR-3 BRCAs experienced
a strong increase in the protein concentration of CCL2,
IL-6, IL-8, MMP-1, MMP-3, and MMP-10 (6.4—1297-fold
changes). Exclusively in co-culture, SK-BR-3 BRCAs were
exposed to HGF, IL-7, MMP-2, and VEGF. ADSCs were
not exposed to major changes in the protein levels in co-
culture compared to monoculture (0.5-1.8-fold changes).

Co-culture of ZR75-30 and ADSCs

In co-culture with ADSCs, ZR75-30 BRCAs experi-
enced a strong increase in the protein concentration of
CCL2, EMMPRIN, IL-8, MMP-1, and MMP-3, as well
as a moderate increase in the protein level of MMP-10
(4.4— 2442-fold changes). Exclusively in co-culture, ZR-
75-30 BRCAs were exposed to CCL4, HGEF IL-6,
MMP-2, and IL-12. ADSCs were not exposed to major
changes in the protein levels in co-culture compared to
monoculture (0.4—1.2-fold changes).
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Table 2 Changes in the protein expression levels of ADSCs and BRCAs/pBRCAs in co-culture compared to monoculture
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Protein ADSC monoculture Respective BRCA Co-culture Fold-change for ADSC Fold-change for respective BRCA
(pg/ml) monoculture (pg/ml) (pg/ml) (monoculture/co-culture) (monoculture/co-culture)
Co-culture of ADSCs and EVSA-T cell line
CcCL2 1755 (65) ND 1421 (108) 09 — NA 11
EMMPRIN 594 (46) 208 (7.6) 828 (37) 14 — 401
HGF 1803 (159) ND 1104 (155) 06 — NA 11
IL-6 62 (11) ND 53 (7.1) 09 — NA 11
IL-7 84 (6.3) ND 14 (6.8) 1.7 — NA 1
IL-8 4261 (673) ND 3818 (665) 09 — NA 11
MMP-1 165,407 (32,918) nd 80,345 (3137) 05— NA 11
MMP-2 61,271 (3320) ND 66,795 (5514) 11— NA 11
MMP-3 8274 (355) 23 (1.5 5356 (142) 07 — 233 11
MMP-7 208 (40) ND 156 (29) 08 — NA t
MMP-9 82 (54) 32(28) 70 (2.9) 09 — 221
MMP-10 385 (23) 21 (2.7) 258 (6.8) 07 — 121
VEGF 47 (0.0) ND 38 (4.6) 08 — NA 11
Co-culture of ADSCs and MCF-7 cell line
CccL2 2004 (99) ND 1007 (75) 05— NA 11
CCL3 16 (0.7) 14 (1.6) 17 (20 11— 12—
CCL5 5134 12 (7.6) 49 (2.6) 10 — 04]
CXCL10 23 (0.1) 19 (0.1) 21(02) 09 — 11—
EMMRPIN 768 (34) 551 (28) 1073 (57) 14 — 20 —
Eotaxin 1.0 (0.1) 12(0.2) 09 (0.1) 08 — 08 —
G-CSF 91 (9.7) 29 (5.2) 55 (8.3) 06 — 19 —>
GM-CSF 1.7 (0.1) 1.0 (0.1) 1.3(0.1) 07 — 13—
HGF 2095 (244) ND 1488 (67) 07 — NA 11
IL-4 18 (1.0) 12 (0.6) 16 (1.3) 09 — 13—
IL-5 28(0.1) 281(0.2) 29(03) 1.0 — 10 —
IL-6 160 (20) ND 160 (23) 1.0 — NA 11
IL-8 5330 (633) ND 2982 (367) 06 — NA 11
IL-10 46 (0.5 4.0 (04) 49 (04) 11— 12 —
IL-12 11.7 (4.2) ND 106 (5.1) 09 — NA 1
IL-13 10 (1.0) 15 (0.5) 20 (1.7) 201 13—
IL-1Ra 24 (1.7) 24.(1.0) 25(1.5) 10 — 10 —
INF-a 80 (6.5) ND 46 (7.3) 06 — NA 11
MMP-1 85,387 (18,267) 30 (54) 17,881 (1437) 02— 59 11
MMP-2 51,127 (3291) ND 74,585 (6060) 15— NA 11
MMP-3 3514 (281) 40 (0.0) 3,905 (173) 11— 98 11
MMP-9 112 (7,6) 112 (32) 99 (4.0) 09 — 09 —
MMP-10 193 (76) 41 (39 236 (6.7) 12— 581
VEGF 44 (47) ND 48 (6.1) 11— NA 11
Co-culture of ADSCs and MDA-MB-231 cell line
CccL2 965 (140) 24 (0.0) 949 (162) 10 — 395 11
EMMPRIN 496 (20) 434 (30) 882 (53) 18 — 20 —
HGF 889 (206) 9.2 (4.9) 708 (129) 08 — 7711
IL-4 1.7 (1.0) 14 (0.0) 0.9 (0.6) 05— 06 —
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Table 2 Changes in the protein expression levels of ADSCs and BRCAs/pBRCAs in co-culture compared to monoculture (Continued)

IL-6 199 (32)
IL-7 22 (2.6)
IL-8 3238 (528)
MMP-1 58,500 (5616)
MMP-2 17,767 (1796)
MMP-3 2185 (79)
MMP-9 105 (4.0)
MMP-10 160 (7.0)
VEGF 22 (12)
Co-culture of ADSCs and SK-BR-3 cell line
bFGF 438 (0.0)
CcCL2 1200 (134)
EMMPRIN 566 (22)
HGF 975 (159)
IL-4 1.2 (0.9)
IL-6 175 (20)
IL-7 13 (8.1)
IL-8 3581 (263)
IL-1Ra 20 (0.0)
INF-a 30 (7.5)
MMP-1 62,844 (4604)
MMP-2 42,296 (2367)
MMP-3 3472 (316)
MMP-9 111 (85)
MMP-10 231 (15)
VEGF 24.(9.7)
Co-culture of ADSCs and ZR75-30 cell line
CccL2 3603 (375)
CCL3 21 (2.1)
CcCL4 22(07)
CCLS 7.8 (4.1)
CXCL10 29(03)
EMMPRIN 819 (40)
Eotaxin 1.2 (0.3)
G-CSF 85 (15)
GM-CSF 2204
HGF 4672 (557)
IL-4 21 (3.0)
IL-5 30(0.2)
IL-6 186 (42)
IL-7 24.(11)
IL-8 4686 (714)
IL-10 52(03)
IL-12 20 (5.8)
IL-13 23 (2.8)
IL-1Ra 28 (3.6)

80 (3.9

17 (2.0)
350 (32)
5637 (414)
ND

196 (11)
93 (6.1)
50 (3.1)
24(0.0)

ND

24 (5.8)
456 (13)
ND

ND

43 (1.6)
ND

66 (15)

ND

ND

29 (20)
ND

48 (3.0)
255 (14)
33 (13)

ND

33 (7.8)
42(03)
ND

16 (09)
26 (1.4)

207 (36)

15 (64)

2836 (474)
32,448 (3927)
18,290 (1907)
1994 (118)
101 (5.8)

151 (11)
25(9.2)

ND

699 (92)
1030 (50)
537 (94)

0.6 (0.6)

145 (15)

6.9 (5.6)
2540 (337)
ND

ND

37,601 (2334)
59,467 (4706)
3261 (251)
128 (10)

219 (10)

23 (79)

3137 (212)
18 (2.0)
2.7 (0.0)
31(1.2)
23(03)
594 (4.9)
09 (0.1)
54 (14)

1.7 (02)
2589 (239)
18 (1.6)
3.0(03)
151 (10)
ND

2578 (316)
50(08)
13 (85)
20 (1.7)
26 3.2)

10 —
0.7 —
09 —
06 —
10 —
09 —
10 —
09 —

11—

06 —
18—
06 —
05 —
08 —
05|

07 —
NA |

NA |

06 —
14—
09 —
12>
10—
10—

09 —
09 —
12—
04

08 —
07 —
08 —
06 —
08 —
06 —
09 —
10 —
08 —
NA L
06 —
10 —
07 —
09 —
09 —

261
09 —
811
581
NA 11
101
11—
301
10—

291
23—

NA 11
NA 11
3411
NA 11
39 11
NA —
NA —
1297 1
NA 11
68 11
05—
641

NA 11

2811
12 —

NA 1
05—
11—
2811
0.7 —
1.7 —>
15—
NA 11
14 —
11—
NA 11
NA L
78 11
12—
NA 11
13>
10 —
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Table 2 Changes in the protein expression levels of ADSCs and BRCAs/pBRCAs in co-culture compared to monoculture (Continued)

INF-a
INF-y
MMP-1
MMP-2
MMP-3
MMP-9
MMP-10
VEGFA

Co-culture of ADSCs and primary BRCAs

bFGF
CccL2
CCL3
CCL4
CCL5
CXCL-9
CXCL-10
EGF
EMMRPIN
Eotaxin
G-CSF
GM-CSF
HGF
IL-1b
IL-2

IL-4

IL-5

IL-6

IL-7

IL-8
IL-10
IL-12
IL-13
IL-15
IL-17
IL-2R
INF-a
INF-y
MMP-1
MMP-2
MMP-3
MMP-9
MMP-10
TNF-a
VEGF

116 (9.7)

1.2 (08)

116,547 (31,612)
121,997 (6892)
5264 (444)

110 (4.2)

292 (17)

56 (84)

8.7 (0.0)
5241

ND

ND
37.(11)
ND

6.5 (0.4)
ND

104 (12)
1.1 (0.6)
ND

6.8 (0.3)
1740 (99)
ND

ND

40 (4.2)
ND

1222 (114)
45 (37)
3224 (150)

90 (65)

172 (16)

4.7 (0.0)
8045 (483)
75,480 (3780)
1218 (51)

94 (7.4)

82 (2.5)

20 (26)

131 (16)

ND
02(0.2)
18 (0.6)
ND
43 (20)
89 (5.3)
39 (26)
ND

60 (9.2)
24,396 (2324)
135

37

136 (9.2)
271 (9.2)
572(9.2)
71(9.2)
1908 (281)
4292
1604 (9.2)
23 (9.2)
398 (9.2)
84 (9.2)

10 (9.2)

105 (9.2)
5102
7768 (1007)
248 (9.2)
17,925 (2899)
62 (9.2)

179 (9.2)
57 (9.2)
363 (9.2)
22

398 (9.2)
950 (9.2)
24 (92)
3606 (509)
17,192 (2131)
757 (145)
873 (107)
542 (70)

18 (9.2)
518 (9.2)

90 (6.3)

2.1 (0.0)
43,964 (2942)
131,537 (2758)
2665 (210)
106 (6.5)

173 (6.6)

49 (5.0)

46 (7.7)
35,559 (1471)
126

48

110 (14)

553 (68)

89 (15)

49 (22)

1949 (122)
65 (14)
1396 (142)
37 (0.7)

1254 (99)

75 (22)

73 (26)

121 (6.3)

6.9 (1.7)
12,121 (409)
251 (32)
34,099 (1586)
56 (4.6)

207 (11)

63 (11)

235 (49)

27

425 (113)
1186 (35)

20 (6.4)
12,850 (1750)
108,563 (4932)
5005 (395)
852 (50)

857 (54)

20 (4.2)

629 (32)

18—
04 |

05—
10 —
06 —

531
16 11
NA 11
NA 11
301
201
136 1
NA 11
1911
581
NA 1
541
07 —
NA —
NA —
301
NA 1
20 11
561
111
261
441
271
49 1
NA 1
471
691
441
16—
14—
411
90 1
111
981
481

11
2442 11
NA 11
6211
12—
441

08 —
14—
10—
13—
08 —
20 —
64 |
07 —
10—
16—
08 —
15—
321
09 —
07 —
12>
13—
15—
10—
19—
09 —
12—
11—
07 —
12—
10—
13—
08 —
361
631
661
10—
16—
11—

12—

Standard deviation is given in brackets

Results from 0 to 9.9 are shown with one decimal point, results for 10 or higher are displayed without decimal points

ND not detectable, NA not applicable
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Co-culture of pBRCA and ADSCs
In co-culture with ADSCs, primary BRCAs experienced a
strong increase in the protein concentration of MMP-2
and MMP-3 (6.3- and 6.6-fold) and a moderate increase in
the level of MMP-1 and HGF (3.6- and 3.2-fold). A strong
decrease was measured in the concentration of CXCL-10
in co-culture compared to pBRCA monoculture (6.4-fold).

ADSCs co-cultured with pBRCAs experienced a strong
increase in the protein concentration of IL-6, EMMPRIN,
CCL2, CXCL-10, MMP-10, TNF-a, MMP-9, INF-q,
Eotaxin, IL-7, GM-CSEF, bFGF, IL-15, VEGE, IL-2R, IL-12,
INF-y, and MMP-3 (4.1-20-fold). A moderate increase
was seen in the levels of CCL5, IL-4, IL-13, and IL-10
(2.6-3.0-fold).

Exclusively in co-culture, ADSCs were exposed to CCL-
3, CCL-4, CXCL-9, G-CSF, IL-1b, IL-2, IL-5, and IL-17.

Migration

The migration through the transwell pores could already be
detected when ADSCs or the different BRCAs were cul-
tured alone; however, when co-cultured, the migration of
MCE-7 BRCAs was significantly increased about 11% (p =
0.04) compared to monoculture. MDA-MB-231 BRCAs
also showed significantly higher migration (+23%) in co-
culture with ADSCs (p = 0.012). Furthermore, ADSCs co-
cultured with MDA-MB-231, ZR-75-30, or EVSA-T
BRCAs showed significantly higher migration (+11%, +15%,
and +12%, respectively) than ADSCs in monoculture (p =
0.035, 0.003, and 0.045, respectively). There were no signifi-
cant differences in the migration of EVSA-T, SK-BR-3, ZR-
75-30, or pBRCAs in co-culture compared to monoculture
(p > 0.05) (Fig. 2).

Invasion

Both ADSCs and the different BRCA cell lines showed
invasive behavior by actively digesting the extracellular
matrix blocking the transwell pores and migrating to the
lower surface of the floor of the transwell inserts. In co-
culture with MDA-MB-231, SK-BR-3, or EVSA-T cells,
ADSCs showed significantly higher invasive properties
(41%, 26%, and 24%, respectively) compared to ADSCs
from monoculture (p =0.014, 0.023, and 0.039, respect-
ively). There were no significant differences in the inva-
sive properties of MCF-7, MDA-MB-231, SK-BR-3,
ZR-75-30, EVSA-T, and pBRCAs in co-culture com-
pared to monoculture (p > 0.05) (Fig. 3).

Angiogenesis

Tube formation could be detected after incubation of
HUVECs with conditioned media from co-cultured
ADSCs-BRCAs as well as from ADSC and BRCA (pri-
mary and cell lines) monocultures. The co-culture of
ADSCs and BRCAs lead to an increase in angiogenic
properties in both ADSCs and BRCAs for all cell lines.
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For ADSCs, a strong increase in angiogenesis could be
seen in co-culture with MCF-7 and primary BRCAs, a
moderate increase in co-culture with MDA-MB-231,
and a slight increase in co-culture with SK-BR-3 and
ZR-75-30. Co-culture with EVSA-T did not change the
induction of angiogenesis. For BRCAs, a strong increase
in the angiogenic properties in co-culture with ADSCs
was found for MCF-7, MDA-MB-231, and SK-BR-3
cells, a moderate increase for ZR-75-30, and a slight
increase for EVSA-T. We could not detect a significant
influence of co-culture on primary BRCAs (Fig. 4).

Discussion

ADSCs and BRCAs secrete a variety of messenger proteins
linked to malignancy-associated properties in their micro-
environment. In vitro co-culture and presumably also co-
localization in vivo exposes the respective cell types to new
proteins or a changed concentration of, for example,
cytokines, growth factors, and metalloproteinases.

The most important change for BRCAs co-cultured
with ADSCs in our experiment was a tremendous increase
in the concentration of CCL2, HGE, IL-6 and -8, and
MMP-1, -2, -3, and -10. Interestingly, ADSCs co-cultured
with BRCA cell lines did not experience a significant
change in the analyzed protein levels; when co-cultured
with primary BRCAs, however, they were also exposed to
significantly increased levels of a range of cytokines,
growth factors, and proteinases secreted by the tumor
cells. This could either be due to the fact that the tested
cancer cell lines might have lost some important features
of cellular interactions with ADSCs throughout their
process of immortalization or be a consequence of the
different media conditions of cell lines and primary cells.
To further elucidate and confirm these different effects we
are currently analyzing more primary cancer cells.

In our current experiment, we determined a robust
upregulation of different C-C motif ligand-chemokines
(CCL), such as CCL2, -7, -20, -26, and -28, and C-X-C
motif ligand-chemokines (CXCL), such as CXCL1, -2,
-3, -6, -10, -12, and -14 on the gene expression level in
co-culture in both cell types. Some of them are well
known for supporting promalignant features, such as
tumor cell proliferation, migration, invasion, or angio-
genesis. They promote tumor growth and facilitate me-
tastasis, and high serum levels have been associated with
a poor prognosis [15-19]. CCL2 has been suggested to
promote cancer cell survival, regulate CAF-carcinoma
cell interactions and fuel late-stage carcinoma progres-
sion. It is known as a major chemotactic factor secreted
by BRCAs, CAFs, and a special leukocyte/monocyte
subpopulation, tumor-associated macrophages (TAMs),
and has been shown to significantly increase the migra-
tion of ADSCs towards the tumor or metastatic site in a
dose-dependent manner [7, 20]. Our data show that
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ADSCs are a robust source of CCL2 secretion in mono-
culture and also in co-culture with BRCAs. BRCA cell
lines only produce minor amounts of CCL2 while, in
contrast, the primary BRCA population secretes an
extraordinarily high amount of CCL2. In our experi-
ment, ADSCs led to a strong increase in the overall
CCL2 levels in co-culture with both primary BRCAs and
BRCA cell lines. In line with this, we found a signifi-
cantly increased migration of co-cultured ADSCs to-
wards EVSA-T, MDA-MB-231, and ZR75-30 BRCAs.

Furthermore, in vitro co-culture with ADSCs also sig-
nificantly increased the migration of MCF-7 and MDA-
MB-231 BRCAs, which is consistent with previous
results [10]. In tumors, chemokines such as CCL2, CCL5,
IL-8, and CXCL-12 also chemoattract TAMs to the tumor
site. There, high numbers of TAMs are correlated with
poor prognosis and disease progression [21]. TAMs pro-
duce a multitude of tumor-promoting growth factors, as
well as MMPs and urokinase-type plasminogen activator.
They promote tumor growth and metastasis by stimulating
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angiogenesis, ECM degradation, and tumor cell prolifera-
tion, and inhibit the antitumor immune response [6].
CCL2 and CCL5 were also shown to stimulate the secre-
tion of proteases by TAMs. Thus, by secreting remarkable
amounts of CCL2 and CCL5, ADSCs that have been re-
cruited into the tumor stroma could promote tumor pro-
gression by further increasing the number of TAMs in the
tumor microenvironment.

Only primary BRCAs and, at very low levels, MDA-
MB-231 secreted HGF in our experiment. In co-culture
with ADSCs, however, all BRCAs were exposed to very
high levels of HGF, due to the HGF secretion of ADSCs.
As a stroma-derived factor, HGF has been shown to be
involved in cancer progression, especially in EMT, inva-
sion, and metastasis [6, 22]. Rowan et al. found ADSCs
to increase micrometastasis in an in vivo MDA-MB-231
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Fig. 4 Induction of angiogenesis. Representative pictures of tube
formation assay wells for all conditions (magnification x 20). Tube
formation could be detected after incubation of HUVECs with
conditioned media from co-cultured ADSCs-BRCAs as well as from
ADSC and BRCA (primary and cell lines) monoculture. The co-culture
of ADSCs and BRCAs led to an increase in angiogenic properties in
both ADSCs and BRCASs for all cell lines. For ADSCs, a strong increase
in angiogenesis could be seen in co-culture with MCF-7 and primary
BRCAs, a moderate increase in co-culture with MDA-MB-231, and a
slight increase in co-culture with SK-BR-3 and ZR-75-30. Co-culture
with EVSA-T did not change the induction of angiogenesis. For
BRCAs, a strong increase in the angiogenic properties in co-culture
with ADSCs was found for MCF-7, MDA-MB-231, and SK-BR-3 cells, a
moderate increase for ZR-75-30, and slight increase for EVSA-T. We
could not detect a significant influence of co-culture on primary
BRCAs. ADSC adipose-derived mesenchymal stem cell

mouse tumor model [20]. In our experiment, HGF
secretion by ADSCs was high, but not further increased
in co-culture. We could not detect a significant increase
in the in vitro invasive properties of the different tumor
cell lines or the primary BRCAs in co-culture, despite
the significantly higher HGF concentration. ADSCs,
however, showed significantly increased invasive capaci-
ties in co-culture with EVSA-T, MDA-MB-231, and SK-
BR-3. This might in part be a result of the increased
MMP secretion in co-culture. ADSCs secrete high levels
of various MMPs, such as MMP-1, -2, -3, -9, and -10.
Interestingly, this has also been shown for CAFs in the
tumor microenvironment [6]. MMPs not only degrade
extracellular matrix and thereby enable invasion, they
also facilitate neoangiogenesis and thus further support
tumor growth. Altered MMP expression has already
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been linked to poor disease prognosis in different human
cancers and enhanced cancer cell invasion [23, 24]. In our
study, MMP-2 showed an absolute increase in its protein
concentration in the conditioned medium of all BRCA-
ADSC co-cultures, above the summarized levels of the re-
spective monocultures. This fits with the recent finding
that MMP-2 in breast cancer metastasis is predominantly
expressed in the tumor stroma, and that MMP-2 plays an
important role in breast cancer tumor growth, progres-
sion, and metastasis [25]. Furthermore, stromal MMP-2
expression has been closely associated with different clini-
copathologic parameters and overall survival of breast
cancer patients [26]. Thus, co-localization of ADSCs and
BRCAs might increase BRCA malignant progression in
vivo by increasing the overall level of MMP-2.

We also determined a significantly upregulated WISP-1
gene expression (21-33-fold) in co-cultured primary
BRCAs and ADSCs, as well as in ADSCs co-cultured with
MCE-7. The role of WISP-1 gene expression in breast
cancer and its prognostic value has been discussed contro-
versially [27, 28]. The WISP-1 gene encodes the Wnt-
induced secreted protein-1, which is associated with the
extracellular matrix and interacts with cellular integrins. It
has been shown to enhance tumor cell migration by in-
creasing MMP-2 expression, to inhibit antitumor immun-
ity by blocking the response of immune cells to IL-12, and
to act antiapoptotically by inducing or inhibiting different
signaling pathways [29-31]. In line with this, we found an
absolute increase in MMP-2 expression in all co-cultures,
and a significantly increased migration in co-cultured
MCE-7 and MDA-MB-231 BRCAs. The upregulated
WISP-1 gene expression in co-localized BRCAs and
ADSCs—as found in our study—could lead to a poorer
prognosis in vivo, as has already been shown in different
tumor types [29, 30, 32].

Additionally, ADSCs and primary BRCAs secreted
remarkable amounts of IL-6 and IL-8, while all BRCA
cell lines either do not express IL-6 or IL-8, or only in
minor amounts. Co-culture with ADSCs thus exposes
BRCAs to very high or much higher amounts of IL-6/IL-
8 compared to the respective monoculture. IL-6 has
been reported to be a proliferative factor for diverse
tumor types in vivo [33-35]. Elevated serum levels of IL-
6 have been associated with key features of malignancy,
cancer progression, and a poor clinical outcome in dif-
ferent types of cancers [31-37]. IL-6 has furthermore
been demonstrated on the leading edge of human breast
cancer specimens in vivo and has been shown to correl-
ate positively with advanced tumor stage. Secretion of
IL-6 by BRCAs can also induce IL-6 expression in the
surrounding cells, presumably by an IL-6/STAT3
autocrine/paracrine feed-forward loop. Through a JAK-
dependent signaling cascade, IL-6 induces the phosphor-
ylation of STAT3-tyrosine. This seems to be a major
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reason for the induction of metastasis, and the attraction
of tumor-associated suppressive myeloid cells, endothe-
lial, and stromal cells into the tumor, seen with increas-
ing IL-6 levels in human breast cancer [36]. Thus,
increasing the overall levels of IL-6 in the tumor
microenvironment by adding ADSCs might have pro-
malignant consequences in vivo.

IL-8 mediates its biological effects through two cell-
surface G protein-coupled receptors, termed CXCR1 and
CXCR?2, found on cancers cells, endothelial cells, neutro-
phils, and TAMs. IL-8 binding to the receptor leads to the
regulation of the activity of multiple transcription factors,
modulates protein translation, and affects the organization
of the cellular cytoskeleton by posttranslational regulation.
IL-8 has been shown to support proliferation and
survival/chemoresistance of cancer cells, to induce the in-
filtration of the tumor by neutrophils, and to stimulate the
release of growth factors by TAMs. Furthermore, by
stimulating endothelial cell proliferation, survival, chemo-
taxis, and migration, IL-8 stimulates angiogenesis and
thereby supplies nutrition, an important component of
tumor growth [37]. High IL-8 levels have been associated
with a more advanced tumor stage, an accelerated clinical
course with reduced postrelapse survival, and increased
lymph node involvement in breast cancer patients [38]. In
line with this, it has been shown previously that co-
injection of MDA-MB231 and ADSCs leads to signifi-
cantly higher tumor volumes and increased vessel
densities compared to the injection of MDA-MB-231
alone, presumably through higher IL-8 and VEGF
levels [10, 12, 20]. We could not detect significant
effects of BRCA-ADSC co-culture on cellular prolifer-
ation in co-cultures of ADSCs or BRCAs. However, we
found an increased angiogenesis in all co-cultured BRCAs
and almost all ADSC co-cultures, and an upregulated IL-8
gene expression in MDA-MB-231-ADSC co-cultures. In
addition, co-culture of ADSCs and primary BRCAs showed
a strong total increase in IL-8 protein concentration, and a
corresponding induction of angiogenesis. Accordingly,
ADSCs could also promote tumor growth in vivo by
secreting IL-8 and thereby supporting angiogenesis.

We also found a robust upregulation of TIMP-4 gene
expression in co-cultured primary BRCAs. The TIMP-4
gene encodes for the tissue inhibitor of metalloproteinase-
4. It inhibits BRCA apoptosis in vitro and in vivo and has
also been linked to protumorigenic effects [39]. Increased
levels of TIMP-4 in BRCA tumors have been associated
with tumor progression of ductal carcinoma in situ, and a
shorter disease-free survival in BRCA patients, especially
in estrogen receptor (ER)-negative tumors [40].

TNEFSF10, encoding for TRAIL (TNF-related apoptosis-
inducing ligand), is significantly downregulated in co-
culture of pBRCAs and ADSCs in both cell types. TRAIL
binding to its receptors, TRAIL-R1 and TRAIL-R2, can
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lead to apoptosis by activation of caspase-8 and a down-
stream stimulation of caspase-3/7. Furthermore, TRAIL
seems to be linked to the antitumor immune response
mediated by natural killer cells and IFN-y [41]. Decreased
TRAIL activity has been associated with increased tumor
growth and metastasis. In contrast to our results of the
primary BRCAs, we found TNFSF-10 to be remarkably
upregulated in tumor and stem cells in co-cultures of
ADSCs with SK-BR-3 and MCF-7. This might be
explained by the fact that many BRCA cell lines, such as
SK-BR-3 and MCE-7, are resistant to TRAIL-induced
apoptosis, closely connected with their hormonal receptor
status. Triple-negative cell lines, such as MDA-MB-231,
seem to be more sensitive than HER-2/neu or ER-positive
cell lines. TRAIL sensitivity and actions are influenced by
multiple factors, such as changes in the expression of
interfering genes and receptors, regulating proteins, or
medication [42-44]. Thus, there is no simple answer to
the consequences of TNFSF10 up- or downregulation.
Importantly, there are also multiple alternative pathways
of cellular apoptosis.

Additionally, gene expression of DARC (decoy chemo-
kine receptor) was downregulated in primary BRCAs co-
cultured with ADSCs (2.8-fold). DARC is known to have
antitumorigenic effects, such as decreasing tumor growth,
angiogenesis, and metastasis, and increasing necrosis, by
binding and sequestering protumorigenic, and especially
proangiogenic chemokines. Furthermore, it is thought to
decrease CCL2 and MMP-9 expression levels. Accord-
ingly, low levels of DARC have been associated with poor
prognosis in breast cancer [45].

To summarize, the in vitro co-culture of ADSCs and
breast cancers cells leads to considerable changes in
multiple key parameters of malignancy. This points
towards a potentially increased oncological risk in vivo,
which should not be neglected when considering a clinical
use of cell-assisted lipoaspirates in breast cancer patients.

Conclusions
In this study we focused on the secretome of ADSCs and
BRCAs, and how the indirect co-localization of both im-
pacts their behavior. With this, we were able to analyze the
respective changes in cellular proliferation, gene expres-
sion, migration, and invasion separately for each cell type.
Our results show that ADSCs significantly affect multiple
malignant features of BRCAs in vitro, such as gene expres-
sion, protein secretion, migration, and angiogenesis.

Thereby, ADSCs may strongly increase the risk of
breast cancer tumor growth and metastasis in vivo if ad-
ministered to the vicinity of premalignant or malignant
mammary cells.

However, it is important to say that in vitro results can
only give a hint towards the more complex situation in
vivo; e.g., an in vitro system cannot show the important
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antitumor immune response and its inhibition by TAMs.
Furthermore, the impact of direct cell-to-cell contact
also needs to be elucidated. Thus, to get the necessary
further insight, additional in vitro and vivo experiments
need to be performed.

Nonetheless, already our current results need to fuel a
necessary discussion about the safety of ADSC-based
therapies, especially in the breast. Informed consent of
patients to such procedures will need to include an in-
creased risk of developing breast cancer, having a higher
risk of relapse or a faster growth and dissemination of a
preexisting breast cancer. Additionally, it seems crucial
to rigorously screen all patients for premalignant or
residual lesions prior to the injection of fat, stem cell-
augmented fat, or isolated ADSCs in the breast or adja-
cent tissues, to avoid a potential co-localization of
ADSCs and BRCAs.

Additional files

Additional file 1: Figure S1. Flow cytometry of pooled ADSCs from
donors 1 to 6. Black lines show isotype controls, red lines show pooled
ADSCs. ADSCs were positive for CD13, CD29, CD44, CD63, CD73, CD90,
CD105, and CD166. ADSCs were negative for CD11b, CD31, CD34, CD45,
CD106, and CD235a. (JPG 155 kb)

Additional file 2: Figure S2. Representative light microscope pictures
of adipogenically and osteogenically differentiated ADSCs.

Magnification x 10. (a) Intracellular lipid droplets stained by oil red
method as a marker of adipogenic differentiation on day 14 of
differentiation. (b) Extracellular calcium deposition stained with alizarin
red as a marker of osteogenic differentiation on day 14 of differentiation.
Undifferentiated controls are not shown. (JPG 385 kb)
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