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The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its
surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis,
etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated
interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring
the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction
power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate
approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a
highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic
interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to
achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization
strategies, and coculture systems. In this review, we present an overview of the current models and approaches to
generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering.
These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type
of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
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Background

Bone architecture and development

Bones are hierarchically organized over multiple length
scales. Macroscopically, bone can be divided into com-
pact and trabecular tissues, each with very different
mechanical strength and stiffness (Fig. 1a). The micro-
scopic architecture of the former is characterized by
osteons and Haversian channels containing nerves and
blood supply, whereas the latter is comprised of inter-
connected trabeculae and the presence of the bone mar-
row [1] (Fig. 1b). At a molecular level, bone extracellular
matrix (ECM) is composed largely of the fibrous macro-
molecule collagen type I and mineralized inorganic
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hydroxyapatite crystals [2] (Fig. 1c). Bone is primarily
vascularized by an arterial network, but within the bone
marrow cavity and the Haversian channels the vascula-
ture branches into thin-walled capillaries, whose funda-
mental role is the exchange of nutrients and signals
between blood and bone cells [3].

Bone fulfills a wide range of physiological functions. As
essential structural and load-bearing elements, bones rep-
resent the foundation of physical locomotion and protect
our internal organs. Due to the presence of the bone mar-
row, long bones serve as the tissue origin of the biological
components required for hematopoiesis. Moreover, osse-
ous tissues can trap potentially harmful metals (e.g., lead),
as well as maintain the homeostasis of key electrolytes via
calcium and phosphate ion storage [4]. Bone formation
can occur through two distinct pathways, intramembra-
nous and endochondral ossification. In both cases, the
first step is the condensation of mesenchymal cells to
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produce a template for subsequent bone formation [5].
Intramembranous bone formation (typical of flat bones)
involves the direct differentiation of mesenchymal pro-
genitor cells into osteoblasts, whereas endochondral ossifi-
cation (typical of long bones) involves the initial
differentiation of the mesenchymal progenitor cells into
chondrocytes, followed by their hypertrophy, matrix
mineralization, and replacement by bone tissue [6]. Both
intramembranous and endochondral ossification occur in
close proximity to vascular ingrowth. During intramem-
branous ossification, capillaries invade the differentiating
mesenchymal zone, whereas in endochondral ossification,
hypertrophic chondrocytes recruit the infiltrating vascula-
ture. Initial vascularization is followed by invasion of oste-
oclasts and osteoblasts, with coordinated resorption of
hypertrophic cartilage and subsequent mineralization of
the ECM and bone formation [7]. Hence, vascularization
occurs from the ossification centers toward the growth
plate and determines the rate of bone ossification [8]. It is
interesting to note that many of the processes that occur
during long bone formation are recapitulated during frac-
ture healing [9], underscoring the importance of know-
ledge of bone development for the design of more
effective strategies for bone repairing [6]. Vascular endo-
thelial growth factor (VEGF) is a key regulator of angio-
genesis and thus bone development [10]. For instance,
VEGE-A gene depletion was shown to attenuate the re-
sorption of hypertrophic chondrocytes and bone

formation, highlighting the role of VEGF-dependent
angiogenesis during bone formation [11]. VEGEF-A levels
were also found to be dependent on the oxygen-sensing
hypoxia-inducible factor (HIF)-1a pathway in the modula-
tion of bone mass, thus confirming the role of neoangio-
genesis for the homing of osteoblast progenitor cells and
for providing bone formation/promoting factors [12]. In
fact, besides bone development, vasculature is also essen-
tial for bone remodeling, and fracture healing is also
highly dependent on the vasculature. Dysregulated inter-
actions between the vasculature and bone cells are the
basis of a number of different pathologies [13]. Some of
these, such as avascular necrosis and osteoporosis, are as-
sociated with a diminished vascular supply [14, 15],
whereas others such as Gorham-Stout disease, a form of
idiopathic osteolysis caused by abnormal proliferation of
vascular structures originating in the bone [16], and
Klippel-Trénaunay syndrome, characterized by vessel mal-
formations and overgrowth of bones and soft tissues [17],
are caused by excessive vascularization.

Bone and related pathologies

Bone diseases can cause loss of bone strength and density,
and they may arise from nutrient deficiencies, abnormal
development, genetic disorders, impaired vasculature, and
other causes. Table 1 summarizes and compares the main
pathologies affecting bone.
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Table 1 Etiology, current treatments, and role of vasculature in the main pathologies affecting bone

Etiology/risk factors

Current treatments

Role of vasculature

Osteoporosis, loss of bone
density

Altered balance of bone remodeling:
greater bone removal by osteoclasts
and then production by osteoblasts

(8l

Traumatic, congenital, postoperative,
metabolic, endocrine; age, joint
overuse, obesity are common risk
factors [274]

Osteoarthritis, progressive
degeneration of cartilage
and bone

Osteomyelitis, infection
within bone

Infection by Staphylococcus aureus, but
also by other Gram-negative cocci and

Gram-positive bacilli [45] [46]

Osteonecrosis, death of
bone cells, arthritis, and
destruction of bone

Inadequate vascular supply to the
bone; long-term steroid treatment,
alcohol abuse, joint injury, arthritis,
cancer are common risk factors [52]

Fractures, loss of bone
contiguity

Mainly trauma; osteoporosis, low
mineral density, age, tumors are
common risk factors [278-280]

Osteosarcoma, bone
malignancy

Occurring mostly in the medullary
cavity of long bones: environmental
factors, chromosomal abnormalities,
p53 mutation are common risk factors
[72]

Administration of bisphosphonates,
which shorten osteoclast life span and
inhibit bone resorption [19]

Symptomatic treatments through
physiotherapy, orthopedic aids and
orthoses, pharmacotherapy, total joint
replacement [275]

Parenteral course of broad-spectrum
antibiotics and surgical debridement

Nonsteroidal anti-inflammatory drugs
to reduce pain and inflammation;
bone surgery, grafting, and joint
replacement [276]

Fracture reduction and immobilization;
bone autograft, allograft, or synthetic
materials [59]

Depending on the stage, chemotherapy,
radiation therapy, surgery (@amputation,
grafting, local excision) [281]

Possible link between decreased
production of vasodilator molecules
by endothelial cells and increased
bone loss [20]

Increased vascularization and
neoangiogenesis in the joint; increase
in VEGF level in osteoarthritic
chondrocytes [43]

Poor vascularity can cause both
development of the infection and
resistance to antibiotics [46]

Compromised subchondral
microcirculation, vascular interruption,
intravascular occlusion, and
extravascular compression [277]

Vascular supply is critical for fracture
healing; VEGF treatment can enhance
fracture repair [57]

Vasculature is critical for tumor
survival, osteosarcoma generally
involves downregulation of
anti-angiogenic factors [73, 74]

VEGF vascular endothelial growth factor

Osteoporosis refers to the loss of bone density result-
ing from an altered balance of the bone remodeling
process, and affects approximately 10 million US adults
50 years of age and older [18]. The most widely used
osteoporosis treatment is the administration of bispho-
sphonates, which shorten the osteoclast life span and in-
hibit bone resorption [19]. Although general risk factors
of osteoporosis are well documented, little is known
about the role of vasculature [20]. Some studies have re-
vealed a connection between low bone mineral density
and increased cardiovascular morbidity/mortality [21,
22]. Endothelial cells (ECs) are known regulators of
vascular tone by releasing vasodilator molecules, such as
nitric oxide (NO), and they have been addressed as a po-
tential link between cardiovascular diseases and osteo-
porosis. Studies in rats showed that the inhibition of NO
production or NO synthase (NOS) activity was followed
by marked bone loss [23, 24], while human studies
revealed lower NOS expression resulting from estrogen
deficiency [25-27]. Since the presence of estrogen
receptors has been found in human ECs [28, 29], it is
possible that estrogen deficiency seen in postmenopausal
women could alter the endothelial function of bone
microcirculation. Although these studies suggest that
endothelial dysfunction may play a role in the develop-
ment of osteoporosis, the exact causal relationship has
yet to be determined.

Osteoarthritis is the main cause of disability in the
USA [30], and its hallmark is the progressive degener-
ation of cartilage. However, OA affects the whole joint

and all tissues play a role in the disease [31]. In particu-
lar, the subchondral bone has been reported to be crit-
ical in the pathogenesis of OA [32]. During movement,
there is continuous functional interaction across the
osteochondral junction. Under the diseased state, altered
mechanical loading in cartilage induces changes in bone
and vice versa [33, 34]. The communication between the
two tissues, however, is not limited to mechanical coup-
ling and the associated mechanotransduction. Recent
evidence indicates that the calcified cartilage and sub-
chondral bone are not an impermeable barrier, and some
molecules are capable of diffusing across the osteochon-
dral junction [35-38]. Blood vessels and microchannels
have been found to reach from the subchondral bone all
the way to the uncalcified cartilage, and there is evidence
of contact between uncalcified cartilage and subchondral
bone and the marrow spaces [33, 39-41]. During OA,
the osteochondral junction is significantly altered, allow-
ing greater transport and cellular crosstalk between
cartilage and bone [32, 38, 42]. Another hallmark change
of the osteochondral junction occurring during OA is in-
creased vascularization and neoangiogenesis [38, 43],
which may further contribute to the molecular crosstalk
between cartilage and bone. Part of this signaling in-
volves an increase in the VEGF level in osteoarthritic
chondrocytes compared to those in healthy cartilage
[43], possibly contributing to the induction of vascular
invasion as part of a proregenerative mechanism. In
turn, ECs have recently been reported to enhance chon-
drogenic differentiation of mesenchymal stem cells
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(MSCs) [44], suggesting the potential of significant mo-
lecular interplay between subchondral bone vasculature
and cartilage, an aspect that has not been much investi-
gated. Overall, increased vascularity in the subchondral
bone is associated with OA severity in cartilage and with
clinical disease activity [33].

Another pathogenic bone condition with devastating
consequences is osteomyelitis (OM). OM can be broadly
defined as an infection within the bone and is classified
by duration (acute or chronic), pathogenesis (trauma,
contiguous spread, hematogeneous, surgical), site, ex-
tent, or type of patient [45]. Poor vascularity is a prime
cause for both the development of an infection and re-
sistance to antibiotics [46]. Acute OM can be eradicated
before osteonecrosis occurs if the infection is treated
promptly and aggressively with antibiotics and surgical
debridement [46]. However, in an established/chronic in-
fection, fibrous tissue and chronic inflammatory cells en-
capsulate the infected site, reducing vascular supply,
inhibiting an effective inflammatory response, and limit-
ing the action of antibiotics [46]. In addition, the bac-
teria become encapsulated within a biofilm, that both
protects the bacteria from the body’s defenses and anti-
biotics and serves as a chronic source of new bacterial
infection [45-47]. Several therapies intended to enhance
blood flow to vascular or chronically infected areas have
been tested in experimental models or clinical trials, in-
cluding hyperbaric oxygen therapy, PRP, and VEGF de-
livery [47-49]. Recently, a VEGF gene-transfected
muscle flap was shown to be effective as a treatment to
supplement systemic antibiotic treatment in the manage-
ment of experimental OM in a rodent model [50, 51].
These strategies seek to enhance the body’s own defense
and the effectiveness of antibiotics by enhancing blood
flow to avascular tissue.

Osteonecrosis, or avascular necrosis (AVN), occurs
when the blood supply to the bone is disrupted, pre-
cipitating death of the bone cells, arthritis, and destruc-
tion of the hip joint. Common risk factors include
long-term steroid treatment, alcohol, abuse, joint in-
jury, arthritis, and cancer—all associated with altered
blood supply [52]. The risk greatly increases with cor-
ticosteroid use (to treat pain and inflammation),
bisphosphonate (to prevent bone loss), and anti-
angiogenic therapy (in the treatment of some cancers
or leprosy) [53, 54]. Areas susceptible to AVN have sev-
eral common characteristics: they have limited routes
of vascular supply, they undergo relatively high rates of
bone turnover, and they may have higher than normal
exposure to bacterial infections [55]. Evidence that re-
duced vascular supply causes AVN is indicated by the
rise in AVN incidence following anti-angiogenic treat-
ments used in cancer therapy, such as the VEGF-speci-
fic antibody bevacizumab, the tyrosine kinase inhibitor
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sunitinib (Sutent), and the mTOR inhibitor rapamycin,
and new treatments for leprosy, such as lenalidomide.
Osteoclasts and blood vessels are closely associated
during bone remodeling, and recent studies indicate
that osteoclasts promote angiogenesis through secre-
tion of factors such as matrix metalloproteinase 9
(MMP9). Poor vascularization occurs in certain inflam-
matory and immunosuppressive states and in the pres-
ence of infection as well. While the pathogenesis of
AVN is largely agreed upon, the cellular and molecular
mechanisms are less understood, and thus counter-
treatments to prevent the condition during anti-
resorptive and anti-cancer treatments are not available.

Trauma-related injuries can lead to bone fractures,
whose healing is critically dependent upon an adequate
vascular supply. Breakage of the bone initiates the frac-
ture healing process, which begins with an inflammatory
reaction, followed by the processes typical of endochon-
dral ossification for a period of up to 28 days. Neovascu-
larization is critical for successful bone formation, since
vascular endothelium interruption is the first event fol-
lowing trauma, which could lead to the formation of
necrotic tissue. Experimental evidence showed impaired
bone formation with administration of anti-angiogenic
factors [56], whereas VEGF treatment enhanced fracture
repair [57]. Clinical evidence showed that in the pres-
ence of decreased vascular perfusion to the fracture, the
incidence of impaired healing (delayed union or non-
union) increases from 10-15% to 46% [58]. Standard
treatment to augment bone healing and prevent delayed
union or nonunion is represented by the use of auto-
graft, allograft, or synthetic materials [59]. Bone
marrow-derived endothelial progenitor cells (EPCs) par-
ticipate in the generation of new blood vessels (vasculo-
genesis) at the site of injury [60, 61], and they have been
shown, in combination with bone marrow-derived
MSCs, to augment bone healing [62, 63]. Significant pro-
gress in improving fracture healing is hindered by the
limited knowledge of the molecular mechanisms leading
to nonunions; thus, a better understating of the bio-
logical pathways involved in this process would certainly
benefit from the development of specific clinical
therapies.

Bone also plays a role in pathologies related to ionic
homeostasis, such as calcium and phosphate [64]. In
particular, osteocytes are involved in phosphate homeo-
stasis through the expression of different proteins, such
as dentin matrix protein 1 (DMP1) [65], Phex, and fibro-
blast growth factor 23 (FGF-23) [66]. In addition to be-
ing key ions in systemic physiology, including muscle
functions, calcium and phosphorous homeostasis is cru-
cial for the development of the growth plate, which must
be mineralized to promote proper vascular invasion and
subsequent bone formation [67]. Bone may also act as a
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reservoir of lead, contributing to systemic toxicity [68],
and it is the target tissue for the actions of a number of
teratogens (e.g., valproic acid, thalidomide, etc.) [69, 70].
Studying the mechanism of how these toxins act at the
cellular and molecular levels with bone is indeed crucial
to developing new treatments.

Osteosarcoma is the most common bone malignancy af-
fecting predominantly adolescents and young adults, with
a 5-year survival rate of about 50-60% [71]. Osteosarcoma
occurs mostly in the medullary cavity within the metaphy-
sis of long bones, an active bone growing region, and then
can propagate to the bone cortex and the surrounding soft
tissues. The molecular pathogenesis of this tumor is quite
complex and involves several elements, such as environ-
mental factors (e.g., UV and ionizing radiation, methylcho-
lanthrene and chromium salts, etc.), chromosomal
abnormalities, p53 mutations, and so forth [72]. As for
many other tumors, vasculature is a critical factor for the
survival and proliferation of cancer cells; in fact, osteosar-
coma generally involves downregulation of anti-
angiogenic factors, such as thrombospondin-1 [73] and
pigment epithelium-derived factor (PEDF) [74]. Although
osteosarcoma is known as a vascular tumor, there are
contradictory data about the correlation between the
microvascular density/ VEGF expression and the forma-
tion of metastasis [75, 76]. Emerging evidence suggests
that the blood vessels of bone may play a role in the inter-
actions between other tumors and the bone microenviron-
ment in the pathogenesis of bone metastasis [77]. The
extravasation of tumor cells can be related to the molecu-
lar receptors typical of a tissue/organ-specific blood vessel
[78]. Interestingly, blood vessels located in the
metaphysics of long bones express specific adhesion pro-
teins, such as P-selectin and E-selectin, which have been
shown to promote interaction and subsequent adhesion of
tumor cells [79]. One widely studied example of this kind
of interaction is the preferential spreading of breast cancer
metastasis to bone. In fact, breast cancer cells express
chemokine receptors, integrins, cadherins, and bone-
remodeling factors that contribute to the successful and
preferential spread of tumor to bone [79].

Due to the multifactorial nature of bone diseases, the
aging population, and increased occurrence of trauma-
related injuries, bone disorders represent a big concern
and the current treatments do not provide optimal out-
comes. Furthermore, any alteration in the vascular
supply may lead to an increased susceptibility to osteo-
porosis, osteonecrosis, and osteomyelitis [8]. Animal
models have been traditionally utilized in research to
mimic these human pathologies. Nevertheless, on mul-
tiple occasions, animal models have been unsuccessful
and unreliable in predicting the processes and develop-
ment of human pathologies and the response to drug
candidates, because their physiology is fundamentally
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different from that of humans. To overcome this defi-
ciency, tissue engineering may represent an alternative
platform by establishing in-vitro pathophysiological
models based on human cells to study the causes and
progression of specific diseases, and to develop and test
candidate therapeutic strategies.

In-vitro modeling of 3D vascularized bone models
through tissue engineering approaches

The successful development of in-vitro engineered bone
is critically dependent on the ability to introduce a 3D
vascular network that guarantees adequate oxygenation,
mass transfer, nutrient delivery, and by-product removal
[80]. Here, we summarize the challenges in generating
in-vitro vascularized bone constructs and the main ma-
terials, scaffolds, and cells required to achieve this goal,
with a focus on stem cell employment.

Challenges of in-vitro vascularized bone engineering
Bone is a highly vascularized organ and the development
of vasculature and mineralized matrix requires a syner-
gistic interaction between osteogenic and endothelial
precursors [81]. These mechanisms have been studied in
animal models, but they are still not understood due to
the complexity of the in-vivo environment. In-vitro
scale-up of bioengineered tissues is known to be limited
by diffusion issues; therefore, the establishment of a
functional vasculature within the construct could be es-
sential to generate an accurate and large enough model
capable of mimicking the native tissue. Current
vascularization strategies comprise the use of angiogenic
factors combined with 3D scaffolds (Fig. 2a), prevascu-
larization strategies (Fig. 2b), and the use of coculture
systems (Fig. 2¢) [82, 83].

The first approach relies on the induction of
vascularization by endothelial precursors using angio-
genic factors such as VEGF. For instance, Braghirolli et
al. [84] demonstrated that an electrospun poly(caprolac-
tone) scaffold loaded with VEGF promoted the penetra-
tion and proliferation of EPCs within the 3D matrix.
This process is primarily EC regulated and, in the con-
text of TE, specific interactions with the scaffold mater-
ial and other cell types are needed for optimal in-vitro
vascularization. Thus, the current research trend is fo-
cused on the production of prevascularized constructs
in-vitro. This approach proposes the generation of stable
vasculature in-vitro using ECs and subsequent in-vivo
implantation in the target site [85]. The principal draw-
back of this method, when utilized for in-vivo bone re-
pair, is the difficulty of generating stable in-vitro
vasculature prior to implantation. The use of coculture
systems including different cell types is more complex
and several parameters must be taken into account for
the successful outcome of a vascularized bone construct,
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namely cell type (osteogenic and vasculogenic), media,
seeding methodology, culture (static or dynamic), scaf-
folds, and microenvironment (e.g., oxygen tension) [83].
In the past decade, different attempts to generate vascu-
larized bone constructs using osteogenic precursor cells
and vascular progenitor cells have been made, but the
majority of these studies were conducted through in-
vivo models [86—88]. It has been difficult to create a ver-
itable in-vitro model containing bone tissue and
vasculature-like structures within the same construct. A
recent attempt to introduce simultaneously osteogenic
differentiation and vasculature development in-vitro was
made by Tsigkou et al. [89], which combined human
bone marrow MSCs and human umbilical vein endothe-
lial cells (HUVECs) seeded on a polymeric scaffold and

in a hydrogel, respectively. They observed the formation
of capillary-like structures 4—7 days after implantation in
a mouse model, and MSCs were found to be necessary
for the development of a stable vasculature. The main
outstanding issue is still the generation of accurate in-
vitro models, due to the difficulties of obtaining quality
mineralized bone matrix, further complicated by the
introduction of the vasculature.

Bone mineralized matrix formation is provided by os-
teoblasts during embryonic development and postnatal
growth, yet about 95% of the cellular population residing
in the adult skeleton is represented by osteocytes.
Osteocytes are the terminally differentiated osteoblasts
embedded in the lacunae within the bone matrix. They
are characterized by cellular processes radially spread
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toward the mineralized matrix inside tiny tunnels called
canaliculi, filled by canalicular fluid [90]. The presence
of osteocytes in an engineered bone construct is an indi-
cation of a mature developed osseous tissue. Although
osteocytes play a secondary role in bone tissue forma-
tion, they are functionally important in its homeostasis,
mechanosensation, and mechanotransduction [91, 92].
Osteocytes sense canalicular fluid flow-derived shear
stress through their primary cilium [92] and specific ion
channels and mechanotransduction proteins, releasing
in response paracrine signaling molecules such as NO,
ATP, and prostaglandins, which regulate osteoblast and
osteoclast activity [93-95]. The lacuna—canalicular net-
work connects the osteocytes to the vasculature and
there is evidence linking osteocyte apoptosis and re-
duced VEGF production with consequent impaired vas-
cularity and bone strength [96]. Taken together, these
findings highlight the importance of the presence of
mature osteocytes in an engineered bone. For this rea-
son, many investigations are focused on the derivation
of mature osteocytes from stem cells to better under-
stand their physiology and assess their potential in bone
engineering [97-99].

Bone is also innervated by sensory and sympathetic
nerve fibers that, in addition to skeletal pain transmis-
sion, play a role in bone metabolism. Bone cells have
been recently shown to express adrenoceptors, receptors
for norepinephrine (NE), calcitonin gene-related peptide
(CGRP), substance P, and vasoactive intestinal peptide
(VIP) [100, 101]. NE reuptake influences bone remodel-
ing by osteoclasts [102], CGRP deficiency was linked to
decreased bone formation in mice [102], while SP has
been shown to have both dose-dependent bone-
resorbing and formation activity [102]. These are just a
handful of examples on how innervation has been linked
to bone production and turnover; thus, an in-vitro engi-
neered bone construct would certainly benefit from the
presence of nerve endings and related neurotransmitters.
However, the generation of a vascularized and inner-
vated bone construct clearly presents an additional level
of complexity in terms of integrating and regulating such
different tissue types [103].

Another parameter to consider when developing verit-
able in-vitro vascularized bone is the incorporation of
osteoclast activity inside the engineered constructs.
Osteoclasts are essential for bone remodeling by resorb-
ing bone matrix and generating physical space for osteo-
blasts and ECs, thus allowing the formation of new bone
tissue and vasculature [104]. The dissolution of the
inorganic phase of bone matrix takes place by the secre-
tion of hydrochloric acid, while the organic matrix is
resorbed by secreted enzymes, like cathepsin K and me-
talloproteinase 9 [105]. The resorption activity as well as
the area and depth of the resorption pits can be analyzed
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in-vitro using osteoclast-like cells derived from mono-
cytes, for instance the RAW 264.7 cell line [106]; how-
ever, to date, there are considerable variations in the
examined parameters. There is no specific, single func-
tional osteoclast cell marker; thus, different parameters
should be analyzed together, such as tartrate-resistant acid
phosphatase 5b (TRAP 5b) [107], morphological changes
from monocytes [104], and 3D volume characterization of
pits [108]. Furthermore, as different materials can affect
the response of osteoclasts, the choice of the scaffold is
critical for an optimized bone engineering strategy. Differ-
ent authors have studied the resorption ability of osteo-
clasts using different scaffolds/materials, from dentin to
bone substitutes, as well as calcium phosphate and bio-
active glasses [109-112], and have observed specific re-
sorption rates depending on the material used. For
example, Keller et al. [112] found that natural bioma-
terials were resorbed more rapidly than synthetic
ones, while Badran et al. [111] showed an inhibition
of osteoclast activity by increasing mineral density.

As highlighted by Alexander et al. in a recent minire-
view [31], a TE approach can be used for the develop-
ment of in-vitro preclinical models of normal/
pathological tissue function, but an effective high-
throughput assay should consist of a minimal system
with well-defined performance parameters. These
systems should model the structure and function of hu-
man tissue, as well as the physiological response to dif-
ferent stimuli, such as the interaction with adjacent
tissues [113—115]. Bone actively interacts with cartilage,
muscles, ligaments, tendons, and many other tissues in
its physiological function within the musculoskeletal
system [116—120]. An ideal in-vitro model of bone should
consider the possibility of studying its interaction with
other tissues, thus posing significant challenges in accom-
modating different, tissue-specific microenvironments.

Due to their pluripotency/multipotency, stem cells
represent an exceptional tool to achieve this complex
integration between bone and other tissues. A good
model to study the interaction between bone and cartil-
age was developed by Lin et al. [121], who produced a
biphasic construct mimicking the nature of the osteo-
chondral junction. This construct was developed using
a 3D-printed dual-chamber bioreactor that allowed the
creation of two separate yet communicating microenvi-
ronments [122]. Osseous and chondral phases were
generated using one stem cell type, bone marrow-
derived MSCs, encapsulated in a photocrosslinked
gelatin methacrylate (gelMA) hydrogel. Osteogenic and
chondrogenic media were used to differentiate MSCs
toward bone and cartilage phenotype, respectively. The
two constructs were independently controlled and
tested by the introduction of bioactive agents or candi-
date drugs.
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Although different models have been created to recap-
itulate the interaction between bone and other adjacent
tissues, to the authors’ knowledge, an in-vitro engineered
model coupling vascularized bone to another tissue has
not yet been developed. Such capability would be par-
ticularly relevant when engineering the osteochondral
junction, as only the simultaneous presence of bone
matrix, vasculature, and cartilage can enhance or permit
veritable behavior of the complex. In fact, the interac-
tions between vasculature and cartilage are well known
during in-vivo skeletogenesis [123, 124], and numerous
in-vitro studies have documented the molecular ex-
changes driving the inhibition of chondrocyte differenti-
ation, including the pivotal role exerted by VEGF
secreted by ECs [125-127]. However, a model also con-
taining subchondral bone would better mimic the com-
plex interaction among the three tissues. For these
reasons, a triphasic scaffold was produced by the authors
using a recently developed 3D-printed microphysiologi-
cal tissue system (MPS) bioreactor that allows the separ-
ate flow of specific media to the chondral and osseous
components, while maintaining them in contact and
allowing tissue—tissue communication [128] (Fig. 3). The
cartilage construct was engineered incorporating human
bone marrow-derived MSCs in a photocrosslinkable
gelMA hydrogel, while the vascularized osseous con-
struct was obtained by seeding MSCs and HUVECs in a
poly(e-caprolactone) (PCL) scaffold, produced through
additive manufacturing as described by Puppi et al.
[129]. Results from our preliminary assessments suggest
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a better differentiation of MSCs in the presence of the
HUVECs, which form interconnected tubular-like struc-
tures in the osseous compartment.

Overall, the development of a successful in-vitro model
of vascularized bone is heavily dependent on optimal se-
lection of scaffold/matrix able to guide the formation of
the different tissues, and on fine control of cell signaling.

Materials

Mineralized bone and associated vasculature are charac-
terized by different morphological and structural proper-
ties, thus different biomaterials are needed for the
engineering of both tissues to match their characteris-
tics. Different materials have been investigated for the
development of bone constructs, and evaluated both in-
vitro and in-vivo. Calcium phosphates (CaPs) have been
of great interest due to their osteoconductive properties.
The majority of research has been focused on two main
forms of CaPs, hydroxyapatite (HAp) and beta-
tricalcium phosphate (B-TCP), or the combination of
both [130]. Other inorganic materials that have been
exploited in bone engineering are bioactive glasses [131],
which have been shown to improve the formation of a
hydroxycarbonate apatite layer by osteoblasts in-vitro
and to support bone formation in-vivo [132]. The most
commonly used polymeric materials for bone engineer-
ing include many natural polymers, such as collagen,
fibrin, alginate, silk, hyaluronic acid, chitosan, and poly-
hydroxyalkanoates [133]. These biopolymers offer eco-
nomic and environmental advantages, such as low
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Fig. 3 a Cross-sectional bioreactor schematic. b Macroscopic and histological analysis of engineered osteochondral interface. ¢ Live/dead staining
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manufacture/disposal costs and renewability, as well as
biological advantages, such as supporting cell signaling,
adhesion, and cell-mediated degradation and remodeling
[134]. Synthetic polymers have also been thoroughly in-
vestigated as engineered bone scaffolds, by virtue of their
controllable and reproducible chemical-physical and
degradation properties, which can be tailored to the re-
quirements of the target applications [135]. The different
classes of polymers that have received significant atten-
tion include saturated poly(a-hydroxesters), such as
poly(glycolic acid) (PGA), poly(lactic acid) (PLA), and
PCL, and biodegradable polyurethanes, covering a wide
range of properties, including mechanical strength,
elasticity, biodegradability, hydrophilicity, and so forth
[135]. When considering the development of a capillary-
like network within a mineralized bone construct, the
most current models include the embedding of
endothelial-derived cells in hydrogels, such as Matrigel ,
collagen, and fibronectin [136-138]. However, these
materials have limitations in mechanical stability,
durability, and immunogenicity when implanted [139,
140]. One recent example to overcome these limitations
is represented by the use of methacrylated gelatin
(geMA), produced by conjugating methacrylate groups
to the amine-containing side groups of gelatin, which
becomes a photocrosslinkable hydrogel [141]. This ma-
terial is characterized by the advantages of both natural
and synthetic polymers, allowing the fine-tuning of
mechanical properties, while preserving biological cues.
Different studies in the past have reported the capability
of creating vascular-like structures using gelMA and ECs
[80, 89, 142].

There have been a number of investigations that ex-
plored a variety of biomaterials for the engineering of
vascularized bone; however, identifying the most suitable
biomaterials remains a difficult task, since each material
has its inherent drawbacks. Ceramics are characterized
by brittleness and the biodegradation rate not matching
the formation of new bone tissue; natural polymers pos-
sess low mechanical, thermal, and chemical stability; and
synthetic polymers lack biological cues. A logical path to
overcome these limitations would be to combine differ-
ent materials to obtain constructs with improved proper-
ties. An example of this paradigm is the development of
nanocomposite materials based on biopolymers and cer-
amic nanofillers, in an attempt to exploit the biological
activity of natural polymers as well as the osteoconduc-
tivity of ceramics [143].

Scaffolds

All of the biomaterials already described require multi-
step processing to develop 3D scaffolds/matrices capable
of inducing and supporting osteoblast proliferation and
differentiation, as well as vasculature development.
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Accordingly, in addition to osteoinductivity and osteo-
conductivity, an ideal scaffold should have functional
physical properties such as interconnected macroporos-
ity with pore size larger than 100 pm for optimal osteo-
blast differentiation and formation of new blood vessels,
and biocompatible stiffness to match the mechanical
properties of native bone [144]. Substrate mechanical
properties greatly influence stem cell osteogenic differ-
entiation, as well as EC behavior [145]; for instance, a
scaffold Young’s modulus in the range 25-40 kPa directs
MSCs toward osteoblastic differentiation [146, 147].
Current technologies do not allow the production of
scaffolds with the exact mechanical properties of bone;
however, a number of groups have explored
development-inspired precursor templates to instruct
stem cells to form a mature tissue [148—151]. Although
such constructs do not possess the same mechanical
properties as native bone initially, they are engineered
in-vitro with sufficient stiffness to be implanted in a
load-bearing region and are able to guide stem cells to
develop mature bone. For instance, Daly et al. [152] pro-
duced an MSC-laden 3D-printed hypertrophic cartilage
template, made of a reinforced alginate bioink, which
developed into functional vascularized bone when im-
planted in mice.

Biologically inspired scaffolds should also harbor sig-
nals that act to induce the simultaneous development of
bone and vasculature. Different biological scaffolds have
been used for the development of in-vitro vascularized
bone models, including decellularized bone and specific
ECM preparations. Decellularized bone has been histor-
ically considered and applied as a biologically derived
matrix, able to induce mineralized bone production by
osteoprogenitor cells. A recent study by Correia et al.
[81] showed the employment of decellularized bone
plugs as scaffold for HUVECs and MSCs seeded in a
fibrin carrier. Vasculature was able to grow inside the
porosity of the scaffold both in-vitro and then in- vivo
after subcutaneous implantation in mice. The use of
decellularized ECM has been reported recently by Gao
et al,, who developed a vascular patch using MSCs in a
decellularized human aortic matrix [153]. Another strat-
egy involves the functionalization of “smart” scaffolds
with angiogenic and osteogenic factors such as VEGE,
providing a highly localized signal to control stem cell
fate [154].

The need to control macrostructural and microstruc-
tural properties of a scaffold to meet key requirements
of a specific application has led to the development of
different manufacturing technologies, such as solvent
casting/particulate leaching, freeze drying, phase separ-
ation, and combinations of these techniques [135], each
conferring to the scaffold different properties. For in-
stance, using a thermally induced phase separation
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(TIPS) technique, Mannella et al. [155] developed a por-
ous scaffold with a pore size gradient able to mimic the
porosity of the cancellous bone. Although several studies
about the production of bone scaffolds using the afore-
mentioned techniques have been published, these meth-
odologies are lacking in control over the fine
architecture of the structure, specifically in relation to
pore morphology and interconnection, fundamental re-
quirements for the introduction of vasculature. There
are no precise values for specific bone and/or vascular
ingrowth; pore sizes greater than 100 pm have been
shown to favor bone formation [156], while capillary
density is promoted when pore sizes are greater than
300 pum [130]. For these reasons, solid freeform fabrica-
tion (SFF) or additive manufacturing (AM) techniques
are attracting great interest, owing to their capabilities of
producing predefined interconnected porous structures,
using natural and synthetic polymers, as well as ceramics
as starting materials [157]. AM techniques comprise the
layer-by-layer building of 3D structures, based on
computer-aided design (CAD) and computer-aided
manufacturing (CAM) processes. Depending on the
specific working principles, AM can be classified into
laser-based systems (e.g., selective laser sintering, stereo-
lithography), printing-based systems (e.g., 3D printing),
and nozzle/extrusion-based systems (e.g., fused depos-
ition modeling, computer-aided wet-spinning), each
allowing for specific scaffold macroarchitectural and
microarchitectural features [158]. AM has significantly
improved the technical ability to control key factors in
bone scaffolds, such as composition, pore geometry, size,
and interconnectivity, as well as scaffold mechanical per-
formance. The fine-tuning of morphological parameters
provided by AM allowed researchers to produce scaf-
folds for the concomitant development of osseous and
vascular tissue. 3D printing has been thoroughly
exploited for the generation of bone scaffolds with vas-
cular integration, mostly using ceramics [159], but also
synthetic polymers [160], natural polymers [160], and
composites [160]. 3D-printed scaffolds have also been
loaded with bioactive molecules, such as BMP and
VEGEF, to promote bone formation and vascularization
respectively. Novel studies are exploring the incorpor-
ation of other molecules, such as KR-34893 indene com-
pound that stimulates MSC differentiation and mineral
deposition [160], oxygen-releasing agents like calcium
peroxide to solve O, diffusion issues [160], and platelet-
rich fibrin to stimulate bone marrow-derived MSC dif-
ferentiation [160]. AM and 3D-printing technologies
have also produced great advancements in the field of
microfluidics systems and organ-tissue chips that em-
ploy stem cells for in-vitro disease modeling and drug
screening [161-163]. In-vitro vascularized bone models
have steadily benefited from this technology. For
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instance, Jusoh et al. [164] recently reported a microflui-
dics platform based on HAp-loaded ECM to study
angiogenesis and osteogenesis in a vascularized bone
model. Furthermore, AM can be integrated with other
scaffold fabrication methods to fabricate hybrid architec-
tures with unique structural features, as described in
detail by Giannitelli et al. [165]. Although AM tech-
niques were widely studied for the development of bone
scaffolds, to date, there are few studies employing them
to develop in-vitro models of vascularized bone. A sum-
mary of the main scaffolds and fabrication techniques
employed in bone engineering is presented in Table 2.
Another fabrication technology that is increasingly
gaining attention is bioprinting, which refers to the pre-
defined and precise dispense of cell-laden biomaterials
for the construction of complex “living” 3D structures
[166]. If the cell selection is represented by osteopro-
genitor stem cells, the resulting structure will be com-
posed of cells capable of producing bone matrix. The
geometry and dimension of the construct can be con-
trolled in an automated manner such that specific
morphologies may be fabricated based on the applica-
tion. Bioprinting, thus, represents another promising ap-
proach for the production of in-vitro models of bone
[167]. Traditionally, bioprinting has been applied mainly
to the formation of soft tissues and in-vitro vasculature.
For instance, Norotte et al. [168] bioprinted single-
layered and double-layered vascular tubes with a diam-
eter ranging from 0.9 to 2.5 mm, using different vascular
cell types, such as smooth muscle cells and fibroblasts.
The identification of new stem cell sources as vascular
precursors, coupled with the advancement in bioink and
microfluidics technologies, has allowed bioprinting to
create constructs that mimic the arrangement of the vas-
culature in bone for more precise organ modeling.
Numerous studies of vasculature bioprinting and chips
using stem cells have disclosed different aspects of blood
vessel biology, such as the role of transforming growth
factor beta on normal vascular function [169], the role
of MSCs in promoting vasculature formation [170],
regulation of the perivascular stem cell niche by MSCs
[171], and the role of angiopoietin in MSC transition to
mural cells in the presence of ECs [172]. Bone bioprint-
ing requires the employment of materials with better
mechanical properties, needed to mimic the stiffness of
the bone matrix. One example of mechanically rein-
forced bioprinted construct has been made from alginate
and PLA nanofibers, supporting adipose-derived MSC
viability and differentiation [173]. Another approach is
the use of stem cell-laden hydrogels in combination with
thermoplastic fibers made of PCL or poly(vinyl alcohol)
(PVA) [174, 175]. Gao et al. [176] developed a photopo-
lymerized acrylated peptide, coprinted with poly(ethyl-
ene glycol) (PEG) which showed robust osteogenesis of
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MSCs. MSC osteogenesis has been also stimulated by
combining low-intensity pulsed ultrasound (LIPUS), as
mechanical stimulation, and a 3D-bioprinted PEG-RGD
construct [177]. Other materials have been employed, in
various formulations, for the development of bioprinted
bone constructs, ranging from agarose and gelatin to
PEG [178-180]. The integration of bioprinted vascula-
ture and mechanically stiffer substrates would greatly
improve the production of functional in-vitro vascular-
ized bone. One example of this paradigm featured a dual
3D bioprinting system based on fused deposition model-
ing (FDM) and selective laser ablation (SLA) [181]. The
authors used alternate deposition of stiff polylactide
(PLA) fibers and MSC/HUVEC-laden gelMA hydrogel
to achieve proper mechanical strength and biological
cues of complex vascularized bone constructs. Another
approach comprised the production of a mandible frag-
ment using an integrated tissue-organ printer (ITOP),
which was able to bioprint Pluronic-F127 hydrogel laden
with human amniotic fluid-derived stem cells (hAFSCs),
in combination with a PCL-based mechanical backbone,
and featuring incorporated microchannels for nutrient
diffusion [182]. Kolesky et al. bioprinted a thick vascular-
ized tissue using different polymeric templates and fugi-
tive inks. The construct was laden with MSCs in
combination with HUVECs, as well as other parenchy-
mal and stromal cells, showing robust osteogenesis and
functional perfusion of the vasculature [183].

The great landscape of current scaffold fabrication
technologies has provided a wealth of choices for the
generation of in-vitro vascularized bone constructs.
Future attention should be focused on high-throughput
and high-resolution AM techniques that are able to pro-
duce functional vasculature within a mature bone con-
struct. The key aspect is the biocompatibility of these
methods with the chosen cells of interest in order to ob-
tain their optimal functionality.

Osteogenic and vascular precursors

When considering the development of an in-vitro model
of vascularized bone, the selection of suitable cell
sources is crucial. A desired cell source must have little
to no limitation in terms of availability and be easy to
maintain and manipulate in-vitro. Adult MSCs are
widely employed for somatic TE by virtue of their ability
to differentiate into multiple lineages, such as cartilage,
fat, muscle, and bone [184]. MSCs can be readily iso-
lated from different tissue sources, such as adipose,
muscle, bone, and in particular, bone marrow, which is
the most widely used source [185]. In fact, bone
marrow-derived MSCs have been benchmarked as one
of the most appropriate cell sources for bone TE due to
their well-defined osteogenic differentiation [186—188].
By using an appropriate culture medium, MSCs can be
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expanded without differentiation, and induced to
undergo specific differentiation to a stable phenotype in
culture [189]. In addition to bone marrow-derived
MSCs, adipose-derived MSCs (ASCs) are now a widely
accepted source for bone tissue engineering applications
and have been employed also in numerous preclinical
and clinical studies [190]. Induced pluripotent stem cells
(iPSCs) and embryonic stem cells (ESCs) have also been
studied as potential cell sources for bone regeneration
[191-194]. Although pluripotent ESCs are a promising
cell candidate for the development of fully functional
vascularized bone in-vitro as they can form all special-
ized cell types constituting the human bone, including
its vasculature [195], ESCs research also raises ethical
and political controversies due to their derivation from
early human embryos [196]. For these reasons, the use
of iPSCs obtained by reprogramming of adult somatic
cells, thus avoiding the ethical problems inherent in ESC
research, has gained significant attention.

Current models of biomimetic, engineered vascular-
ized bone, fabricated by culturing human MSCs on 3D
scaffolds resembling the matrix of native bone [197], re-
quire a vascular compartment created using other cell
sources. Various sources of stem cells, such as ESCs,
MSCs, and iPSCs, have been identified as potential can-
didates for vascular engineering [198—202]. Endothelial
cells have also been successfully differentiated from am-
niotic fluid stem cells [203, 204]. The choice of vascular
precursor cells is crucial for functional production of a
proper vasculature within the in-vitro bone model.
Mature ECs have been traditionally used to stimulate
angiogenesis [205], among them HUVECs, which repre-
sent one of the most commonly employed cells in vascu-
larized bone engineering. These cells naturally form
vessel-like structures when cultured in hydrogels and,
most importantly, they were demonstrated to enhance
MSC osteogenesis in-vitro [86, 206—208]. Another cell
type that has gained attention are the EPCs, which were
found to be 10 times more proliferative than HUVECs
[209] and have been recently used, also in combination
with MSCs, to improve vasculogenesis in-vivo [210-213]
and in tissue engineering applications [214-216]. Blood
vessel development was also achieved by employing
iPSC-derived ECs [217].

As mentioned earlier, active osteoclasts are also a cru-
cial component of in-vitro bone modeling; however, the
exact optimal cell source for osteoclasts has yet to be de-
fined. There are several cell types that can be differenti-
ated into osteoclast-like cells, such as bone marrow and
peripheral blood mononuclear cells [109, 218], and hu-
man mononuclear leukocytes isolated from umbilical
cord blood [219]. Osteoclasts can be directly isolated
from native bone tissue [220]. RAW 264.7, a mouse
leukemic monocyte—macrophage cell line, has been
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frequently used to study osteoclastogenesis in-vitro
[221]. Primary monocytes can also be differentiated into
osteoclast-like cells and used to study osteoclastogenesis
in-vitro [222]. Furthermore, osteoclasts have been ob-
tained by differentiating macrophages derived from
human iPSCs [99].

These well-established, strong relationships among the
constituent cell types, taken together, underscore the im-
portant and fundamental requirement of these cells in the
success for development of vascularized bone in-vitro and
the production of a veritable bone model (Fig. 4).

Culture media

Based on the cells selected for the development of a vas-
cularized bone construct, the choice of culture media
and seeding methodology has to be carefully considered
to avoid negative, undesired effects. Different medium
formulations and supplements have been identified for
optimal osteogenic differentiation of stem cells.
Dexamethasone, [-glycerophosphate, ascorbic acid,
1,25-dihydroxyvitamin D3, and BMP-2 have significant
osteogenic inductive activity on MSCs by influencing
different aspects of their biology, such as activation of
specific genes (osteopontin, core binding factor al, alka-
line phosphatase, osteocalcin) as well as signaling path-
ways like Wnt [184]. Regarding the culture of
endothelial progenitors, VEGEF, basic fibroblast growth
factor (bFGF), and epidermal growth factor (EGF) are
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usually employed to stimulate endothelial progenitor ex-
pansion and differentiation/angiogenesis [223]. The use
of individual differentiation medium, endothelial or osse-
ous, generally yields satisfactory vasculature and miner-
alized matrix formation, albeit separately [224].
However, given the need for simultaneous development
of bone and vasculature, a coculture system must be set
up, and investigators have used either a combination of
the two differentiation media [88, 206, 225-227], a sin-
gle type of medium [88, 228], or osteogenic medium
with some vascular growth factors [229]. In the case of a
coculture system, while different cell types can be seeded
simultaneously to avoid uneven distribution inside the
construct and to allow communication between them,
the choice of culture media is very important to assure
cosurvival and differentiation. In another approach, dif-
ferent cell types can be expanded and differentiated
separately and then seeded together, thus avoiding the
media problem; however, some critical cell-cell interac-
tions will be missing and, as discussed earlier, the gener-
ation of a veritable in-vitro model, which requires
recapitulation of the interaction between bone cells and
vasculature, may thus be compromised. Another param-
eter that needs to be considered is the cell ratio. Signal-
ing between osteogenic and vascular precursors, as well
as their adult counterparts in the mature organ, directs
their functional integration (see Fig. 4). Altering the bal-
ance of this crosstalk compromises the engineering of

vasculature support

Endothelial cell:
vasculature development

osteoclast
modulation
(endothelins,
nitric oxide)

osteoclast-associated receptor

(VEGF, bFGF, cell-cell contact)

osteoblast differentiation and activity
(FGF, IL1-6, CSF, cell-cell contact)

bone matrix resorption

Fig. 4 Primary cellular interactions between ECs, osteoblasts, and osteoclasts in production of vascularized bone. VEGF vascular endothelial growth factor,
bFGF basic fibroblast growth factor, IL interleukin, CSF colony-stimulating factor, BMP bone morphogenetic protein, IGF insulin-like growth factor, MCP-1
monocyte chemoattractant protein-1, SDF stromal cell-derived factor-1, RANKL receptor activator of nuclear factor kappa-B ligand, OSCAR

Osteoblast:
bone matrix production

differentiation,

bone remodeling

(BMPs, IGF-II, MCP-1,
SDF-1, RANKL, OSCAR,
cell-cell contact)

Osteoclast:
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the vascularized bone tissue. Investigators have studied
varying combinations between osteogenic and vascular
precursors, ranging from a 1:1 mix to unbalanced ratios
in favor of osteogenic or endothelial precursors.
Although a positive trend can be identified in the use of
a 1:1 ratio, the results are also heterogeneous and an
ideal ratio cannot be defined a priori [230]. Table 3 sum-
marizes the main media and cell ratios that have been
used in the engineering of vascularized bone and their
major benefits and drawbacks.

A recently published review by Liu et al. [83] covered
different aspects of the medium combinations and seed-
ing methodologies used in coculture systems for vascu-
larized bone tissue engineering. However, due to the
heterogeneity of the experimental parameters used in
coculture studies, a clear trend is difficult to establish.

Considering the tight interactions between osteogenic
and vascular stem cells during development, and the
functional integration between bone and blood vessels in
the mature organ, the development of veritable in-vitro
models of this organ should comprise both types of cells
cultured in a mixed medium in order to not miss the
key interplay between osseous and vascular precursors/
mature cells.

Bioreactors

Bioreactors are generally defined as any device that is
able to dynamically sustain biological and/or biochem-
ical processes under precisely monitored and controlled
experimental and operating conditions (e.g, pH,
temperature, mechanical stimuli, time, nutrient supply,
and waste removal) [231]. Different types of experimen-
tal setups have been developed to optimize cell seeding
and mass transport, such as spinner flasks (Fig. 5a), ro-
tating wall vessels (RWVs) (Fig. 5b), and perfusion biore-
actors (Fig. 5¢). Spinner flasks and RWVs minimize the
nutrient gradient and metabolite concentration around
the construct, while perfusion bioreactors directly
perfuse media inside the scaffold, thus assuring mass
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transport within the porosity [232]. Using optimal ma-
terial-scaffold—cell systems, coupled with the higher
control over experimental parameters, has made biore-
actors ideal means for the development of 3D tissues in-
vitro. This is particularly true for the engineering of bio-
logical interfaces or complex tissues, like the osteochon-
dral junction and vascularized bone. Bioreactors, in
combination with MSCs, have in fact been used for the
recreation of the osteochondral tissue interface, as re-
ported in a number of studies [121, 233, 234]. In
particular, culturing in flow perfusion bioreactors has
been shown to upregulate expression of osteoblastic
markers [235-237], and these bioreactors have been
employed for the production of engineered bone [238—
240]. To improve the amount and quality of bone be-
yond what has been produced by an in-vitro process,
various studies have reported the use of “in-vivo bioreac-
tor” systems to produce a clinically relevant amount of
vascularized bone (Fig. 5d). These approaches were
based on the body’s healing mechanism that supports
the formation of neotissue in different kinds of scaffolds,
ranging from calcium-alginate gel, to B-TCP, to natural
bovine bone mineral-coated titanium meshes implanted
subperiosteally in-vivo [241-243]. The engineered bone
produced with this approach could be harvested from
the “living bioreactor” host and subsequently trans-
planted successfully at a bone defect site. While in-vivo
engineering surely ensures production of enhanced vas-
cularized bone, high-throughput assays require a large
number of identical samples that cannot be performed
by in-vivo systems, thus necessitating the development
of in-vitro platforms of vascularized bone engineering.
In addition to improving in-vitro osteogenic differenti-
ation of MSCs in the presence of ECs, several studies
have reported better matrix mineralization by osteogenic
MSCs cultured under dynamic conditions rather than
static ones [237, 244—246]. However, the combination of
these two strategies using a flow perfusion bioreactor
did not significantly enhance osteogenic differentiation

Table 3 Main strategies of coculturing osteogenic and vascular precursors for vascularized bone engineering

Medium composition Cell ratio (OV)  Seeding methodology

Osteogenic/vascular [88, 298]  1:1 [299] Simultaneous seeding [229, 300, 301]

Expansion/vascular [227] 1:4 [301] Pros: technically simpler; even mix distribution within ~ Cons: risk of suboptimal individual cell type
the construct; cell-cell crosstalk during differentiation  viability and differentiation

Osteogenic [228] 2:1 [88] Sequential seeding [89]

Expansion [302] 4:1 [301] Pros: optimal differentiation of the first seeded cells; ~ Cons: uneven distribution of the two types of
cell-cell communication cells within the construct

Vascular [300] 5:1 [302] Independent differentiation [88]

Osteogenic with vascular 8:1 [303] Pros: optimal differentiation of each cell type in their ~ Cons: lack of cell-cell communication

growth factors [229] respective medium

3:2 [300]

O osteogenic, V vascular, Expansion expansion medium for osteogenic precursors
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Fig. 5 Schematic of main bioreactors used for production of 3D constructs
and d in-vivo bioreactor
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of MSCs in the presence of ECs [247, 248], likely be-
cause shear stress affects the function of ECs [249-251].
However, another approach was used by Nishi et al.
[252], who cultured MSCs and ECs on a porous poly(-
lactic acid) scaffold in a rotating wall vessel bioreactor.
The flow environment created by the RWYV bioreactor,
coupled with the interaction between the cell types, en-
hanced the distribution and differentiation of cells in the
scaffold. To date, there are only a limited number of
studies using a bioreactor in combination with bone and
vascular progenitor cells, due to the technical and bio-
logical challenges of codifferentiating the two cell types
together. The successful construction of a physiologically
compatible bioreactor for engineered vascularized bone,
to achieve fast and easy visualization of the target cells
and their interactions, must take into account a number
of design features, including noninvasive optical access,
automation, uniform cell seeding, overall chamber di-
mensions, checkpoint markers, and mechanical stimuli
[253, 254].

In utilizing engineered vascularized bone models in-
vitro, instead of harvesting tissue samples and analyzing
them at designated time points, the nondestructive
tracking of cells and new matrix formation should result
in a reduction of resources and permit real-time under-
standing of the processes. One example is represented
by the work reported by Bersini et al. [255], who devel-
oped a biological 3D in-vitro microfluidic model to study

breast cancer metastasis to bone. This microfluidics plat-
form is based on hydrogel-containing chambers placed
between surface-accessible microchannels, allowing
high-resolution real-time imaging of single-cell behavior,
cell-cell communication, cell-matrix interactions, and
cell population dynamics [256]. Another useful high-
throughput platform was developed by Moya et al. [257]
to study vasculature in real time. They produced an in-
vitro 3D metabolically active stroma (~ 1 mm? volume)
containing a living and dynamically perfused human
capillary network, by combining human endothelial
colony forming cell-derived ECs (ECFC-ECs) and a poly-
dimethylsiloxane (PDMS) micromold. Although diffu-
sion of oxygen was demonstrated to not be a limiting
step in-vitro, thus allowing the development of tissue
constructs in the order of centimeters in thickness [258],
the major technical problem is nutrient diffusion. The
density of the ECM plays an important role in the diffu-
sion of nutrients and the morphogenesis of capillaries
[259], and this is particularly true for mineralized bone
matrix. In addition, real-time visualization of the process
occurring inside the bone matrix is also limited by the
opacity of the bone matrix itself, thus requiring the de-
velopment of specific bioreactor or in-vitro models to
overcome this limitation. X-ray microcomputed tomog-
raphy (uCT) has been extensively used in the field of
bone tissue engineering due to its ability to provide
rapid, nondestructive 3D images of bone and bone
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scaffold microstructure at 1-50 pm resolution [260,
261]. Various groups have developed pCT-compatible
bioreactors [262, 263], utilizing low radio-opacity mate-
rials, such as polysulfone, with dimensions matched to
those of standard uCT chambers. Another requirement
is that such systems should allow the study of the vascu-
lature within in-vitro vascularized bone, which, however,
is complicated by the 3D nature and limited access to
the internal microvasculature due to the loss of optical
access. While the analysis of thin sections of engineered
vascularized bone could address this issue, it would
obviate the purpose of recapitulating the 3D in-vivo
structure. A more viable solution is the use of contrast-
enhanced pCT for the investigation of microvasculature
[264], which was previously studied in soft tissues, such
as the kidney, heart, and liver [265-267]. This method is
based on the injection of a radio-opaque contrast agent
within the vasculature prior to imaging. However, again,
the opacity and density of the bone matrix put some
limitations on visualization of the vessel microstructure
when this is performed in a bone model. It is thus not
surprising that few studies have been published on the
analysis of bone microvasculature using uCT [268, 269],
illustrating the future potential of contrast-enhanced
puCT for the evaluation of bone neovascularization in
tissue-engineered constructs.

Perspectives and future directions

The definition of the parameters that must be accommo-
dated in the design of in-vitro models of vascularized
bone represents a challenging task for researchers. The
complex interactions between blood vessels and bone
have limited our ability to develop veritable in-vitro con-
structs of physiological systems representing human
bone. First, from a biological point of view, the codiffer-
entiation of endothelial precursors and osteogenic stem
cells is hindered by the different mechanisms and signals
to which these cells respond when recapitulating in-vivo
development. As shown in numerous studies, a com-
promise between endothelial and osteogenic signals/cues
must be considered, in order to minimize undesired dif-
ferentiation of the cell types. On the other hand, predif-
ferentiation of vasculature or bone cells does not permit
the critical communications between the two physio-
logical systems during development or repair, thus com-
promising the morphogenesis of the actual structure of
the tissue complex and in a manner similar to native
bone. This aspect is of high relevance when studying the
effects of drugs and/or toxicants on the structure and
development of bone, as well as screening for potential
treatments. In other words, the engineered vascularized
bone model must present advantages over the majority
of studies that have been performed in-vitro on 2D cul-
tures of separate endothelial and osteogenic cells or

Page 16 of 23

cocultures, and through in-vivo animal models [270,
271]. From an engineering point of view, the design of a
system which could maintain the vitality and differenti-
ation of different types of cells for long-term culture is
also a significant challenge. Furthermore, experimental
parameters must be controlled (i.e., system variables
must be clearly defined) and, as described earlier, the
system must be accessible for real-time imaging and
evaluation. Bioreactors have partially solved the need to
have in-vitro systems which could mimic the full physio-
logical structure of bone and, at the same time, have
allowed analysis of the constructs.

High-throughput screening of drugs or toxicant relies
on a minimal system defined by precise parameters that
can be stimulated by specific stimuli, such as mechan-
ical, biochemical, genetic, and so forth. To address this,
our group has developed a triphasic model composed of
blood vessels, bone, and cartilage to study the inter-
action between these three different tissues [128]. Our
3D-printed microphysiological system, in combination
with stem cells, allows for the codifferentiation of the
three different tissues, and is also responsive to the
introduction of different stimuli, including stress-
inducing factors, such as IL-1p for the study of osteo-
arthritis, female hormones like estrogens for the study of
osteoporosis [272], or teratogens to study their effect on
skeletal development. The capabilities of additive manu-
facturing have enabled us to produce customized scaf-
folds and bioreactors to meet the requirements of
vascularized bone engineering, coupled with a high-
throughput platform for drug screening and toxicology
assessment. In the future, bioprinting could represent a
suitable on-demand platform for the versatile fabrication
of specific cellular patterns at the micrometer scale for
the production of vascularized bone, but also a broad
range of other engineered tissues [166]. While still in its
early stage, bioprinting can also benefit from the wide
range of additive manufacturing techniques and bioreac-
tor technologies to generate veritable in-vitro models of
vascularized bone that could help understand the
physiopathology of bone, and generate valuable treat-
ment strategies. To become an economically viable
resource, the production of in-vitro 3D models of vascu-
larized bone should also consider the introduction of a
certain level of automation, to reduce human interven-
tion as well as product variability. An interesting and
comprehensive review about this topic was recently pub-
lished by Costa et al. [273], who reviewed the current
automated tools and strategies for the production of
bone substitutes.

Conclusions
In addition to applications in regenerative medicine,
tissue-engineered constructs could be used as in-vitro
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preclinical models of normal or pathological tissues for
applications in drug screening and toxicity assessment.
For effective high-throughput assays, minimal systems
and accurate modeling of the structure/function of the
studied human tissue or organ are required. Bone path-
ologies present significant disease burden, underscoring
the need to develop more effective treatment strategies.
The development of in-vitro high-throughput microphy-
siological models that faithfully recapitulate the physio-
pathology of bone is thus highly relevant, particularly
given the cost and intrinsic genetic difference of animal
models. Different biological and engineering challenges
must be overcome, including the right choice of stem
cells, regulation of codifferentiation of vasculature and
bone, control of system parameters and stimuli, access
for real-time imaging, and functional evaluation. In the
pursuit of this initiative, additive manufacturing tech-
niques and bioreactor technologies have increased our
ability to produce systems that integrate cells, scaffolds,
and biological/environmental stimuli to create in-vitro
models of native osseous tissue, and to study the pro-
cesses regulating its biology.
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