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Abstract

Background: Radiation exposure poses a significant threat to public health. Hematopoietic injury is one of the
major manifestations of acute radiation sickness. Protection and/or mitigation of hematopoietic stem cells (HSCs)
from radiation injury is an important goal in the development of medical countermeasure agents (MCM). We
recently identified thioredoxin (TXN) as a novel molecule that has marked protective and proliferative effects on
HSCs. In the current study, we investigated the effectiveness of TXN in rescuing mice from a lethal dose of total
body radiation (TBI) and in enhancing hematopoietic reconstitution following a lethal dose of irradiation.

Methods: We used in-vivo and in-vitro methods to understand the biological and molecular mechanisms of TXN
on radiation mitigation. BABL/c mice were used for the survival study and a flow cytometer was used to quantify
the HSC population and cell senescence. A hematology analyzer was used for the peripheral blood cell count,
including white blood cells (WBCs), red blood cells (RBCs), hemoglobin, and platelets. Colony forming unit (CFU)
assay was used to study the colongenic function of HSCs. Hematoxylin and eosin staining was used to determine
the bone marrow cellularity. Senescence-associated β-galactosidase assay was used for cell senescence. Western
blot analysis was used to evaluate the DNA damage and senescence protein expression. Immunofluorescence
staining was used to measure the expression of γ-H2AX foci for DNA damage.

Results: We found that administration of TXN 24 h following irradiation significantly mitigates BALB/c mice from
TBI-induced death: 70% of TXN-treated mice survived, whereas only 25% of saline-treated mice survived. TXN
administration led to enhanced recovery of peripheral blood cell counts, bone marrow cellularity, and HSC population
as measured by c-Kit+Sca-1+Lin– (KSL) cells, SLAM+ KSL cells and CFUs. TXN treatment reduced cell senescence and
radiation-induced double-strand DNA breaks in both murine bone marrow lineage-negative (Lin–) cells and
primary fibroblasts. Furthermore, TXN decreased the expression of p16 and phosphorylated p38. Our data
suggest that TXN modulates diverse cellular processes of HSCs.

Conclusions: Administration of TXN 24 h following irradiation mitigates radiation-induced lethality. To the best of our
knowledge, this is the first report demonstrating that TXN reduces radiation-induced lethality. TXN shows potential
utility in the mitigation of radiation-induced hematopoietic injury.
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Background
Radiation and radioactive substances are used exten-
sively in medical research, disease diagnosis, and cancer
treatment. Incidental radiation exposure could result
from medical and radiological accidents, malfunction or
breakdown of nuclear power plants, or a terrorist attack
with radioactive dirty bombs. The danger of radiation
injury is real, particularly in the aftermath of the 9/11
attacks in the US. Radiation injury impacts public health
and society significantly. Between 1945 and 1987, there
were 285 nuclear reactor accidents, injuring 1550 people
and killing 64 [1–5]. These nuclear and radiological
emergencies require comprehensive medical prepared-
ness and readiness, including a national stockpile of
deliverable agents to counteract radiation exposure
incidents and accidents.
Hematopoietic stem cells (HSCs) and hematopoiesis

are among the tissues/organs most sensitive to radiation
injury and contribute to many of the manifestations of
acute radiation injury, including bleeding, infection, and
bone marrow failure. Evidence has emerged that exces-
sive reactive oxygen species (ROS) following radiation
injury cause HSC apoptosis and senescence and the loss
of long-term repopulating capacity [6–9]. However, what
remains poorly understood is how to harness the redox
pathway for the mitigation of radiation-induced HSC
injury. N-acetyl-L-cysteine (NAC) and glutathione have
been shown to be able to protect HSCs from oxidative
stress and promote the recovery of hematopoiesis when
administered before radiation or immediately following
radiation exposure. However, these compounds need to
be given frequently (at least daily) and in large quantities
(at least 100 mg/kg in mice) [10, 11]. Hematopoietic
growth factors (HGFs) such as erythropoietin, thrombo-
poietin, and granulocyte-colony stimulating factor
(G-CSF) have been tested in radiation injury for enhan-
cing hematopoietic recovery [12, 13]. However, HGFs
have limitations and drawbacks; these factors are
lineage-specific and therefore do not promote the recov-
ery of other cell lineages. Additionally, the efficacy of
these growth factors is limited; G-CSF only quickens
neutrophil recovery by a few days, and works only with
a low dose of radiation exposure [11, 14–16]. Thrombo-
poietin needs to be administered soon after radiation
exposure, and its efficacy is significantly limited if given
24 h after radiation exposure [17]. Currently, there is an
urgent need to identify and develop novel agents that
can be used to reduce radiation-induced HSC injury and
enhance all lineage hematopoietic recovery when given
24 h after radiation exposure.
Using a semiquantitative, mass spectrometry-based

proteomic approach, we recently screened for proteins
that were differentially expressed in the bone marrow
supernatants from hematopoietic stem cell transplant
recipient mice that were treated with AMD3100 (a spe-
cific and reversible CXCR4 antagonist) [18]. We identi-
fied thioredoxin (TXN) as a novel molecule that has
marked protective and proliferative effects on HSCs.
TXN is a ubiquitous oxidoreductase with a molecular
weight of 12 kDa and has two Cys residues in the
conserved active site sequence (-Cys32-Gly-Pro-Cys35-).
The primary function of TXN is to maintain redox
homeostasis and to protect proteins from oxidative
damage or inactivation [19–21]. We have shown that ex-
vivo culture of murine HSCs with TXN or giving TXN
to HSC transplant recipient mice enhanced the recovery
and the long-term repopulation capacity of HSCs in our
mouse models of HSC transplant [18]. However, the
therapeutic potential of TXN as a radiation protectant
or mitigator has not been investigated.
In the current study, we aimed to determine the

effects of TXN in mitigating radiation-induced HSC
injury when given 24 h after radiation exposure.
Twenty-four hours after radiation has been chosen as a
critical time point for evaluating the efficacy of any given
agent as a radiation mitigator because, in the event of a
radiation mass casualty scenario, a significant majority
of patients will not present for therapeutic intervention
for several hours following radiation exposure. To the
best of our knowledge, this is the first report showing
TXN to be an important agent for rescuing radiation-
induced hematopoietic injury.

Methods
Mice
Eight- to 12-week-old female BALB/c mice were
purchased from Jackson Laboratories (Bar Harbor, ME,
USA) and used in this study. The mice were housed in our
specific pathogen-free facility and maintained at 23–25 °C
with a 12 h day/12 h dark cycle throughout the study, and
were provided with autoclaved food and acidified water.
All our studies were performed in accordance with
Duke University Institutional Animal Care and Use
Committee approved procedures.

Cell culture
All the cell lines were purchased from American Type
Culture Collection (Manassa, VA, USA). Primary fibro-
blast cells were grown in RPMI 1640 medium. The
medium was supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin. Cells were main-
tained at 37 °C with 5% CO2 in a humidified incubator.
Murine lineage-negative (Lin–) cells were isolated from

bone marrow cells (BMCs) using a lineage negative
selection column as per the manufacturer’s instruction
(Miltenyi Biotec Inc., Auburn, CA, USA). Briefly, BMCs
were harvested from bilateral femurs and tibias of
BALB/c mice and depleted of red blood cells (RBCs)
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using ACK lysis buffer (Lonza, Walkersville, MD, USA).
Lin– cells were then enriched using lineage negative
selection columns. Isolated Lin– cells were grown
with 20 ng/ml mouse thrombopoietin (TPO), 125 ng/
ml mouse stem cell factor (SCF), and 50 ng/ml
mouse Flt3 ligand in 10% FBS with IMDM medium.
Cells were maintained at 37 °C with 5% CO2 in a
humidified incubator.
Reagents and antibodies
Recombinant human thioredoxin-1 (TXN; E. coli-derived)
was purchased from R&D Systems Inc. (Minneapolis,
MN, USA). PE-conjugated anti-mouse Scal-1 and PerCP-
5.5 lineage cocktail antibody was obtained from BD
Biosciences (San Jose, CA, USA). FITC-conjugated anti-
mouse CD48 and APC-conjugated anti-mouse CD 150
were obtained from Biolegend (San Diego, CA, USA). PE-
Cyanine 7-conjugated anti-mouse CD117 (c-Kit) was
purchased from eBioscience Inc. (San Diego, CA, USA).
Senescence β-galactosidase (SA-gal) staining kit, γ-H2AX,
p38 mitogen-activated protein kinase (MAPK), phospho-
p38 MAPK (Thr180/Tyr182), p16, β-actin, and the corre-
sponding secondary antibodies were purchased from Cell
Signaling Technology (Danvers, Massachusetts, USA).
Radiation injury mouse model and TXN treatment
BALB/c mice were irradiated with 7.25 Gy by total body
irradiation (TBI) using a 137Cesium gamma irradiator
(JL Shepherd, Glendale, CA, USA) at a dose rate of
4.18 Gy/min [22]. Mice were irradiated on a rotating
platform. Twenty-four hours later, the mice were
injected via the tail vein with TXN (1.6 mg/kg) every
other day for a total of five doses, and the control group
was administered with phosphate-buffered saline (PBS).
Animal survival was monitored daily up to 30 days. In a
separate sets of experiments, blood samples and BMCs
were collected at 3 weeks or 6 weeks after radiation
from surviving mice. Peripheral blood cell counts
were measured by hematology analyzer. BMCs from
femurs and tibias of the mice were measured for
HSC population and cell senescence by flow cytome-
try and colony forming units (CFU).
Peripheral blood analysis
Blood was directly withdrawn from the maxillary vein
and collected in pre-coded EDTA-containing vials at 3
and 6 weeks following radiation exposure from surviving
mice. Blood was mixed gently on a rotary shaker until
analysis for white blood cells (WBCs), hemoglobin, and
platelets on a hematology analyzer (scil Vet ABC Plus™,
Gurnee, IL, USA).
Flow cytometry analysis
To determine the percentage and absolute number of
c-Kit+Sca-1+Lin– (KSL) and SLAM+ KSL cells after
radiation from surviving mice, the mice were sacrificed
and bones (2 femurs and 2 tibias per mouse) were
harvested as described previously [18]. The cells were
stained with PE-Cy7-CD117 (c-Kit), PE-Sca-1, and
PerCP-5.5 lineage antibody, FITC-CD48, and APC-
CD150 for 30 min for KSL and SLAM+KSL cell
percentage. Acquisition was carried out using a BD-
Canto II flow cytometer with the FACSDiva software
(Becton Dickinson, San Jose, CA, USA).

CFU assay
CFU assays were performed in complete M3434 methyl-
cellulose medium (Stem Cell Technologies, USA) follow-
ing the manufacturer’s instructions. Briefly, BMCs were
mixed in complete M3434 medium and plated in
30-mm petri dishes at 20,000 cells per dish. The assay
was performed in triplicate and the number of colony
forming units-granulocyte macrophage (CFU-GM) and
colony forming units-granulocyte, erythroid, macro-
phage, megakaryocyte (CFU-GEMM) were counted at
day 7 and day 12, respectively.

Bone marrow histology examination
Femurs were fixed in 10% neutral-buffered formalin.
Specimens were then decalcified, embedded in paraffin,
cut into 5-μm section, and stained with hematoxylin and
eosin (H&E). The slides were examined by light micros-
copy to capture bright-field images using an Olympus
(IX51) microscope (Japan).

SA-gal activity analysis
To determine β-gal + senescent bone marrow cells, bone
marrow was harvested and Lin– cells were isolated by
magnetic column purification using a mouse lineage
cell depletion kit (Miltenyi Biotec) as described previ-
ously [18]. SA-gal activity in Lin– cells was deter-
mined using a SA-gal staining kit from Cell Signaling
Technology (Beverly, MA, USA) according to the
manufacturer’s instructions.
Primary fibroblast cells were seeded into six-well

plates at 1 × 104 cells per well and incubated in a
humidified atmosphere with 5% CO2 at 37 °C overnight.
Cells were then irradiated with 3 Gy or 5 Gy and treated
with TXN 10 μg/ml. Three days after irradiation, the
cells were fixed and stained with the SA-gal staining kit
as per the manufacturer’s instructions.

Western blot
Cells were harvested, washed with PBS, and re-suspended
in lysis buffer containing 50 mM Tris-HCl pH 7.4,
150 mM NaCl, 1 mM EDTA, 1% Triton × 100, 1% sodium
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deoxycholate, and 0.1% SDS. The cells were further lysed
by brief sonication. The lysates were centrifuged at high
speed for 10 min to remove the cell debris. Total protein
was quantified using the DC protein estimation kit (Bio
Rad) with bovine serum albumin (BSA) as a standard.
Approximately 20 μg protein was loaded and run on SDS-
PAGE. The proteins were transferred onto a nitrocellulose
membrane. The membrane was blocked with 5% milk in
Tris-buffered saline containing 0.1% Tween 20 (TBST),
and primary antibodies were applied with 5% BSA in
TBST overnight at 4 °C with gentle shaking. The mem-
brane was then probed with HRP-conjugated secondary
antibody and developed using the Pierce ECL substrate.
Immunofluorescence
Primary fibroblast cells were irradiated (3 Gy) and
cultured with and without TXN for 24 h. Cells were
fixed in 100% cold ethanol for 10 min at –20 °C, perme-
abilized with Triton × 100 and washed with PBS. After
blocking, cells were incubated overnight at 4 °C with
anti-γH2AX rabbit antibody. The excess of unbound
antibody was removed at each step by three washes with
PBS. The cells were counterstained with DAPI. The
images were captured on an Olympus confocal micro-
scope (FV1000MPE, Olympus, Tokyo, Japan).
Fig. 1 TXN mitigates TBI-induced lethality in mice. a Radiation and thiored
with 7.25 Gy, and 1.6 mg/kg of TXN was administrated intravenously by tai
five doses. b The protective effects of TXN. Kaplan-Meier survival curve dep
mice, and n = 10 for TXN-treated, lethally irradiated mice). One of two sepa
Statistical analysis
All the data are presented as the mean ± SD. Compari-
sons were performed either by the student t test for
analysis of variance for continuous data or by log-rank test
for survival data. All statistical analyses were performed
using Star View software (SAS institute, Cary, NC, USA)
or Microsoft Excel (Microsoft, Seattle, WA, USA). P
values less than 0.05 were considered significant.

Results
TXN rescues mice from a lethal dose of total body
irradiation even when administered 24 h after irradiation
TXN has two major functions. First, TXN serves as one
of the major antioxidants in mammals and protects cells
from oxidative stress. Second, TXN is a cell growth
factor and can modulate and stimulate diverse cellular
processes by directly interacting with redox-sensitive or
ROS-independent molecular pathways [20, 21]. TXN is
an excellent candidate for drug development because of
its structural stability, its ability to cross the cell
membrane, and its ubiquitous expression. Previously, we
found that TXN protected C57BL/6 mice from
radiation-induced hematological injury and death when
given 2 h after radiation exposure [18]. To test whether
the protective effect of recombinant TXN can be
generalized to other strains of mice and if TXN is still
oxin (TXN) treatment scheme for mice. BABL/c mice were irradiated
l vein at 24 h after irradiation and then every other day for a total of
icts the 30 day survival (n = 20 for saline-treated, lethally irradiated
rate sets of experiments is shown
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effective when given at 24 h after irradiation, BALB/c
mice were total body irradiated with 7.25 Gy. Twenty-
four hours later, the mice were given intravenous PBS
control buffer or TXN at 32 μg per mouse (1.6 mg/kg
body weight). The treatment was continued every other day
for a total of five doses (Fig. 1a). The mouse survival was
observed for 30 days. As shown in Fig. 1b, Kaplan-Meier
analysis of survival indicated that TXN rescued mice from
a lethal dose of radiation: 70% of TXN treated-mice
survived the radiation whereas only 25% of saline-treated
mice survived (p = 0.0273). These results suggested that
TXN mitigates a lethal dose of TBI even when adminis-
tered 24 h after radiation exposure.

TXN enhances the reconstitution of murine hematopoietic
stem cells after a lethal dose of total body irradiation
Radiation induces HSC damage and affects all lineages
of blood cells. Protecting and rescuing HSCs from
radiation damage are important in the treatment of radi-
ation injury [8, 23]. Therefore, we sought to investigate
the in-vivo effect of treatment with TXN on
hematopoietic cells. BALB/c mice were irradiated with
7.25 Gy followed by TXN administration 24 h later as
described in Fig. 1a. Peripheral blood cell counts were
measured at 3 weeks and 6 weeks after radiation in
surviving mice. As shown in Fig. 2a, WBC counts were
Fig. 2 TXN mitigates TBI-induced pancytopenia in mice. Mice were irradiat
described in the text. The numbers of a white blood cells (WBC), b red blo
were quantified at 3 and 6 weeks after total body irradiation (TBI). Data are
significantly increased in TXN-treated mice at 3 weeks
following radiation in comparison to saline-treated mice
(p < 0.05). The levels of RBCs and hemoglobin were not
significantly changed by TXN treatment, although there
was a trend for higher numbers of RBCs and
hemoglobin in TXN-treated mice at 3 weeks following
radiation (Fig. 2b and c). The platelet levels were signifi-
cantly increased at both 3 and 6 weeks (p < 0.05) by
TXN administration (Fig. 2d). These data indicate a fas-
ter hematological recovery of WBCs and platelets fol-
lowing TXN treatment after radiation exposure.
We next analyzed the bone marrow HSC population

at 3 weeks and 6 weeks after radiation. We measured
the percentage and the absolute number per femur of
bone marrow KSL cells and SLAM + KSL cells using
FACS analysis. KSL cells are a mixed population of
murine hematopoietic stem cells and hematopoietic pro-
genitor cells. SLAM + KSL cells represent primitive,
long-term repopulating hematopoietic stem cells [24].
We found that TXN given at 24 h after irradiation sig-
nificantly increased the numbers of KSL cells (Fig. 3a)
(p < 0.05) and SLAM + KSL cells (Fig. 3b) (p < 0.05).
The numbers of colony forming units (CFUs) serve as

an indicator for hematopoiesis and an important sign for
hematopoietic recovery. We thus measured bone mar-
row CFUs in TXN-treated mice and saline-treated mice
ed with 7.25 Gy and then treated with saline or thioredoxin (TXN) as
od cells (RBC), c hemoglobin (Hgb), and d platelets in peripheral blood
shown as the mean ± SD. *P < 0.05. n.s. not significant



Fig. 3 TXN mitigates TBI-induced suppression of HSCs in mice. Mice were irradiated with 7.25 Gy and then treated with saline or thioredoxin (TXN) as
described in the text. The frequency of HSCs in bone marrow was analyzed by flow cytometry; a percentage of KSL cells and b the absolute number
of KSL cells/femur; c percentage of SLAM + KSL (SLAMKSL) and d the absolute number of SLAM+ KSL cells/femur. Data are shown as the mean ± SD.
*P < 0.05. KSL c-Kit+Sca-1+Lin–, n.s. not significant, TBI total body irradiation
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at 3 weeks and 6 weeks after lethal irradiation. We found
that TXN administration significantly increased CFU-
GM and CFU-GEMM (Fig. 4a and b) (p < 0.05).
Radiation-induced bone marrow damage resulted in
massive ablation of the cellular content in the bone
marrow, and decreased bone marrow nucleated cells
(BMNCs) [23]. We thus examined the bone marrow
cellular content by H&E staining and found that TXN
treatment reduced the radiation-induced cellular deple-
tion and increased bone marrow cellularity (Fig. 4c).
These data suggest that TXN mitigates the TBI-induced
bone marrow damage by enhancing hematopoiesis and
facilitating stem cell regeneration to accelerate the
hematopoietic recovery.

TXN reduces cell senescence after a lethal dose of TBI
Cell senescence occurs after exposure to radiation and is
one of the major biological processes that leads to the
impairment of HSC function and the loss of HSC self-
renewal capacity [7, 25]. Therefore, we examined the
effects of TXN on radiation-induced cell senescence
in vitro and in vivo. BALB/c mice were irradiated and
treated with TXN or saline as described in Fig. 1a. At
3 weeks after radiation, bone marrow Lin– cells were
isolated from the mice and stained for senescence-
associated β-galactosidase (SA-gal) activities. TXN
significantly reduced radiation-induced cell senescence
in murine bone marrow Lin– cells by FACS analysis
(Fig. 5a and b).
To further confirm the effects of TXN in mitigating

radiation-induced cell senescence, we evaluated the
TXN effect in vitro using primary fibroblasts. We irradi-
ated primary fibroblasts with 3 Gy or 5 Gy and cultured
the cells with or without TXN for 72 h. We chose 3 Gy
and 5 Gy because 3 Gy was found to cause
hematopoietic damage symptoms [1] and 5 Gy could
result in death in 50% of exposed individuals from the
sequelae of hematopoietic damage unless there is
medical intervention [2]. As shown in Fig. 5c and d,
irradiation induced cell senescence as demonstrated by
increased SA-gal-positive cells after irradiation. TXN
treatment significantly reduced SA-gal-positive primary
fibroblasts, indicating that TXN treatment reduced
radiation-induced cell senescence in primary fibroblasts.
p16 (cyclin-dependent kinase inhibitor 2A) has been

involved in the establishment and maintenance of cel-
lular senescence and is an important marker of cellu-
lar senescence [25, 26]. Consistent with SA-gal
activity, the expression of p16 level was reduced with
TXN treatment (Fig. 5e and f ). Collectively, these



Fig. 4 TXN facilitates expansion of hematopoietic progenitor cells and increases bone marrow cellularity. The effects of thioredoxin (TXN) on the
colongenic function of HSCs in bone marrow were measured by CFU assay in total body irradiation (TBI) mice for a colony forming unit-granulocyte
macrophage (CFU-GM) and b colony forming unit-granulocyte, erythroid, macrophage, megakaryocyte (CFU-GEMM). c Effects of TXN on bone marrow
cellularity in TBI mice. Panels show H&E staining of mouse femurs. Representative images are shown for saline and TXN treatments. Data are shown as
the mean ± SD. *P < 0.05. n.s. not significant
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data suggest that TXN treatment rescues cells from
radiation-induced cell senescence.
Studies have found that p38 MAPK is activated after

radiation exposure and the activated p38 mediates cell
senescence, apoptosis, and loss of self-renewal capacity
in HSCs [27–29]. To determine the effects of TXN on
p38 in murine hematopoietic cells, murine bone marrow
cells were enriched for hematopoietic stem/progenitor
cells using a lineage-deletion column. Murine Lin– cells
were irradiated and treated with TXN. Phosphorylated
p38 (Thr180/Tyr182) and total p38 levels were
measured at 1 and 4 h after irradiation. TXN treatment
downregulated radiation-induced phosphorylated-p38
(Thr180/Tyr182) in murine Lin– bone marrow cells
(Fig. 6a and b).

TXN reduces radiation-induced DNA double-strand breaks
DNA double-strand break is a hallmark of radiation
damage. Histone H2AX becomes phosphorylated on
serine 139, called γ-H2AX, as a reaction to DNA
double-strand breaks. γ-H2AX has been used as a
marker for DNA double-strand breaks [30, 31]. To test
if TXN could reduce DNA double-strand breaks and/or
enhance DNA repair, we measured the effects of TXN
on γ-H2AX. Murine Lin– BMCs were irradiated with
3 Gy and treated with and without TXN for 1 and 4 h.
We found that TXN treatment led to a reduced level of
γ-H2AX expression after radiation (Fig. 6a and c).
Additionally, we measured γ-H2AX foci in primary
fibroblast cells (Fig. 6d). Consistent with the results in
murine Lin– cells, TXN significantly reduced the level of
γ-H2AX in primary fibroblasts.

Discussion
Accidental radiation exposure or a terrorist attack with a
radioactive dirty bomb poses a serious threat to public
health. Management of radiation injuries is a complex
medical challenge, requiring a careful encounter as well
as therapeutic agents administered at the appropriate
time following the radiation exposure [1, 23, 32]. HSCs
and hematopoiesis are among the tissues/organs most
vulnerable to radiation injury. Radiation-induced damage
to HSCs leads to HSC cell senescence and defects in
HSC self-renewal capacity, and contributes to several
manifestations of acute radiation sickness. Currently,
there are very few agents that can effectively rescue
HSCs from radiation injury when given after radiation
exposure [10]. Antioxidant and HSC growth factors have



Fig. 5 TXN mitigates TBI-induced cell senescence in vivo and in vitro. Mice were irradiated with 7.25 Gy and then treated with saline or thioredoxin
(TXN) as described in the text. a At 3 weeks after radiation, the Lin– cells were isolated and stained with β-galactosidase, analyzed by
FACS and b quantified. c Primary fibroblast cell lines were irradiated with 3 and 5 Gy and cultured with and without TXN for 3 days and
then stained with β-galactosidase kit. Cells were photographed under a light microscope (magnification, 200×) and d β-gal-positive cells were quantified.
e The levels of p16 protein expression were analyzed by Western blot and f quantitative densitometry of the protein expressions. Data are shown as the
mean ± SD. *P < 0.05; **P< 0.01. IR ionizing radiation, n.s. not significant, TBI total body irradiation
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limitations, and the major drawback of these agents is
that they should be administrated before radiation or
immediately after radiation [33–35]. There is an unmet
medical need for identifying and developing effective
agents that can be used to rescue lethal-dose radiation
injury and enhance all-lineage hematopoietic cell recov-
ery when given after irradiation.
Previously, we reported that TXN mitigates mice from

radiation-induced death and enhances HSC recovery
when given at 2 h after radiation exposure in a mouse
model of radiation injury [18]. Our current study has
important clinical relevance. Individuals exposed to radi-
ation may not be aware of the exposure until a few
hours later. Therefore, agents that are effective in rescu-
ing victims from radiation injury when given 24 h after
radiation exposure have great potential for clinical use.
The remarkable ability of TXN to mitigate radiation-
induced damage when administered intravenously 24 h
after lethal TBI makes it an attractive radiation
countermeasure agent for further development in the
use against radiation injury. Further supporting this
proposition is that TXN is highly competent in amelior-
ating the radiation-induced hematopoietic injury by
facilitating HSC recovery. We have shown that TXN
enhanced the recovery of multi-lineages of peripheral
blood cells such as WBCs and platelets. TXN-treated
mice demonstrated more cellular bone marrow. Import-
antly, TXN treatment had a higher number of CFU-
GEMM, KSL cells, and primitive SLAM + KSL HSCs.
Radiation causes HSC damage through several mecha-

nisms: increased production of ROS and induction of
oxidative stress [36, 37]; increased oxidative DNA
damage [38, 39]; activation of apoptotic cell death [40];
enhanced cell senescence [41, 42]; and promotion of HSC
differentiation [43]. Cell senescence, an irreversible prolif-
erative arrest, plays a critical role in radiation-induced
HSC injury. HSC senescence impairs HSC replication and
self-renewal, and thus reduces the HSC long-term



Fig. 6 TXN reduced γH2AX and p38 expression after TBI. Lin– BMCs were isolated and culture with appropriate growth factor as described in the text. Lin–

BMCs were irradiated with 3 Gy, and treated with and without thioredoxin (TXN) for 1 and 4 h. a Western blot analysis of p38, phospho-p38, γH2AX, and
GAPDH protein expression. Quantitative densitometry of the protein expressions of b phospho-p38 and c γH2AX. d Primary fibroblasts
were irradiated with 3 Gy with and without TXN for 1 h and stained with γH2AX foci (red) and DAPI (blue). Data are shown as the mean
± SD. *P < 0.05; **P < 0.01. n.s., no statistical difference. IR ionizing radiation, n.s. not significant, UT untreated
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repopulating capacity [44]. Originally described as an anti-
oxidant, TXN also plays numerous roles as a transcription
factor and signaling molecule [20, 21]. The levels of TXN
were found to correlate with organismal lifespan [45, 46].
Pharmacological and genetic inhibition of TXN induced
premature senescence in skin fibroblasts and hepatic
cancer cells, suggesting a role for TXN in the regulation
of cell senescence [47, 48]. Our results demonstrated that
TXN-treated mice had lower SA-gal-positive cells
compared to saline-treated mice. The effects of TXN in
reducing cell senescence after radiation injury were
further validated in primary fibroblasts. p16 is one of
the vital biomarkers and an important mediator for
cell senescence [27, 49]. TXN treatment suppressed
the p16 expression level, further supporting the
effects of TXN on cell senescence.
Activation of the p38 pathway contributes to the

induction of p16 and HSC senescence following exposure
to irradiation [43, 50]. It has been shown that radiation
causes HSC cell senescence through the activation of the
p38 pathway, and the inhibition of p38 activity with a spe-
cific inhibitor (SB203580) attenuated radiation-induced
hematopoietic cell injury. Inhibition of p38 activity
appears to be a promising strategy for HSC proliferation.
We have shown that TXN is able to downregulate phos-
phorylated p38. TXN serves as a potential mediator of
redox signaling by ROS-dependent and -independent
pathways [20, 51] and is involved in the regulation of
multiple biological processes such as antiapoptotic, anti-
inflammatory, and mitogenic activities [20]. The major
target of TXN in the cytosol is apoptosis signal-regulating
kinase 1 (ASK1). ASK1 is a member of MAP3 kinase
family, which activates both the c-Jun N-terminal
kinase (JNK) and p38 MAPK pathways [52]. TXN binds
to ASK1 and prevents ASK1 from full activation, thus
downregulating the p38 pathway [29].
Radiation-induced DNA damage can occur due to the

direct effect of radiation on DNA molecules, which
accounts for 30–40% of lesions, or by free radicals,
which accounts for 60–70% of lesions [39, 53]. Irradi-
ation induces a variety of DNA lesions, including
oxidized base damage, abasic sites, single-strand breaks
(SSBs), double-strand breaks (DSBs), and DNA protein
crosslinks [54]. DSBs are thought to be the most lethal
lesion induced by irradiation, as one unrepaired DSB
can be sufficient to trigger apoptosis [8, 17, 22]. γH2AX
is a vital marker for DSBs. We have found that TXN
reduces γH2AX expression in both murine Lin– bone
marrow cells and in primary fibroblasts. The reduction
in γH2AX expression could be due to less double-strand
DNA breaks from its antioxidant function and/or
enhanced DNA repair by TXN. Our preliminary data
indicate that TXN could upregulate the gene expression
of the Fanconi anemia/BRCA DNA repair pathway
(data not shown).
Radiation damage is complex and there are many

mechanisms underlying radiation damage such as iNOS
and cytokines [24], miRNA regulation [55], NF-kB
activation [56], caspase-dependent apoptosis [8], and
LC-II-induced autophagy [57]. In addition to reducing
cell senescence and downregulating p38 and γH2AX as
shown in the current study, TXN likely acts on other
signaling pathways and affects various cellular events.
TXN can act as a cellular growth factor and promotes



Sundaramoorthy et al. Stem Cell Research & Therapy  (2017) 8:263 Page 10 of 12
the proliferation of B cells and various transformed cells
[58, 59]. Since ERK1/2 and JNK are members of the
MAPK family, TXN modulation on ERK1/2 and JNK
after radiation cannot be excluded. Further studies with
these two enzymatic molecules should be explored.
Recent studies have implicated TXN in the regulation of
cell cycle progression through G2/M [60] and in the
p53-mediated base excision repair pathway [61]. TXN
activates the MEKK1-JNK signaling pathway, leading to
IkB degradation and NF-kB activation [56]. It has been
shown that TXN directly interacts with PTEN, inhibits
phosphatase activity and membrane binding of PTEN, and
activates the Akt pathway [62]. TXN can translocate to the
nucleus and regulates the functions of several transcription
factors including Ref-1, GR, HSF1, HDAC4, HIF1a, NFkB,
Nrf2, PPARg, RUNX2, and SP1 [63, 64].
In the current study, TXN was given intravenously

every other day for five doses. We are currently optimiz-
ing thioredoxin administration regimens and testing
different administration routes, including intramuscular
or subcutaneous injection. Intramuscular or subcutaneous
injection will offer a simpler and more practical route of
administration, particularly in a mass casualty scenario.
Importantly, TXN has several important features that
make it an attractive candidate for further development as
a radiation mitigator. TXN promotes the recovery of
hematopoietic stem cells and enhances the recovery of
multiple lineages of hematopoietic cells. This is significant
as G-CSF only works on myeloid progenitors and only
enhances the recovery of neutrophils. TXN affects and
modulates diverse cellular events, including cell senes-
cence, apoptosis, and double-strand DNA breaks. TXN is
a ubiquitously expressed endogenous protein, eliminating
the concerns of developing immune response following
administration. TXN can cross the cell membrane and
enter cells efficiently. Therefore, TXN can be simply added
into an HSC culture or administered systematically.

Conclusion
In summary, our study shows that TXN effectively miti-
gates TBI-induced hematopoietic injury in mice, even
when given 24 h after radiation exposure. Our results
demonstrate that TXN can be potentially used as an
effective medical radiation countermeasure.
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