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Abstract

Background: Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor
patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and
function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This study discusses
the repair effect and mechanism of MSCs overexpressing miR-21 on chemotherapy-induced POF.

Methods: Rat MSCs and granulosa cells (GCs) were isolated in vitro. MSCs were transfected with miR-21 lentiviral
vector (LV-miR-21) to obtain MSCs stably expressing miR-21 (miR-21-MSCs). The microenvironment of an ovary
receiving chemotherapy was mimicked by adding phosphamide mustard (PM) into the cellular culture medium. The
apoptosis rate and the mRNA and protein expression of target genes PTEN and PDCD4 were detected in MSCs.
Apoptosis was induced by adding PM into the culture medium for GCs, which were cocultured with miR-21-MSCs. The
apoptosis rate and the mRNA and protein expression of PTEN and PDCD4 were detected. The chemotherapy-induced
POF model was built into rats by intraperitoneal cyclophosphamide injection. miR-21-MSCs were transplanted into the
bilateral ovary. The rats were sacrificed at 15, 30, 45, and 60 days after the last injection. The ovarian weights, follicle
count, estrous cycle, and sex hormone levels (estradiol (E2) and follicle-stimulating hormone (FSH)) were detected.
Apoptosis of GCs was determined by TUNEL assay. The miR-21 and mRNA and protein expression of PTEN and PDCD4
were determined.

Results: The apoptosis decreased in MSCs transfected with miR-21. The mRNA and protein expression of target genes
PTEN and PDCD4 was downregulated. GCs cocultured with miR-21-MSCs showed a decreased apoptosis, an upregulation
of miR-21, and a downregulation of PTEN and PDCD4. Following the injection of miR-21-MSCs, the ovarian weight and
follicle counts increased; E; levels increased while FSH levels decreased, with less severe apoptosis of GCs. The miR-21
expression in the ovaries was upregulated, while the mRNA expression and protein expression of PTEN and PDCD4 were
downregulated.

Conclusions: Overexpression of miR-21 in MSCs promoted efficacy against chemotherapy-induced POF and its
improvement of the repair effect was related to the inhibition of GC apoptosis by targeting PTEN and PDCDA4.
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Background

Premature ovarian failure (POF) is a gynecological endo-
crine disease with a decrease in estrogen levels and go-
nadotropin, which manifests as irregular menstruation,
amenorrhoea, infertility, and perimenopause syndrome af-
fecting women before the age of 40 years. This condition
can bring about an adverse impact on reproductive, psy-
chological, and physical health [1]. The main causes of
POF include genetics, immunity, and iatrogenic (chemo-
therapy and radiotherapy) and other idiopathic factors [2].
With the research and development and application of
chemotherapeutic agents, the survival of tumor patients
has been increasing. Correspondingly, the incidence of
chemotherapy-induced POF is growing as well, and this
condition is a challenge for both young cancer patients
and physicians [3]. However, no radical cure is yet avail-
able for reversing the chemotherapy-induced damage to
the ovarian structure and function.

Mesenchymal stem cells (MSCs) are somatic stem cells
with multilineage differentiation potential and are consid-
ered the most promising seeding cells for stem cell therapy
due to the ease of isolation and culture and amplification
[4]. Reports show that bone marrow-derived MSCs can re-
pair spinal, myocardial, and skin damage [5, 6]. Our prelim-
inary research indicates that bone marrow-derived MSCs
could inhibit the apoptosis of granulosa cells (GCs) and par-
tially repair the chemotherapy-induced damage to the ovar-
ian structure and function [7]. However, some transplanted
bone marrow MSCs died and the repair effect was not so
satisfactory.

MicroRNAs (miRNAs) are noncoding single-stranded
RNAs shorter than 22 nucleotides in eukaryotes. They can
bind to the base sequences of the 3’-untranslated region
(UTR) of the target mRNA, regulating the cleavage or
translation of target mRNA. miRNAs play regulatory roles
in a series of physiological and pathological processes such
as cell proliferation, apoptosis, differentiation, and patho-
gen infection [8]. miR-21 is among the earliest discovered
miRNAs in mammals. Study shows that miR-21 is related
to apoptotic regulation in many cells [9-11]. miR-21 is also
regulatory for the apoptosis of GCs and follicular develop-
ment [12]. However, few reports have been concerned with
whether miR-21 enhances the repair effect of MSCs in
chemotherapy-induced POF.

In this study, we constructed the miR-21 lentiviral
vector to transfect the MSCs; the resulting MSCs
were denoted as miR-21-MSCs. We discuss the effect
of miR-21 overexpression on the apoptosis of MSCs
in the chemotherapy-induced ovarian microenviron-
ment. The miR-21-MSCs were cocultured with the
GCs whose apoptosis was induced by a chemothera-
peutic agent. The apoptosis rate was measured. The
miR-21-MSCs were transplanted to the ovaries of a
rat model in vitro. The repair effect of MSCs
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overexpressing miR-21 in chemotherapy-induced POF
and the repair mechanism are discussed.

Methods

Laboratory animals

This study was performed in strict accordance with the
recommendations of the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.
The protocol was approved by the Committee on the
Ethics of Animal Experiments of Southern Medical Uni-
versity (permit number L2015035). All surgery was per-
formed under sodium pentobarbital anesthesia, and
every effort was made to minimize suffering.

Female clean-grade Wistar rats weighing 180-200 g were
provided by the laboratory animal center of Southern Med-
ical University. The rats were reared at room temperature
of 23+2 °C, humidity of 45-55%, and light duration of
12 h. The rats were allowed free access to water and accli-
matized for 3-5 days. The vaginal smears were prepared
before the formal experiment, and rats with a normal es-
trous cycle were included. The baseline levels of the sex
hormones estradiol (E,) and follicle-stimulating hormone
(FSH) were determined by collecting 1 ml of blood from
the tail vein.

Isolation and in vitro culture of bone marrow MSCs

Bone marrow MSCs were isolated by density gradient
centrifugation. The rats were anesthetized to harvest the
tibia and femur, which were made into a single-cell sus-
pension. The suspension was loaded into a centrifuge
tube containing Percoll solution (density 1.083). Caution
was taken not to mix the two liquids together, and the
volume ratio of the two liquids was 1:1. The cells were
centrifuged at 2500 rpm for 20 min. The milky white
intermediate layer of mononuclear cells was collected,
washed with phosphate-buffered saline (PBS) twice and
suspended in complete culture medium (DMEM/F12
containing 10% fetal bovine serum). The cells were inoc-
ulated to the plate at 1 x 10° cells/ml, and MSCs of the
second to fourth generation were harvested for further
experiments. The cellular expressions of CD29, CD34,
CD44, and CD45 were detected using a flow cytometer.

Isolation and in vitro culture of GCs

Pregnant mare serum gonadotropin (PMSG) was
injected subcutaneously into female Wistar rats aged 3—
4 weeks at a dose of 60 IU/rat. The rats were sacrificed
48 h later and the ovaries were harvested. The mature
follicles on the surface were pierced with a syringe under
the dissecting microscope so that the GCs were released
into the culture medium and then isolated. GCs were
washed with PBS twice and suspended in culture
medium for 24 h.
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Construction of the miR-21 lentiviral vector (LV-miR-21)
The miR-21 lentiviral vector was constructed. The lenti-
viral expression vector pLVX-shRNA2 was provided by
Clontech (USA; vector no. VT1457). Polymerase chain
reaction (PCR) was performed using DNA containing
the rno-miR-21-5p sequence as the template. The ampli-
fication products were isolated and purified using 1%
agarose gel electrophoresis. The target fragments were
retrieved and double digested with BamHI and EcoRIL
After further purification, the rno-miR-21-5p fragment
was obtained. Empty pLVX-shRNA2 vector was double
digested with BamHI and EcoRI. The linearized vector
was retrieved and ligated to the purified PCR products
in the presence of T4DNA ligase at 16 °C overnight. The
E.coli DH5a competent cells were transformed with the
ligation product and evenly applied to the LB plate con-
taining ampicillinum. The cells were incubated at 37 °C
overnight. A few colonies were picked and dissolved in
LB medium. PCR amplification was performed using
1 ul of these colonies as the template. The PCR products
were verified by agarose gel electrophoresis. Positive
clones were cultured and the plasmid was extracted and
sequenced by Shanghai Invitrogen Biotech Co., Ltd. The
lentiviral vectors were packaged and the titer was deter-
mined as 1 x 10°/ml.

Transfection of MSCs with LV-miR-21
The lentiviral vectors carrying the miR-21 gene were added
into the MSCs at a multiplicity of infection (MOI) of 20.
After transfection for 24—48 h, the expression of the green
fluorescent protein was observed under the fluorescence
microscope. The transfection efficiency was calculated.
Three groups were set up: the MSC group (no transfec-
tion with the lentiviral vectors), the LV group (transfection
with the empty vectors), and the miR-21 group (transfec-
tion of MSCs with the miR-21 lentiviral vector at MOI of
20). The miR-21 level was determined using quantitative
reverse-transcription PCR (qRT-PCR) in each group.

Effects of miR-21 overexpression on the apoptosis of
MSCs in the local microenvironment of ovaries damaged
by chemotherapy

Phosphamide mustard (PM) is the active product of me-
tabolism of cyclophosphamide (CTX) and proves toxic
to the ovaries [13]. Therefore, for the in vitro experi-
ment, we used PM instead of CTX. Three groups were
set up: the MSC group, the LV group, and the miR-21
group. No treatment was given in the MSC group; MSCs
in the LV group and miR-21 group were transfected with
empty LV and LV-miR-21, respectively, followed by the
addition of 30 pmol/L PM to mimic the local micro-
environment of ovaries damaged by chemotherapy. The
apoptotic rate of MSCs was detected with a flow cyt-
ometer. mRNA expression of PTEN and PDCD4 was
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determined using qRT-PCR; protein expression of these
two genes was determined using Western blotting.

Effects of MSCs overexpressing miR-21 on the apoptosis
of GCs

Five groups were set up: the normal group, the PM
group, the miR-21 group, the MSC group, and the miR-
21-MSC group. Cells in the normal group were not
treated with PM; cells in the PM group had 30 pmol/
L PM added to induce apoptosis; for the miR-21 group,
the apoptosis was induced by adding PM and then the
cells were transfected with LV-miR-21; for the MSC
group and miR-21-MSC group, the cells were treated
with PM and were then respectively transfected with
MSCs and miR-21-MSCs at a 1:1 proportion. The apop-
tosis of GCs was detected after 48 h with a flow cyt-
ometer. The mRNA expression of miR-21, PTEN, and
PDCD4 was determined using qRT-PCR; the protein ex-
pression was determined using Western blotting.

Construction of rat models of chemotherapy-induced POF
Rat models of chemotherapy-induced POF were con-
structed by intraperitoneal injection of CTX. The first
injection was performed at a dose of 50 mg/kg, which
was followed by continuous injection at a dose of 8 mg/
kg for 14 days [7].

Transplantation of miR-21-MSCs and post-transplantation
observation

The rats were randomly divided into five groups, with
20 rats in each group. The five groups were: the normal
group, the model group, the miR-21 group, the MSC
group, and the miR-21-MSC group. Chemotherapy-
induced POF models were built into the last four groups.
On the day of the last CTX injection 1 x 10° LV-miR-21
were injected into the bilateral ovaries in the miR-21
group; for the MSC group, 1 x 10° MSCs were injected
into the bilateral ovaries; for the miR-21-MSC group,
1 x10° miR-21-MSCs were injected under chloral hy-
drate anesthesia.

The estrous cycle was determined by preparing Pap
smears at 08:00 every day after transplantation. Blood
samples were collected during the estrous cycle at 15,
30, 45, and 60 days after transplantation and stored at —
80 °C. E, and FSH levels were determined in these blood
samples. Five rats were sacrificed in each group at 15,
30, 45, and 60 days after transplantation. The bilateral
ovaries were harvested. One ovary was used to deter-
mine the weight, structure, follicle counts, and apoptosis
of GCs; the other ovary was used to determine the
expression of miR-21 as well as mRNA and protein
expression of PTEN and PDCDA4.
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Determination of E, and FSH levels

FSH levels were determined using a radioimmunoassay
kit provided by Beijing North TZ-Biotech Develop. Co.,
Ltd. E, levels were determined using the chemilumines-
cence method.

Ovarian weight, follicle counts, and ovarian morphology
Ovaries were harvested and the adipose tissues were re-
moved. The ovaries were weighed and their structures
were observed with the naked eye. The tissues were em-
bedded in paraffin, sliced into 5-pm thick segments and
subjected to hematoxylin and eosin (H&E) staining. The
ovarian structure was observed under the microscope,
and the follicle counts were determined by reference to
the literature [14]. The twelfth section was taken to de-
termine the follicle counts for each sample. Primordial
follicles only contained single-layer spindle-shaped GCs;
the single layer of GCs in the primary follicles had at
least three columnar GCs; secondary follicles contained
at least two layers of GCs; and antral follicles had at
least two layers of GCs with follicular cavities.

qRT-PCR

Total RNA was extracted from MSCs, GCs, and ovary
tissues using Trizol® reagent (Invitrogen, Life Technolo-
gies, Carlsbad, CA, USA) according to the manufactur-
er's protocol. The complementary DNA (cDNA) was
synthesized from isolated RNA samples with a Mir-X
miRNA First-Strand Synthesis Kit (TaKaRa Bio Inc.,
Shiga, Japan). The expression levels of miR-21, PTEN,
and PDCD4 were assessed by real-time qRT-PCR using
a Mir-X miRNA gRT-PCR SYBR Kit (TaKaRa, Japan)
and an ABI 7500 real-time PCR system. All procedures
were performed following the manufacturer’s instruc-
tions. The relative fold changes of expression were ana-
lyzed according to the quantitative-comparative (Ct)
method and were normalized to the expression level of
U6 small nuclear RNA. GAPDH was used as an internal
control. The analysis of each sample was repeated in
triplicate for both the target and the reference gene. The
primer sequences were 5-TAGCTTATCAGACT-
GATGTTG-3" and 5-GCTGTCAACGATACGCTACG-
TAACG-3' for miR-21, 5 -CCCAGTTTGTGGTCT
GCCAGC-3" and 5-ATGAGCTTGTCCTCCCGCCG-
3" for PTEN, and 5-"TTGAGCACGGAGATACGAAC-3'
and 5-GTCCCGCAAAGGTCAGAAAG-3' for PDCD4.

Western blot

Nuclear and cytoplasmic protein-enriched lysate frac-
tions were isolated from homogenized MSCs, GCs, and
ovary tissues using cell lysis solution. The protein con-
centration was quantified using the Lowry method ac-
cording to the manufacturer’s instructions. The protein
fractions (10-20 pg per lane) were subjected to 12%
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sodium dodecyl sulfate-polyacrylamide gel electrophor-
esis (SDS-PAGE) and transferred onto hybrid polyvinyli-
dene fluoride (PVDF) membranes (Millipore, Bedford,
MA, USA). After blocking with 5% (w/v) nonfat dry milk
in TBST (Tris-buffered saline containing 50 mM Tris/
HCI, pH 8.8, 125 mM NaCl, and 0.05% Tween-20), the
PVDF membranes were washed four times (15 min
each) with TBST at room temperature, immunoblotted
overnight at 4 °C with specific monoclonal antibodies in-
cluding rabbit anti-PDCD4 (1:1000; PDCD4 (D29C6)
XP°® Rabbit mAb, Cell Signaling Technology, Inc., Dan-
vers, MA, USA) and rabbit anti-PTEN (1:1000; PTEN
(D4.3) XP° Rabbit mAb, Cell Signaling Technology,
Inc.), and then immunoblotted with FITC-conjugated
goat anti-rabbit IgG antibody (1:1000; Beyotime Institute
of Biotechnology, Jiangsu, China) at room temperature
for 26 min. The immunoreactivity was visualized using
an ECL kit (Perkin-Elmer Life Science, Fremont, CA,
USA) and the band density analysis of the blots was per-
formed with a gel imaging system (Kodak, 4000R PRO,
Rochester, NY, USA). B-Actin (Beyotime Institute of Bio-
technology) was used as an internal reference for
normalization. All steps were repeated in triplicate.

TUNEL apoptosis detection of GCs

The apoptosis of GCs was determined using the Apop
Tag kit (Nanjing KeyGen Biotech Co., Ltd.). For each
sample, eight fields of view were randomly selected.
The apoptosis index was estimated for 100 GCs by
dividing the number of apoptotic GCs by the total
number of GCs.

Statistical analysis

Data are reported as mean + standard deviation and
analyzed statistically using the SPSS 20.0 software. An
independent sample ¢ test was used for comparing
the means between two groups; one-way analysis of
variance (ANOVA) was used for multiple comparison
among three or more groups. Intergroup comparisons
were performed by the SNK method. A P value less
than 0.05 was considered to denote a significant
difference.

Results

Culture and identification of MSCs

MSCs of the third generation had uniform morphology
as fibroblast-like long spindles and showed an orderly
arrangement (Fig. la). Flow cytometry indicated that
over 90% of MSCs were negative for CD34 and CD45
and positive for CD44 and CD29. This agrees with previ-
ous findings [15]. The cultured cells were MSCs and not
hematopoietic stem cells.
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Fig. 1 Apoptosis of MSCs and expression of miR-21, PTEN, and PDCD4. a Mesenchymal stem cells (MSCs) of the third generation (x100). b MSCs
transfected with LV-miR-21 at a MOI of 20, emitting green fluorescence under the fluorescence microscope (x100). € Expression of miR-21 in MSCs
transfected with LV-miR-21. *P < 0.05, compared to the MSC group and the LV group. d Comparison of apoptotic rates between the groups. *P < 0.05,
compared to the MSC group and the LV group. e Comparison of mRNA expression of PTEN and PDCD4 between the groups. *P < 0.05, compared to the
MSC group and the LV group. f Comparison of protein expression of PTEN and PDCD4. *P < 0.05, compared to the MSC group and the LV group
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Construction of miR-21 lentiviral vector and transfection
of MSCs
The miR-21 lentiviral vector pLVX-shRNA2-miR-21-5p
was constructed and double digested with EcoRI and
BamHI. The fragments were identified by agarose gel
electrophoresis and found to be 7888 bp and 117 bp, re-
spectively. Sequencing the positive clones indicated that the
rno-miR-21-5p sequence inserted into the recombinant
plasmid was identical to the target sequence. Thus, the
miR-21 lentiviral vector was successfully constructed.
MSCs were transfected with miR-21 lentiviral vec-
tors at a MOI of 20. The expression of green fluor-
escence protein was observed under the fluorescence
microscope (Fig. 1b). The transfection efficiency was
92.20% + 1.96%. qRT-PCR indicated that miR-21 ex-
pression of the MSC group, the LV group, and the
miR-21 group was 1.0154+0.0258, 1.0191 + 0.0500,
and 4.2410 + 0.4367, respectively. A significant differ-
ence was found among the three groups according
to one-way ANOVA (F=268.032, P=0.000). Inter-
group comparisons using the SNK method indicated
no statistical difference between the MSC group and
the LV group; the expression of the miR-21 group
was higher than that of the MSC group and the LV
group (Fig. 1c).

Effects of miR-21 overexpression on apoptosis of MSCs
and expression of PTEN and PDCD4

The apoptotic rate of MSCs was determined with a flow
cytometer. The apoptotic rate of the MSC group, the LV
group, and the miR-21 group was 41.35 + 3.63%, 40.34 +
3.59%, and 23.49 + 3.61%, respectively; the three groups
were significantly different. The apoptotic rate of the
miR-21 group was lower than that of the MSC group
and the LV group (F=38.597, P =0.000; Fig. 1d). Thus,
miR-21 overexpression inhibited the chemotherapy-
induced apoptosis of MSCs. The mRNA expression and
protein expression of PTEN and PDCD4 were downreg-
ulated in the miR-21 group as compared with the MSC
group and the LV group (Fig. 1e and f).

miR-21 overexpression in MSCs inhibited apoptosis of
GCs

According to the results of flow cytometry, the apop-
totic rate of the normal group, the PM group, the
miR-21 group, the MSC group, and the miR-21-MSC
group was 10.4 + 1.82%, 33.4 £4.22%, 27 £ 2.45%, 28 £
2%, and 19.6 + 1.52%, respectively; the apoptotic rate
of the five groups differed significantly (F=59.35, P =
0.00), and the apoptotic rate of the miR-21-MSC
group was lower than that of the miR-21 group and
the MSC group, but higher than that of the normal
group (Fig. 2a).
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Expression of miR-21 and its target genes in GCs

The miR-21 expression in the miR-21 group and the
miR-21-MSC group was upregulated significantly com-
pared with the other groups; the mRNA expression and
protein expression of PTEN and PDCD4 were downreg-
ulated significantly compared with the PM group and
the MSC group (Fig. 2b—d).

Pap smears

The estrous cycle was normal in the normal group,
whereas there was estrous cycle disturbance in the
model group, the miR-21 group, the MSC group, and
the miR-21-MSC group after the last injection. For the
latter, the estrous cycle was delayed, absent, or persisted.
There were 6 rats in the miR-21 group, 6 rats in the
MSC group, and 10 rats in the miR-21-MSC group
which had a restored normal estrous cycle at 16-30 days
after the last injection. There were 3, 2, and 5 rats, re-
spectively, in these groups with restored normal estrous
cycle at 31-45 days after the last injection, and there
were 2, 2, and 4 rats, respectively, with restored normal
estrous cycle at 46—60 days after the last injection. How-
ever, estrous cycle disturbance persisted in the model
group (Table 1).

Ovarian appearance, weight, and follicle counts

The ovarian appearance was normal in the normal group,
showing a red color and several white raised spots on the
surface. At 15 days after injection the ovarian size shrank in
the miR-21 group, the MSC group, and the miR-21-MSC
group; the ovaries were pale white with fewer raised spots
on the surface. At 30, 45, and 60 days after injection there
were no apparent changes in ovarian appearance in the
model group. The ovaries were enlarged in the miR-21
group, the MSC group, and the miR-21-MSC group at 30,
45, and 60 days after injection, with more raised spots on
the surface. As compared with the other three groups, there
were more raised spots on the surface in the miR-21-MSC
group. H&E staining revealed follicles at different develop-
mental stages and several corpora lutea in the normal
group. Several layers of GCs were found inside the follicles.
After the last injection there was a reduction in the number
of growing follicles as well as corpora lutea in the model
group; ovarian angiogenesis, proliferation of fibrous tissues,
thickening of vascular walls, and hyaline degeneration were
observed. At 45 and 60 days after injection there were more
follicles in the miR-21 group, the MSC group, and the miR-
21-MSC group than in the model group (Fig. 3a—e).

The ovarian weight at 15 days after injection was
37.12 £ 1.74 mg in the normal group, which was higher
than that of the model group (19.35 + 2.01 mg) and the
miR-21 group (18.41 +1.66 mg); ovarian weight was
19.04 + 1.27 mg and 18.38 + 1.61 mg in the MSC group
and the miR-21-MSC group, respectively. There was no
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significant difference among the last four groups. At 30,
45, and 60 days after injection the ovarian weight in-
creased in the MSC group and the miR-21-MSC group,
and it was higher than that in the model group. The
ovarian weight increased more considerably in the miR-
21-MSC group and exceeded that of the miR-21 group
and the MSC group (Fig. 3f).

At 15 days after injection the follicle counts of the nor-
mal group were much higher than those of the model
group, the miR-21 group, the MSC group, and the miR-

Table 1 Number of rats with a normal estrous cycle in the five

groups
Group 1-15 days 16-30 days 31-45 days 46-60 days
Normal group 20 15 10 5
Model group 0 0 0 0
miR-21 group 0 6 3 2
MSC group 0 6 2 2
miR-21-MSCs group 0 10 5 4

MSC mesenchymal stem cell

21-MSC group; there was no significant difference among
the last four groups. At 30 days after injection the follicle
counts in the miR-21-MSC group increased as compared
with the model group, the miR-21 group, and the MSC
group; however, there was no significant difference among
the last three groups. At 45 and 60 days the follicle counts
of the model group further decreased, and those of the
miR-21 group, the MSC group, and the miR-21-MSC
group were all higher than that of the model group. Fol-
licle counts of the miR-21-MSC group were higher than
those of the miR-21 group and the MSC group. However,
the follicle counts of the miR-21-MSC group were still
lower than those of the blank control group (Fig. 4).

Sex hormone levels

The baseline levels of E; and FSH were not significantly dif-
ferent between the groups. At 15 days after injection there
was significant difference in the E, and FSH levels among
the five groups (F1 =18.567, P1 =0.000; F2 =24.991, P2 =
0.000). The E, levels in the model group, the miR-21 group,
the MSC group, and the miR-21-MSC group declined,



Fu et al. Stem Cell Research & Therapy (2017) 8:187

Page 8 of 13

40

w
(=]

Bmodel
OmiR-21-NSCs

SmiR-21

Fig. 3 Ovarian weight and structure. a Ovarian structure at 45 days after injection in the normal group, with the observation of follicles at
different developmental stages and corpora lutea. b Ovarian structure at 45 days after injection in the model group, with a dramatic reduction in
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while the FSH levels increased. The E, levels of the miR-21
group, the MSC group, and the miR-21-MSC group were
higher than that of the model group, while the FSH levels
of the former groups were lower than that of the model
group; there was no significant difference among the
former three groups. At 30, 45, and 60 days after injection
the sex hormone levels of the five groups differed consider-
ably, with the normal group maintaining the baseline levels.
The E, levels of the model group declined continuously,
while FSH levels increased continuously. The changes in
the miR-21 group and the MSC group were milder, and
there was no significant difference between these two
groups. The sex hormone levels of the miR-21-MSC group
further stabilized, showing significant differences as com-
pared with the miR-21 group and the MSC group, but not
reaching the level of the normal group (Fig. 5).

Apoptosis of GCs

There was a significant difference in the apoptotic rate
of GCs at 15 days after injection among the five groups.
The apoptotic rate was 11% +2.34% in the normal
group, which was lower than that in the model group
(38.8 £4.66%), the miR-21 group (37.2+4.60%), the
MSC group (34 +4.90%), and the miR-21-MSC group
(27.2 £ 5.89%). Comparison among the latter four groups

indicated a higher level in the miR-21-MSC group than
in the model group, the miR-21 group, and the MSC
group; however, there was no significant difference be-
tween the model group, the miR-21 group, and the MSC
group. At 30, 45, and 60 days after injection the apop-
totic rate of GCs in the miR-21-MSC group further de-
creased, and it was much lower than that of the model
group, the miR-21 group, and the MSC group, but still
higher than that of the normal group (Fig. 6).

Expression of miR-21 and target genes PTEN and PDCD4
in the ovarian tissues

The miR-21 expression in the miR-21 group and the
miR-21-MSC group was significantly higher than that of
the normal group, the model group, and the MSC group
at different time points after injection. There was no dif-
ference between the miR-21 group and the miR-21-MSC
group. Comparisons showed that miR-21 expression was
higher in the normal group than in the model group and
the MSC group, but it was not significantly different be-
tween the model group and the MSC group (Fig. 7).

At different time points after injection the mRNA and
protein expression of PTEN and PDCD4 was signifi-
cantly different among the five groups. The expression
in the miR-21 group and the miR-21-MSC group was
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lower than that of the model group and the MSC group,
but higher than the normal group. There was no signifi-
cant difference between the model group and the MSC
group or between the miR-21 group and the miR-21-
MSC group (Fig. 8).

Discussion

A reduction in estrogen levels and reproductivity caused
by POF poses a great threat to the reproductive health
and quality of life for women of childbearing age [16].
Chemotherapy-induced POF is gaining increased atten-
tion among all the causes of POF since chemotherapy is
now widely used to treat malignancies and immune

diseases. Along with technical progress, chemotherapy
has greatly increased the survival of cancer patients. For
young female patients, POF is a severe short- and long-
term complication that affects their lives and that
receives academic attention. The mechanism of chemo-
therapeutic agents inducing ovarian follicle atresia re-
mains unclear. It is generally believed that the
chemotherapeutic agents have an adverse impact on the
growth, development, and maturity of follicles, resulting
in ovarian follicle atresia, fibrosis of ovarian tissues, and
an inability of GCs to secrete estrogen and progesterone
[17]. Common treatment now includes hormone ther-
apy, gonadotropin releasing hormone agonist (GnRHa)
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therapy, oocyte and embryo cryopreservation and cryo-
preservation, and transplantation of ovarian tissues [18].
However, none of these therapies are very satisfactory.

MSCs are known for their self-renewal and multilineage
differentiation potential as well as the prospect of their ap-
plication in cellular and genetic therapies [19]. The efficacy
of transplantation of MSCs has been verified in animal
models of different diseases [5, 6]. MSCs also offer hope in
the treatment of POF in animal models. We found through
preliminary studies that MSCs secreted a variety of cyto-
kines in vitro, including vascular endothelial growth factor
(VEGE), insulin-like growth factor-1 (IGF-1), and hepato-
cyte growth factor (HGF). MSCs can inhibit chemotherapy-
induced apoptosis of GCs by upregulating Bcl-2 protein
and other cytokines. In the rat model of chemotherapy-
induced ovarian damage, transplantation of MSCs allevi-
ated cell apoptosis and improved ovarian function [7].
However, the repair effect of MSCs in chemotherapy-
induced POF is only partial as the apoptosis of the trans-
planted MSCs impairs the outcomes [20].

miR-21 is among the earliest discovered miRNAs and
is present extensively in the human body. The miR-21
gene is first transcribed into pri-miR-21 in the nuclei in
the presence of RNA polymerase II, which is then modi-
fied to form the mature miR-21. Promoting cell prolifer-
ation and inhibiting apoptosis, miR-21 is highly
expressed in a variety of cells and tissues [21]; it also
plays a decisive role in the regulation of GC apoptosis
and follicular development. Study shows that miR-21

can inhibit the apoptosis of rat GCs and increase the
ovulation rate. In this study, the apoptosis of GCs was
inhibited by injection of LV-miR-21 to bilateral ovaries
to induce miR-21 expression. There was also an increase
in follicle counts, indicating the partial repair effect of
miR-21 on chemotherapy-induced POF.

We transplanted MSCs overexpressing miR-21 to treat
chemotherapy-induced POF. The results showed that the
apoptosis of miR-21-overexpressing MSCs decreased and
the vitality of the transplanted cells increased. In vitro re-
sults indicated stronger inhibitory effects on the apoptosis
of GCs. As compared with the transplantation of normal
MSCs or miR-21 injection alone, the number of rats with a
normal estrous cycle increased following the transplant-
ation of MSCs overexpressing miR-21; the E, level in-
creased while the FSH level decreased significantly. The
number of follicles at different developmental stages in-
creased as well. All these results suggested the strong repair
effect of transplanting MSCs with miR-21 overexpression.

miRNA can bind to the target mRNA in an incompletely
complementary way. One miRNA may regulate hundreds
or thousands of target genes, which constitute a mutually
connected and mutually restricting regulatory network. It is
reported that miR-21 has about 190 target genes [22].
PDCD4 and PTEN are the most intensively studied and
they play a regulatory role in cell apoptosis. miR-21 can in-
hibit the hydrogen oxide-induced MSC apoptosis, probably
because the downstream target gene PTEN regulates the
PI3K/Akt pathway [23]. In the apoptosis of MSCs induced
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by hypoxia/serum-free culture, upregulating miR-21 can
increase the mitochondrial membrane potential and protect
the mitochondrial function. This will further inhibit the
mitochondrial pathway, improve the tolerance of MSCs to
hypoxia/serum-free culture, and increase the vitality of cells
[24]. In this study, we found a reduction in the
chemotherapy-induced apoptosis of MSCs overexpressing
miR-21. This means miR-21 enhanced the resistance of
MSCs to chemotherapy and increased the vitality of cells.
Furthermore, PTEN and PDCD4 were downregulated in
MSCs, probably due to the fact that miR-21 enhanced the
vitality of MSCs. PTEN regulating the downstream PI3K
pathway has an impact on the proliferation and apoptosis of
GCs [25]. Downregulation of PTEN with a phosphorylation
of PIP-3 will activate the protein kinase B or Akt (PKB/Akt)
pathway, inducing cell growth and proliferation, and inhibit-
ing cell apoptosis [26]. Conversely, an imbalanced PTEN ex-
pression will cause POF [27]. By binding to eukaryotic
initiation factor 4E (elF43), PDCD4 can inhibit the produc-
tion of complexes and thus regulate protein translation at
the initial stage [28]. PDCDA4 is involved in the lipopolysac-
charide (LPS)-mediated apoptosis [29]. In the LPS signaling
pathway, Toll-like receptor 4 (TLR4) upregulates PDCD4,
which induces the expression of interleukin (IL)-10 and NF-
KB downstream, thus inducing cell apoptosis [30]. The ex-
pression of PDCD4 can reduce the normal DNA-damage
response and protect the cells with DNA damage, therefore
inhibiting cell apoptosis [31]. Downregulating PTEN and
PDCD4 will inhibit cell apoptosis. In our study, miR-21
inhibited apoptosis of GCs probably by downregulating
PTEN and PDCDA4.

Recently, a novel population of stem cells—very small
embryonic-like stem cells (VSELs)—are found to locate in
the ovary surface epithelium (OSE) in mice. Chemother-
apy can result in a loss of follicular reserve, but VSELs
survive [32]. This provides hope that surviving VSELs can
restore the ovarian structure and function for patients
with chemotherapy-induced ovarian failure. The effect of
MSCs over expressing miR-21 on VSELs remains unclear.
Further studies are required to show whether MSCs over
expressing miR-21 can stimulate and protect VSELs.

Conclusions

To conclude, we found that: (1) MSCs overexpressing
miR-21 showed a reduction in apoptosis in vitro and
an increase in vitality; (2) MSCs overexpressing miR-
21 caused a downregulation of PTEN and PDCD4 in
vitro, which inhibited the PM-induced apoptosis of
GCs; and (3) transplantation of MSCs overexpressing
miR-21 into rat ovaries damaged by chemotherapy
could more effectively inhibit the apoptosis of GCs as
compared with the injection of MSCs or miR-21
alone. The ovarian structure and function were
repaired to a greater extent by transplantation of

Page 12 of 13

MSCs overexpressing miR-21. This repair effect may
be mediated by PTEN and PDCD4, the target genes
of miR-21.
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