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cell populations which engraft most efficiently.
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Background: The delivery of alternative myogenic cell sources to enhance the efficacy of minced muscle grafts
(MG) for the treatment of volumetric muscle loss (VML) injuries is a promising strategy to overcome the
demand on muscle-derived donor tissue that currently limits the translation of this therapy.

Methods: Using a rat model of VML, bone marrow mononuclear cells (BMNCs) were evaluated for their ability to directly
contribute to de novo muscle fiber regeneration by transplanting MG in a collagen carrier at a dose of 50% of the VML
injury both with and without concomitant delivery of 5 million BMNCs derived via density gradient centrifugation from
the bone marrow of a syngeneic green fluorescent protein (GFP)* donor.

Results: Histological, molecular, and functional analyses revealed that BMNCs can engraft with co-delivered MG
and contribute to nascent myofiber, but do so at a low magnitude without resulting in significant changes to
transcription of key myogenic genes or gains in whole muscle force generation relative to MG alone.

Conclusion: As such, co-delivery of BMNCs with MG is a promising treatment paradigm to VML that will
require further investigation to identify the phenotype and therapeutic dosing of the bone marrow-derived
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Background

Volumetric muscle loss (VML) is a condition character-
ized by the loss of tissue beyond the endogenous regen-
erative capacity of the affected musculature and the
associated persistent functional deficit for which there is
no current standard of care [1]. Transplantation of
minced muscle grafts (MG) is a potential therapy for
some VML indications that has been shown to be rich in
pax7" satellite cells and effective in promoting meaning-
ful de novo fiber regeneration at doses >50% of the tis-
sue lost due to injury [2-4]. Furthermore, MG falls
under the US Food & Drug Administration’s definition
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of a minimally manipulated tissue, and thus represents a
near-term solution. Clinically, the demands on muscle
autograft become a limiting factor for cases presenting
large or multiple injuries. While pax7™ satellite cells are
an absolute requirement for de novo myofiber regener-
ation [5], alternative cell types are capable of contribut-
ing to nascent myofibers in the presence of satellite cells
[6-9]. As such, delivery of nonmuscle-derived autolo-
gous stem cells shows promise as an adjunct therapy to
enhance the regenerative capacity of MG, thereby dimin-
ishing sourcing limitations and raising the possibility of
treating larger VML injuries.

Bone marrow is a rich source of stem cells and has a
well-developed history in transplant medicine. Bone
marrow-derived cells are expected to promote healing
by multiple effector functions including the production
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of growth factors, pro-inflammatory cytokines, and anti-
inflammatory cytokines which stimulate cell proliferation,
inhibit apoptosis, recruit cells, reduce fibrosis, and induce
angiogenesis [10, 11]. Moreover, unfractionated bone
marrow cells have been shown to participate in muscle
regeneration in a recoverable cardiotoxin-induced in-
jury model [12], and to enhance minced graft-mediated
myogenesis in coculture implants in the peritoneal cavity
of mice, quadriceps in the rat, and monkey arm VML
injuries [13—16]. While these results are promising, fur-
ther fractionation of bone marrow cells to isolate the
mononuclear fraction, consisting of B cells (~50%),
monocytes/dendritic cells (~5%), other CD45" cells (e.g.,
CD34"CD105™ hematopoeitic stem cells) and a variety of
CD45~ cells (e.g, CD45"CD105" mesenchymal stem
cells), is expected to result in greater myogenic efficacy
when delivered in combination with a MG therapy [17].
This expectation is based on the fact that delivery of
the bone marrow mononuclear cell (BMNC) fraction
enriches the therapy for the resident stem cell popula-
tions of the bone marrow and removes red blood cells
and platelets which might deleteriously impact the effi-
cacy of said stem cells [18]. Furthermore, BMNCs have
also been shown to improve skeletal muscle function,
as case reports have highlighted improved muscle function
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following BMNC transplantation in children with
Duchenne muscular dystrophy [19, 20]. It is for these rea-
sons, and the fact that separation of the bone marrow into
various cell fractions is clinically mature and relatively
simple to perform, that we sought to evaluate BMNCs as
an adjunct therapy to MG.

In this study, we used a rat model of VML to test the
hypothesis that BMNCs directly contribute to de novo
muscle fiber regeneration by transplanting MG in a col-
lagen carrier at a dose of 50% of the VML injury both
with and without concomitant delivery of 5 million
BMNCs derived via density gradient centrifugation from
the bone marrow of a syngeneic green fluorescent pro-
tein (GFP) expressing donor (Fig. 1). Biochemical and
immunofluorescence analyses were performed at 2 and
8 weeks with in vivo assessment of muscle function at
8 weeks.

Materials and methods

VML model

Under anesthesia (1-3% isoflurane) and in sterile condi-
tions, a lateral incision was made through the skin
lengthwise along the lateral aspect of the tibialis anterior
(TA) muscle of the left hind limb of adult male Lewis
rats (Harlan Laboratories, Indianapolis, IN, USA). After
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Fig. 1 Using a rat model of VML, we tested the hypothesis that bone marrow mononuclear cells (BMNCs) directly contribute to de novo muscle
fiber regeneration, by transplanting MG in a collagen carrier at a dose of 50% of the VML injury both with and without concomitant delivery of 5
million BMNCs derived via density gradient centrifugation from the bone marrow of a syngeneic greens fluorescent protein (GFP)* donor. RBC red
blood cell
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reflecting the skin and fascia from the anterior surface,
the TA muscle and underlying extensor digitorum
longus (EDL) muscle were separated by blunt dissection.
A metal plate was inserted between the muscles and a
6-mm biopsy punch was used to excise a ~20% vol-
ume defect, and MG constructs were delivered acutely
to the VML wound bed. The wound was closed in
layers by suturing (fascia) and stapling (skin).

BMNC isolation

Bone marrow was flushed from the intramedullary space
of the long bones from transgenic GFP-expressing Lewis
rats (Lew-Tg(CAG-EGFP), Rat Resource & Research
Center, Columbia, MO, USA), and diluted to a total
volume of 4 mL with Hank’s Balanced Salt Solution.
BMNCs were isolated from the diluted bone marrow as-
pirate on a Ficoll (3 mL) density gradient (Ficoll-Paque™
PLUS, 1.077 g/mL; GE Healthcare, Buckinghamshire,
UK) after unbraked centrifugation (400 g) at room
temperature for 40 min. After washing twice, viable
BMNC yield was assessed via Trypan Blue exclusion and
automated cell counter (Countess™, Invitrogen, Carlsbad,
CA, USA).

Construct preparation

MG were derived from the TA muscle of a syngeneic
wild-type Lewis rat. The excised muscle tissue was
minced into ~1 mm?® pieces. After mincing, MG at a
dose equal to approximately 50% of the frank loss of tis-
sue was mixed into a collagen (400 pL, 3 mg/mL) solu-
tion with or without 5 million BMNCs (dose based on
single donor BMNC yield) and cast within the wells of a
48-well cell culture plate. The collagen constructs were
then allowed to crosslink at 37 °C for 30 min, after
which time the constructs were transplanted to the VML
defect.

In vivo functional assessments

With the animal in a supine position, the knee of the rat
was secured in place at 90° by a clamp apparatus. The
foot was strapped to a boot-like foot pedal with the
ankle at a 90° angle connected to a servomotor con-
trolled force-displacement transducer (Aurora Scientific,
Aurora, ON, USA). The peroneal nerve was stimulated
using percutaneous needle electrodes placed around the
peroneal nerve. Optimal voltage was determined using a
series of twitch and tetanic contractions. Contractile
function of the TA muscle was assessed by first severing
the distal tendon of the synergist EDL muscle and meas-
uring peak isometric torque as a function of stimulation
frequency (400 ms train; 0.1 ms pulse width; 1-10 V;
10-200 Hz). The servomotor input and force and dis-
placement transducer outputs are controlled and ac-
quired, respectively, using a PC equipped with a data
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acquisition board (National Instruments) and custom
designed Lab View (National Instruments) based soft-
ware program.

Transcriptional analysis

A portion of the defect region of the VML injury was
collected at 2 and 8 weeks post-injury and immediately
snap frozen in liquid nitrogen. Reverse transcription
quantitative polymerase chain reaction (RT-qPCR) was
used to quantify gene expression within the VML defect
region. RNA was isolated from the homogenized tissue
using the TRIzol method. The RNA samples were re-
verse transcribed into ¢cDNA using a QuantiTech Rev
Transcription kit (Qiagen, Hilden, Germany) according
to the manufacturer’s protocol. Gene expression for tar-
get markers was determined using custom-designed
primers for embryonic myosin heavy chain (eMHC,
forward 5'-TGGAGGACCAAATATGAGACG-3’; re-
verse 5 -CACCATCAAGTCCTCCACCT-3") and myo-
genin (forward 5'-CTACAGGCCTTGCTCAGCTC-3';
reverse 5 -GTTGGGACCAAACTCCAGTG-3") with
RT-qPCR amplification performed in the presence of
SYBR Green (Bio-Rad Laboratories, Hercules, CA,
USA). The raw fluorescence data were processed using
LinRegPCR (v12.11; http://www.hartfaalcentrum.nl) with
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
serving as the endogenous control. Expression (n=4-6
per group) of each target gene was calculated relative to
samples from the contralateral limb.

Immunofluorescence analysis

A portion of the neotissue from the defect region was
embedded in a talcum-based gel, frozen in 2-
methylbutane, and supercooled in liquid nitrogen. Cryo-
sections (8 pum) were prepared and probed for laminin
(1:100; catalog ab34360; Abcam) and GFP (1:100; catalog
ab6673; Abcam) and detected with fluorescent anti-
bodies (1:200; catalog A11055 and A21207; Invitrogen)
to assess direct myogenic contribution of BMNCs.
Qualitative assessments were made by observing three
sections (separated by no less than 160 pm) from five
muscles per group.

Statistical analysis

Data are reported as the mean + SEM with statistically
significant differences defined as p < 0.05 using two-way
analysis of variance (ANOVA) with Tukey’s post-hoc
tests for multiple comparisons. Sample sizes for gene ex-
pression and in vivo neuromuscular strength assess-
ments are 7 = 4—6 per group and time point.

Results
A BMNC subpopulation definitively contributed to muscle
fiber regeneration as evidenced by immunofluorescence
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staining of GFP" muscle fibers in the defect regions of
VML-injured wild-type hosts (Fig. 2a). The overall direct
contribution to myofiber regeneration, however, was low
and localized to small regions within the broader defect
area which was otherwise filled with what are assumed to
be MG derived neofibers and extracellular matrix based on
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Fig. 2 Bone marrow mononuclear cells (BMNCs) definitively
contribute to de novo muscle fiber regeneration, but do not
promote transcriptional or functional gains beyond those provided
by minced muscle graft (MG). a Representative hematoxylin and eosin
sections and immunofluorescence staining of green fluorescent
protein (GFP)* muscle fibers in the defect regions of 50% MG + BMNC
(right) and 50% MG treated VML injuries (left) in wild-type hosts at

8 weeks post-injury. b Transcription of myogenesis markers, embryonic
myosin heavy chain (eMHC) and myogenin, was not significantly
different between BMNC supplemented and unsupplemented MG
repair groups for either of the time points investigated (p > 0.05).

¢ BMNC contribution to myofiber regeneration did not result in a
change in in vivo isometric tetanic force generation of treated TA
muscles at 8 weeks post-injury for any of the flexion angles tested.
Values are shown as means + SEM. *p < 0.05, 50% MG and 50% MG +
BMNC groups versus contralateral limb
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prior observations [3]. This observation was supported on
a transcriptional level, as no significant difference was mea-
sured between the 50% MG and 50% MG with BMNC
groups for the expression of the genes comprising our
myogenic panel (eMHC, myogenin) at either of the time
points investigated (Fig. 2b). Furthermore, BMNC contri-
bution to muscle fiber regeneration does not result in an
appreciable increase in the force generation of VML-
injured muscle. There was no observed difference in peak
isometric torque between BMNC supplemented and MG
repair groups at the 8-week time point (Fig. 2c). Force-
frequency curves for the two groups were statistically simi-
lar across all stimulation frequencies and joint angles with
similar peak isometric torque deficits of 44.6 + 6.1% (MQ)
and 45.6 +6.7% (MG + BMMC) relative to the unaffected
contralateral control limbs.

Discussion

While the initial goal of identifying an autologous cell
source requiring minimal manipulation prior to usage as
an adjunct therapy to enhance the therapeutic effect of
MG on VML was not achieved, the findings of this study
provide strong justification for further pursuit of a bone
marrow-derived stem cell source for supplementation of
MG therapy to VML. Some portion of the heteroge-
neous BMNC population delivered herein contributed to
myofiber regeneration in agreement with previous find-
ings [12]. What was not determined, however, was which
subgroups of the greater BMNC population are respon-
sible for the observed engraftment. Studies by Sherwood
et al. [8] and Polesskaya et al. [9] independently evalu-
ated the myogenic capacity of these bone marrow-
derived cell types and produced conflicting reports with
respect to capacity for myogenic differentiation of the
non-hematopoietic (CD457) and hematopoietic (CD45")
stem cell populations. Given these reports, the most pru-
dent path forward for an autologous cellular supplement
to MG would be to evaluate serial depletions of the
BMNC population. Furthermore, fractionation would
allow the assessment of both of these myogenic stem cell
populations without the added complication of the im-
mune cell populations which might drive a fibrotic ra-
ther than myogenic response [21, 22]. While not as clear
cut as using freshly isolated BMNCs from a regulatory
standpoint, the approach of using a fractionated autolo-
gous BMNC subpopulation is promising due to the
maturity of immunomagentic separation as a clinical
bioprocess [23-28].

A second hurdle to efficacy for this approach may res-
ide in the delivery of a clinically impactful dose of
BMNC-derived stem cells. This study focused on a sin-
gle therapeutic dose of BMNCs (5 million cells per
construct) freshly isolated via density gradient centrifu-
gation, which did not result in an improvement in the
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functional capacity of the treated TA muscle relative to
MG treatment alone. This BMNC dose and isolation
methodology were chosen based on harvesting limita-
tions of a single donor and the desire to utilize standard
point of-care methodologies with a emphasis on clinical
practicability. This dose, however, may vary in stem cell
composition due to heterogeneity of both cell phenotype
and composition. Furthermore, there is conflicting litera-
ture about the impact of density gradient centrifugation,
and particularly the use of Ficoll as a medium, as an
isolation methodology on the yield and potency of the
resultant BMNC population [17, 29]. As such, these
factors represent opportunities for optimization once
depletion studies have elicited a candidate BMNC sub-
population for enrichment. It is possible that the optimal
dose of BMNC-derived stem cells necessary to achieve
meaningful gains in functional capacity may be super-
physiological. This would necessitate an efficient isola-
tion and ex vivo expansion methodologies to maximize
yield of the effector stem cell populations or require a
shift from an autologous to an allogenic approach. Both
approaches face their own challenges, as ex vivo expan-
sion raises additional manufacturing and regulatory chal-
lenges, while allogenic sourcing raises the possibility of
originating graft-versus-host disease. As such, translation
of either of these approaches would require further
efforts to ensure their safety and feasibility. The benefit
of a successful cellular supplement to MG therapy for
VML would certainly justify further research into these
approaches.

Conclusions

MG represents a promising solution to VML, a clinical
problem with no current standard of care. MG, however,
is reliant on sufficient autologous tissue to source the
grafts. If this hurdle to clinical practice is to be over-
come, supplemental therapies such as the concomitant
delivery of BMNCs to the affected musculature will
become necessary to achieve restoration of functional
muscle tissue. While the results reported herein remain
suboptimal, they present a promising treatment para-
digm that is ripe for investigation and further develop-
ment. Success of this paradigm will likely require
meticulous lineage depletion studies to identify which
BMNC subpopulations to include in an adjunct therapy
and at what relative magnitude with respect to a given
therapeutic MG dose. If this success is achieved, it is
likely to have a significant clinical impact on the treat-
ment of traumatic orthopedic wounds.
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