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A small molecule p53 activator attenuates
Fanconi anemia leukemic stem cell
proliferation
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Abstract

Although p53 mutations are common in solid tumors, such mutations are found at a lower frequency in
hematologic malignancies. In the genetic disorder Fanconi anemia (FA), p53 has been proposed as an important
pathophysiological factor for two important hematologic hallmarks of the disease: bone marrow failure and
leukemogenesis. Here we show that low levels of the p53 protein enhance the capacity of leukemic stem cells from
FA patients to repopulate immunodeficient mice. Furthermore, boosting p53 protein levels with the use of the
small molecule Nutlin-3 reduced leukemia burden in recipient mice. These results demonstrate that the level of p53
protein plays a crucial role in FA leukemogenesis.
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Fanconi anemia (FA) is a genetic disorder caused by de-
fects in at least 21 genes (FANCA-V) [1–6]. Patients
with mutations in any of these genes develop a FA
phenotype characterized by a variety of symptoms,
including skeletal and developmental defects, bone
marrow (BM) failure, and a high predisposition to can-
cer [1, 7, 8]. One of the common clinical features of FA
is hematologic manifestations, possibly due to defects in
hematopoietic stem cells (HSCs) [9–11]. A majority of
FA patients invariably experience progressive BM failure,
and oftentimes progress to myelodysplastic syndrome
(MDS) and acute myeloid leukemia (AML) [1, 12–14].
Marrow dysfunction, which occurs at an early stage, is
associated with HSC loss and accounts for the majority
of FA childhood mortality [15–17]. In addition, FA pa-
tients are at extremely high risk of developing AML and
solid tumors [12, 13].
Upregulation of the tumor suppressor p53 has been

shown to play a role in certain hematologic diseases,
such as BM failure syndromes and MDS. Specifically,

upregulation of p53 function, due to specific genetic
lesions in ribosomal biogenesis, leads to apoptosis of
erythroid precursors, resulting in pathogenetic
features of Diamond–Blackfan anemia (DBA),
Schwachman–Bodian–Diamond syndrome (SBDS) and
5q-MDS [18–22]. In FA, it has been reported that
p53 deficiency increased cancer development in pa-
tients with FA and FA mice [23–26]. Conversely, p53
overactivation caused HSPC depletion in the BM of
FA patients [27]. In this study, we demonstrate that
the level of p53 protein is critical for the leukemic
stem cells from FA patients to repopulate immunode-
ficient mice.
To examine the functional relevance of p53 expression

in human FA leukemia cells in vivo, we established a FA
AML xenotransplant model using primary samples from
FA patients with AML and the humanized immunodefi-
cient mouse strain NSGS, which expresses transgenic
cDNAs encoding human SCF, GM-CSF, and IL-3 [28].
We first tested the engraftment of three healthy and five
AML patient samples with different levels of p53 proteins
(Fig. 1a). We found that only two FA patient samples
(AML-3 and AML-4) resulted in > 5% human chimeras at
12 weeks post-transplant (Fig. 1b). Additionally, it ap-
peared that AML-3 and AML-4 donor cells underwent
myeloid expansion in NSGS recipients (Fig. 1c). We then
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performed secondary transplantation to examine the effect
of p53 on the ability of the FA AML leukemic stem cells
(LSCs) to repopulate the NSGS mice. All eight of the sec-
ondary recipients of AML-3 cells died of leukemia within
180 days (Fig. 1d). This indicates that the expanded donor
AML-3 cells in the primary recipients contained pre-LSCs
that induced leukemia in the secondary recipients. While
half of the AML-4 secondary recipients (3/6) died of
leukemia, three AML-4 secondary recipients survived for
200 days after transplant (Fig. 1d). Interestingly, human-
derived BM cells (hCD45+) from these three surviving
recipients expressed higher levels of p53 than the other
three leukemic recipients (Fig. 1e). Thus, the level of p53
protein determines the capacity of the LSCs from FA
patients to repopulate immunodeficient mice.
The observation that primary FA AML cells with lower

levels of p53 induced an earlier onset of leukemia in mice
than those with higher p53 levels prompted us to test
whether targeted increase of the p53 protein level could
ameliorate the FA leukemia burden. Nutlin-3 is a small
molecule antagonist of the E3 ubiquitin protein ligase

MDM2 that leads to p53 stabilization and has been used in
mouse models extensively to reactivate p53 in vivo [29, 30].
We treated the primary recipient mice using a published
protocol [31]. Specifically, we treated the mice with Nutlin-
3 at a dose of 50 mg/kg daily beginning at 6 weeks post-
transplant for 2 weeks, and analyzed the recipients for p53
protein levels and leukemia development in the secondary
recipients. We chose primary recipients of AML-3 because
this leukemia sample showed low levels of the p53 protein
and high xenograft potential (Fig. 2a, b). Nutlin-3 treat-
ment delayed FA leukemia development in the second-
ary recipient mice, as evidenced by significantly
reduced splenomegaly (Fig. 2a) and myeloid expansion
(Fig. 2b). We confirmed that Nutlin-3 treatment
elevated the p53 protein level in human-derived
(hCD45+) BM cells of the recipient mice (Fig. 2c).
When transplanted into secondary recipient mice, the
pre-leukemic cells from the Nutlin-3-treated primary re-
cipient mice showed much less potency in the develop-
ment of leukemia than vehicle control (Fig. 2d). Thus,
increased p53 protein levels by Nutlin-3 treatment

Fig. 1 Effect of p53 protein level on human FA leukemia cells. a The levels of p53 protein in FA AML cells. BM cells from three healthy donors
and five FA AML patients were subjected to immunoblot analysis using antibodies specific for total p53, phosphor-p53 (P-p53), or β-actin. The relative levels
of total p53 or of P-p53 to β-actin are indicated below the blot. b Comparison of human cells engrafted in the BM of NSGS recipient mice. Mice were
transplanted by intra-femoral injection with 1–3 × 106 BM cells from three healthy donors and five FA AML patients. Assessment of xenografts in the BM of
the recipient mice was performed 12 weeks after transplantation by BM aspiration and flow cytometry (n= 5 per group). c BM cells from the recipient
mice in b were subjected to flow cytometric analysis for human cell contents 12 weeks post-transplant. Quantification of myeloid (CD33+) and lymphoid
(CD19+) cells in total human engraftment (hCD45+) (n= 5 per group). d Survival of transplant recipients. Cells (5 × 106) isolated from the bone marrow of
the primary recipients in b were injected intrafemorally into each NSGS secondary recipient mouse (n= 6–10 for each group). The survival of recipient
mice was analyzed with a Kaplan–Meier plot. e The levels of p53 protein in human-derived BM cells (hCD45+) from three surviving recipients (non-leuk)
and three leukemic recipients (Leuk) transplanted with the AML-4 cells were analyzed by immunoblotting using antibodies for p53 or β-actin. The relative
levels of p53 to β-actin are indicated below the blot. The error bars and asterisks in Fig. 1c represent means ± SD and ∗p < 0.05; ∗∗p < 0.01,respectively
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ameliorated the FA leukemia burden. However, it should
be noted that 60% of the Nutlin-3-treated recipient mice
still died of leukemia, suggesting that more factors are at
play than just the level of p53 protein.
In summary, we used primary patient samples to examine

the potential link between the status of p53 and FA
leukemogenesis. We showed that reduced levels of p53 in
FA AML correlate not only with the enhanced ability of the
pre-LSCs to repopulate immunodeficient mice but also
with increased myeloid expansion and leukemia develop-
ment. These results are consistent with the well-established
roles of p53 in genomic stability, cell cycle arrest, and apop-
tosis. We also demonstrated that the small-molecule
MDM2 inhibitor Nutlin-3, which effectively elevated p53
protein levels in FA AML cells, significantly diminished
leukemia burden in our FA AML xenotransplant model.
Encouragingly, Nutlin-3 has been used in early clinical trials
for cancer indications [32], suggesting that a reactivation-
based p53 manipulation approach for FA leukemia could
be readily translatable to clinical studies. While our results
caution targeting overactive p53 in ameliorating FA HSC
loss, restoring p53 activity in FA pre-leukemic HSCs, cap-
able of preventing leukemic transformation, is worthy of in-
vestigation as a new avenue for FA leukemia.
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Fig. 2 Targeted increase of p53 protein level ameliorates FA leukemia burden. a Nutlin-3 treatment ameliorates splenomegaly. We transplanted
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