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Abstract

Background: During differentiation of stem cells, it is recognized that molecular mechanisms of transcription factors
manage stem cells towards the intended lineage. In this study, using microarray-based technology, gene expression
profiling was examined during the process of chondrogenic differentiation of human mesenchymal stem cells (hMSCs).
To induce chondrogenic differentiation of hMSCs, the cationic polymer polyethyleneimine (PEI) was coupled with the
synthetic glucocorticoid dexamethasone (DEX). DEX/PEI could be polyplexed with anionic plasmid DNAs (pDNAs)
harboring the chondrogenesis-inducing factors SOX5, SOX6, and SOX9. These are named differentiation-inducing
nanoparticles (DI-NPs).

Methods: A DI-NP system for inducing chondrogenic differentiation was designed and characterized by dynamic light
scattering and scanning electron microscopy (SEM). Chondrogenic induction of hMSCs was evaluated using various
tools such as reverse-transcription polymerase chain reaction (RT-PCR), Western blotting, confocal fluorescent
microscopy, and immunohistochemistry analysis. The gene expression profiling of DI-NP-treated hMSCs was
performed by microarray analysis.

Results: The hMSCs were more efficiently transfected with pDNAs using DI-NPs than using PEl. Moreover, microarray
analysis demonstrated the gene expression profiling of hMSCs transfected with DI-NPs. Chondrogenic factors including
SOX9, collagen type Il (COLII), Aggrecan, and cartilage oligometric matrix protein (COMP) were upregulated while
osteogenic factors including collagen type | (COLI) was downregulated. Chondrogenesis-induced hMSCs were better
differentiated as assessed by RT-PCR, Western blotting analyses, and immunohistochemistry.

Conclusion: DI-NPs are good gene delivery carriers and induce chondrogenic differentiation of hMSCs. Additionally,
comprehensive examination of the gene expression was attempted to identify specific genes related to differentiation
by microarray analysis.
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Background
Gene therapy is a revolutionary way to treat the causes of
diseases at the gene level. In addition, it is possible to
achieve long-term expression in vivo, and genetic infor-
mation mutated by genetic recombination can be cor-
rected. Many studies have focused on gene delivery as a
promising tool to treat diseases at the genetic level [1, 2].
Genes encoding transcription factors, which regulate sig-
naling pathways related to cell proliferation, growth, dif-
ferentiation, and death, have been the focus of great
interest [3—6]. The internalization of genes encoding tran-
scription factors related to stem cell differentiation has
been extensively studied [7-10]. Cells have been trans-
fected with genes encoding specific transcription factors
in an attempt to enhance differentiation towards the de-
sired lineage and prevent differentiation towards other
lineages [11, 12]. In this regard, we designed and synthe-
sized dexamethasone (DEX)-conjugated polyethylenei-
mine (PEI), called DEX/PEI as a gene carrier. DEX is a
synthetic glucocorticoid and therefore binds to the gluco-
corticoid receptor in the cytosol via the ligand-receptor
complex [13] after transfection of DEX/PEI The complex
is translocated to the nucleus, resulting in enlargement of
the nuclear pore; this is helpful for gene delivery. Further-
more, DEX is already known to be an important factor for
mesenchymal stem cells leading to osteoblasts, adipocytes,
and chondrocytes [14], and DEX also alleviates inflamma-
tion. By conjugating DEX to PEI, the efficiency of gene de-
livery could be improved, facilitating induction of
differentiation with low cytotoxicity and low effects of in-
flammation when applied to an in-vivo study [15].
Cationic PEI of DEX/PEI could be easily complexed
with anionic plasmid DNA (pDNA) harboring three mas-
ter chondrogenesis factors: SOX5 (specifically L-SOX5),
SOX6, and SOX9 [16]. SOX9 is expressed in chondro-
genic progenitor cells and mature chondrocytes and in-
duces expression of cartilage-related genes such as
collagen type 2 alpha 1 and aggrecan [17]. L-SOX5 and
SOX6 are excited at the stage of prechondrocytes in the
presence of SOX9 and increase cartilage-specific gene ex-
pression together with the existence of SOX9 [18]. These
DEX/PEI complexes with pDNA of SOX5, SOX6, and
SOX9 are termed differentiation-inducing nanoparticles
(DI-NPs), and DI-NPs could effectively induce chondro-
genic differentiation of stem cells. Mesenchymal stem cells
(MSCs) are one of the broadly used stem cell types for
repairing cartilage defects [19-21]. In this study, DI-NPs
were applied to MSC:s for inducing chondrogenic differen-
tiation. The differentiation of MSCs into chondrocytes has
not, however, been overly studied for gene expression pro-
filing using microarray [22]. Through gene expression
profiling, it is possible to measure and compare the ex-
pression level of mRNAs in differentiation-induced cells
and noninduced cells. This allows the identification of
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genes that are overexpressed or underexpressed in differ-
entiation-induced cells. The expression profile may
provide information regarding the level of differenti-
ation of an induced model by a particular tool [23, 24].
Gene expression profiling using microarrays is a major
tool for the measurement of levels and patterns of gene
expression. It can be used to identify diseases and un-
cover treatments in clinical medicine. Moreover, ana-
lyses of gene expression can be clinically useful for
therapeutic application of stem cells toward the treat-
ment of diseases related to cartilage defects.

Here, DI-NPs were characterized and evaluated as gene
carriers in stem cells. Gene expression profiling was per-
formed using a microarray to evaluate the differentiation
of human MSCs (hMSCs) following the delivery of the
SOX trio of genes (SOX5, SOX6, and SOX9) [25, 26].
Gene expression was also compared between hMSCs
transfected with one gene and those transfected with all
three genes. Transfected hMSCs cultured in two- and
three-dimensional (3D) systems were further assessed by
reverse-transcription polymerase chain reaction (RT-PCR),
Western blotting, fluorescence-activated cell sorting
(FACS), and immunohistochemistry. The study procedure
is illustrated in Scheme 1.

Methods

Preparation of nanoparticles (PElI and DEX/PEI)
Tetramethylrhodamine (TRITC; 1 mg; Sigma Aldrich,
St. Louis, MO, USA) dissolved in 3 mL dimethyl sulfox-
ide (DMSO) was mixed with 500 mg branched PEI
(bPEI; 25,000 Da; Sigma Aldrich, St. Louis, MO, USA) dis-
solved in 10 mL distilled water for 12 h at room
temperature. The solution was then dialyzed (molecular
weight cut-off (MWCO), 1000 Da) for 2 days in the dark;
and TRITC-conjugated bPEI (PEI) were synthesized.
TRITC/DEX-conjugated bPEI (DEX/PEI) was synthesized
via a conventional carbodiimide reaction. The bPEI
(250 mg, 10 pmol) was stirred in 10 mL DMSO until com-
pletely dissolved. Then, a mixture of DEX (25 mg,
50.76 pmol; Steraloids, Newport, RI, USA), dicyclohexyl-
carbodiimide (DCC; 16 mg, 77.55 pmol), and
n-hydroxysuccinimide (NHS; 16 mg, 139.02 pmol) pre-
pared in 5 mL DMSO was added to the bPEI solution and
incubated for 24 h at room temperature. Subsequently,
1 mg TRITC dissolved in 3 mL DMSO was added drop-
wise to this solution over 12 h. The final solution was dia-
lyzed (MWCO, 1000 Da) against distilled water for 3 days.
The final products were obtained by lyophilization.

Characterization of nanoparticles

First, the size and surface charge of the nanoparticles
(NPs) were measured with a Zetasizer Nano ZS apparatus
(Malvern, USA). NPs were dispersed with distilled water.
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Scheme 1 Schematic diagram of the preparation of DI-NPs to induce chondrogenesis of hMSCs. A Dexamethasone (DEX)/tetramethylrhodamine
(TRITC)-conjugated branched polyethyleneimine (bPEl) (DEX/PEI) is made by the serial conjugation of bPEI and DEX. The DEX/PEI is complexed
with SOX trio genes (SOX5, SOX6, and SOX9), called differentiation inducing nanoparticles (DI-NPs). B Transfection of DI-NPs induces chondrogenic
differentiation of human mesenchymal stem cells (hMSCs). The DI-NPs enter hMSCs via endocytosis. The plasmid DNAs (pDNAs) are released from
DI-NPs into the cytosol and the expression levels of specific genes, related to chondrogenesis, are changed (up and down); finally, chondrogenic
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Twenty measurements were conducted per sample. The
mean diameter and size distribution of NPs was evaluated,
and morphology of NPs was visualized by scanning elec-
tron microscopy (SEM). A microscope coverglass (18 mm
diameter; 0111580) was coated with NPs and dried over-
night. The samples were coated with platinum using a PT
Sputter (E-1030, Hitachi, Japan) and finally visualized by
SEM (S-4700, Hitachi, Japan). The critical aggregation
concentrations (CACs) of PEI and DEX/PEI were
determined with a fluorescence spectrophotometer
(RF-5301PC, Shimadzu, Japan) using Hoechst 33342 as a
fluorescent probe. Briefly, a stock solution of Hoechst
33342 (1.4x107> M) was prepared in double-distilled
water. Various concentrations of DEX/PEI (2.4 x 107 to
0.5 mg/mL) were added to this solution. The final concen-
tration of Hoechst 33342 was 7.0 x 10™* M in each case.
Fluorescence was measured with excitation and emission
wavelengths of 355 and 457 nm, respectively.

Cell culture

The hMSCs, isolated from the bone marrow of a
20-year-old male, were purchased from Lonza Walkers-
ville Inc. (PT-2501) and cultured in alpha minimum essen-
tial medium supplemented with 10% fetal bovine serum
and 1% antibiotic-antimycotic solution. For the 3D culture
system, the hMSCs were pelleted in a 15-mL conical tube
by centrifugation at 1300 rpm for 3 min. The cell pellets
were cultured for 3 weeks, changing the medium every
2-3 days, and maintained their ball-like shape.

Triple gene transfection of hMSCs using trio-coated PEI
and DI-NPs

The hMSCs were transfected with pDNAs harboring
SOX5, SOX6, and SOX9 using the optimal concentra-
tions of PEI and DEX/PEI (trio-coated PEI and DI-NPs)
in serum-free medium for 20 min and incubated for 4 h.
Thereafter, SOX5/6/9 protein expression was evaluated
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by FACS, Western blotting, and fluorescence confocal
microscopy (LSM 880 META, Zeiss).

Evaluation of the cytotoxicity of trio-coated PEI and DI-NPs
Cytotoxicity was evaluated with a cell counting kit
(CCK)8 kit and a Live/Dead kit (Invitrogen, Carlsbad,
CA, USA). A total of 2x10° hMSCs, treated with
trio-coated PEI or DI-NPs, were treated with CCK8 so-
lution for 2 h at 37 °C. The optical density at 450 nm
was measured using a spectrophotometer. The hMSCs,
treated with trio-coated PEI or DI-NPs, were incubated
in a solution containing 2 uM calcein AM (to stain live
cells) and 4 pM EthD-1 (to stain dead cells) for the Live/
Dead assay, and visualized by fluorescence microscopy
(EVOS Fl). The hMSCs were treated with 1, 3, 5, 7, and
10 pg DI-NPs for 4 h. The state of the cells treated with
1 pug DI-NPs was confirmed by FACS.

Evaluation of the cellular uptake of trio-coated PEl and DI-NPs
The hMSCs were seeded onto a microscope coverglass
(18 mm diameter; 0111580, Marienfeld) and treated with
trio-coated PEI and DI-NPs for 0.5, 1, and 4 h. The up-
take of trio-coated PEI and DI-NPs was visualized by
fluorescence confocal microscopy (LSM 880 META,
Zeiss). The uptake of trio-coated PEI and DI-NPs was
also visualized by staining endosomes. The NP-treated
hMSCs were exposed to the Cell Light® Reagent
BacMam 2.0 (2 uL per 10,000 cells), which stains early
endosomes, for 16 h at 37 °C and visualized by fluores-
cence confocal microscopy.

Evaluation of chondrogenic and osteogenic markers

The mRNA and protein were extracted from hMSCs
cultured in two-dimensional and 3D systems at 1, 3, 7,
14, and 21 days after transfection. Thereafter, mRNA
and protein expression were evaluated by RT-PCR and
Western blotting, respectively.

Microarray analysis

Total RNA was extracted using TRIzol (Invitrogen), and
its quality was determined using a spectrophotometer
(NanoDrop 2000) and an Agilent Bioanalyzer™ 2100 sys-
tem. Thereafter, cRNA was synthesized from 10 ng RNA
with the WT Pico Reagent Kit (Affymetrix) according to
the manufacturer’s instructions. The samples were hybrid-
ized onto the Human Gene 2.0 ST Array (Affymetrix) for
17 h at 45 °C according to the manufacturer’s instructions.
The arrays were scanned using a GeneChip Scanner 3000
7G (Affymetrix). After normalization, the genes related to
differentiation and proliferation were selected and data
processing was performed using GeneSpring GX13.1.1.
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Histology and immunofluorescence

The hMSCs cultured in 3D systems were fixed with 4%
paraformaldehyde for 1 h. For hMSCs cultured in the
3D system, the pellets were embedded in optimal cutting
temperature compound (TISSUE-TEK 4583; Sakura
Finetek Inc.) and frozen at —-80 °C. The frozen samples
were sliced into sections (9 pm thick) using a cryotome
(HM 525, MICROM) at -25 °C. All samples were
stained with hematoxylin (HHS16, Sigma Aldrich) and
eosin (110116, Sigma Aldrich). Staining with Alcian blue
(A3157, Sigma Aldrich), Safranin O (HT90432, Sigma
Aldrich), and Masson’s trichrome (HT15, Sigma Aldrich)
was performed to evaluate chondrogenic differentiation.
All staining was performed according to the manufac-
turer’s instructions. Immunofluorescence was performed
under humidified conditions using primary antibodies
against SOX9, type 1 collagen (COLI), type 2 collagen
(COLII), and matrix metallopeptidase (MMP) 3. There-
after, the samples were stained with fluorescently labeled
secondary antibodies (1:500; Thermo Scientific), incu-
bated with 4,6-diamidino-2-phenylindole (DAPI) for
10 min to stain the nuclei, and visualized by fluorescence
confocal microscopy (LSM 880 META, Zeiss).

Statistical analysis

All data are shown from at least three independent ex-
periments performed in triplicate. Statistical compari-
sons were carried out by the Student’s ¢ test and
one-way analysis of variance (ANOVA). Probability less
than 0.05 was considered statistically significant.

Results

Preparation and characterization of trio-coated PEI and DI-NPs
Here, bPEI was conjugated with TRITC to generate PEIL,
which was subsequently conjugated with DEX to gener-
ate DEX/PEIL Thereafter, DEX/PEI were complexed with
SOX5, SOX6, and SOX9 pDNAs to generate DI-NPs.
Figure la shows the molecular structures of PEI and
DEX/PEI, PCR analysis of pDNAs, and SEM images of
SOX5/6/9 (trio)-coated PEI and DI-NPs. DEX and PEI
formed micelles at certain concentrations (Fig. 1b). The
hydrophobic moiety of DEX was hidden within the core,
while the hydrophilic moiety of PEI was exposed on the
outer shell. Thus, PEI could be complexed with specific
materials. Fluorescent dye-conjugated bPEI makes it
possible to trace the nanoparticle location in vitro and in
vivo with various tools, including confocal laser micros-
copy and xenogen. In SEM analysis, trio-coated PEI and
DI-NPs had diameters of 90 and 141 nm, respectively
(Fig. la, panels d and e). The mean diameter of
trio-coated PEI and DI-NP was 85.9 + 10 nm and 138.7
+ 11 nm, respectively. This size difference may be due to
DEX conjugation in the latter (Fig. 1c, panels a and b).
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Fig. 1 Preparation and characterization of trio-coated PEI and DI-NPs. a Structures of polyethyleneimine (PEl; panel a) and dexamethasone-
conjugated polyethyleneimine (DEX/PEI; panel b). Representative PCR analysis of SOX5, SOX6, and SOX9 pDNAs (panel c). SEM analysis of trio-coated
PEl (panel d) and differentiation-inducing nanoparticles (DI-NPs; panel e). b Optimal concentrations of trio-coated PEI (panel a) and DI-NPs (panel b) for
micelle formation. ¢ Analysis of size of trio-coated PEl (panel a) and DI-NPs (panel b) by dynamic light scattering. EGFP enhanced green fluorescent

Complexation with negatively charged pDNA changed
the surface charge of DI-NPs (Additional file 1: Figure S1A).
To confirm the complexation of PEI and pDNA, a gel
retardation assay was performed (Additional file 1:
Figure S1B). All pDNA was complexed when more than
1.5 pg of PEI or more than 2.5 pg of DEX/PEI was
used. Tight complexation did not occur with 1.5 pg of
DEX/PEI, which may be due to DEX conjugation. Thus,
more DEX/PEI than PEI was used for complexation
with pDNA.

Evaluating cytotoxicity and uptake efficiency of trio-coated
PEl and DI-NPs into hMSCs

Cytotoxicity was evaluated by CCK8 and live/dead assays
(Fig. 2a, b). Following treatment with trio-coated PEI or

DI-NP, more than 90% of the hMSCs survived (Fig. 2a).
In the live/dead assay, red labeling, indicative of dead
hMSCs, was not clearly observed in nontreated or
DI-NP-treated cultures (Fig. 2b, panels a and c), but was
often observed in trio-coated PEI-treated cultures
(Fig. 2b, panel b). This finding indicates that DEX/PEI is
a much safer gene delivery carrier than PEI for hMSCs,
and the cytotoxicity of DEX/PEI depends on its amount,
as shown by FACS analysis (Additional file 1: Figure S2).
Side scatter (SSC) and forward scatter (FSC) show the
cell state and cell size, respectively. As the amount of
DEX/PEI increased, the population of cells with higher
SSC values increased in the dot plot, suggesting that
dead cells are increased due to the toxicity of high con-
centrations of DEX/PEIL. Using 1 pg of DEX/PEIs, the
cytotoxicity of DEX/PEI was evaluated in a time
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sequence by FACS analysis (Additional file 1: Figure S3).
The results showed that DEX/PEI did not affect the cell
state until 48 h. FACS analysis demonstrated that
trio-coated PEI and DI-NP were internalized into
hMSCs with time, and finally up to 95% of hMSCs were
transfected (Fig. 2c, panels a and b) by 4 h
post-transfection. Thus, these gene carriers readily en-
tered the hMSCs. The hMSCs were imaged by confocal
laser microscopy (Fig. 2d). Red labeling, indicative of
NPs, and green labeling, indicative of early endosomes,
were clearly colocalized (Fig. 2d, panels a and b). Thus,
both gene carriers entered hMSCs via endocytosis.

Evaluating expression efficiency of trio-coated PEI and DI-NPs

The hMSCs transfected with trio-coated PEI or DI-NPs
were evaluated by Western blotting and RT-PCR
(Fig. 2e). The mRNA and protein expression of SOX5,
SOX6, and SOX9 were detected in cells transfected with
either gene carrier (Fig. 2e, panels b and c), demonstrat-
ing that all three SOX genes were readily delivered into
hMSCs, transcribed, and translated. The protein expres-
sion of enhanced green fluorescent protein (EGFP)-
tagged SOX5, enhanced yellow fluorescent protein
(EYFP)-tagged SOX6, and DsRed-tagged SOX9 in
hMSCs was evaluated by confocal laser microscopy
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using specific antibodies. The results demonstrated that
SOX5, SOX6, and SOX9 proteins were expressed in
hMSCs (Fig. 2f). Merged images showed that all three
SOX genes were simultaneously expressed (Fig. 2f,
panels d and h). Moreover, the SOX proteins were colo-
calized, indicating that all three genes were simultan-
eously delivered into hMSCs. Together, these results
demonstrate that fluorescently labeled SOX5, SOX6, and
SOX9 were co-delivered into hMSCs using either gene
carrier. The uptake of PEI and DI-NPs was examined for
a short period (Additional file 1: Figure S4). In present
study, the PEI and DI-NPs showed localization in the
cytosol of hMSCs in a short time. The hMSCs were
transfected with pDNA harboring green fluorescent pro-
tein (GFP) using various amounts of PEI or DEX/PEI
(Additional file 1: Figure S5). Following transfection with
1, 3, or 5 pg PEI, 20% of the hMSCs were GFP-positive
(Additional file 1: Figure S5A, panels a—c). However,
39%, 25%, and 34% of hMSCs were GFP-positive
following transfection with 1, 3, and 5 pg DEX/PEI
(Additional file 1: Figure S5A, panels d—f). DEX/PEI has
the higher transfection efficiency than PEI due to its
compacted morphology and ease of endocytosis into
cells, resulting from its hydrophobic moiety from dexa-
methasone. Therefore, 1 pg DEX/PEI was sufficient to
deliver GFP pDNA into hMSCs. GFP protein expression
was detected by Western blotting (Additional file 1:
Figure S5B). GFP expression differed according to the
type and amount of gene carrier. The GFP band was
denser for hMSCs transfected using DEX/PEI than for
those transfected using PEI. GFP protein expression de-
creased as the amount of DEX/PEI increased. The quan-
tification of GFP expression in hMSCs confirmed that
GFP expression decreased as the amounts of PEI and
DEX/PEI increased (Additional file 1: Figure S5B). The
fluorescence microscopy analysis of GFP expression in
hMSCs is presented in Additional file 1 (Figure S6).
Consistent with the FACS and Western blot assays, the
fluorescence intensity of GFP was higher in hMSCs
transfected using DEXPEI than in those transfected
using PEI (Additional file 1: Figure S6, panels d and e).

Evaluating the inductive level of chondrogenic differentiation
depending on time over 21 days

The assay used to assess chondrogenic differentiation of
hMSCs following transfection of the three SOX genes is il-
lustrated in Fig. 3a. At 1, 3, 7, 14, and 21 days after trans-
fection, the mRNA and protein expression of SOX9 and
COLIL, which are differentiation-related markers, and
MMP3 was evaluated by RT-PCR and Western blotting
(Fig. 3b). MMP3 was barely expressed at 1 day and was
not detected at subsequent time points. COLII expression
was high from 7 days after transfection (Fig. 3b). Upon
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transfection of the three SOX genes, the expression of
SOX9 and COLII greatly increased. Moreover, the de-
crease in MMP3 expression and the increases in SOX9
and COLII expression upon transfection of hMSCs were
time-dependent. MMP3, SOX9, and COLII expression
was assessed by immunofluorescence microscopy at vari-
ous time points after the transfection of hMSCs with
DI-NPs (Fig. 3c). Pink labeling, indicative of MMP3, was
not clearly observed in hMSCs (Fig. 3¢, panels d, i, and n).
Red labeling, indicative of SOX9, was not observed at
7 days (Fig. 3Cb), but was clearly observed at 21 days
(Fig. 3¢, panel 1). Green labeling, indicative of COLII, was
bright at 21 days (Fig. 3c, panel k). Thus, transfection of
DI-NPs induced differentiation of hMSCs into mature
chondrocytes.

Evaluating differentiation- and proliferation-related markers in
hMSCs transfected with DI-NPs by microarray analysis

The hMSCs were cultured in a 3D system for 7 days
after transfection (Fig. 4a), and then microarray analysis
was performed (Fig. 4b). The robust multi-array average
method was employed, and the data are presented as a
scatter plot. The mRNA expression of SOX9 was upreg-
ulated more than twofold in hMSCs transfected with the
three SOX genes. Quantification demonstrated that the
mRNA levels of the differentiation-related markers
SOX9 and COLII were increased in hMSCs transfected
with the three SOX genes (Fig. 4c, panels d and e),
whereas those of the proliferation-related markers CDK9
and Ki67 were not. Thus, hMSCs transfected with the
three SOX genes stopped proliferating and underwent
chondrogenic differentiation.

Evaluating mRNA expression level of differentiation-related
genes in hMSCs transfected with DI-NPs by microarray
analysis

The expression of genes related to osteogenesis and chon-
drogenesis was evaluated in hMSCs transfected with one
or all three SOX genes (Fig. 5). A pie chart of the micro-
array data is presented in Fig. 5a. Chondrogenesis-related
marker genes such as SOX9, COLII, Aggrecan, and cartil-
age oligomeric matrix protein (COMP) were upregulated,
whereas the osteogenesis-related gene COLI was down-
regulated, in hMSCs transfected with DI-NPs (Fig. 5a).
RT-PCR analysis demonstrated that Aggrecan, COMP,
COLIL and SOX9 were expressed in hMSCs transfected
with SOX9 alone or with all three SOX genes (Fig. 5b,
panels e and f). However, COLI was not expressed in ei-
ther group of hMSCs. Thus, the transfection of SOX9 or
all three SOX genes induced chondrogenesis and inhibited
the osteogenesis of hMSCs. Microarray analysis of the
various groups of hMSCs was performed (Fig. 5¢, panel a).
SOXO9, a marker of the early stage of chondrogenesis, was
highly expressed, whereas COMP and COLII, markers of
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the final stage, were not. This difference is because the
cells were only cultured for 1 week after transfection.
We quantified the mRNA expression of SOX9 and
COMP (Fig. 5¢, panel b). SOX9 was highly expressed in
hMSCs transfected with SOX9 alone or all three SOX
genes. However, the expression of COMP did not sig-
nificantly differ between the groups of hMSCs. Thus,
the culture of hMSC masses for 1 week following trans-
fection was insufficient to complete chondrogenesis.
Microarray analysis was performed for genes belonging
to the collagen and MMP families (Fig. 6a). The expres-
sion of chondrogenesis-related collagen isoforms was in-
creased in hMSCs transfected with SOX9 alone or all
three SOX genes. Thus, both transfections triggered the
gene expression of specific collagen isoforms, which in-
duced hMSCs to differentiate. MMPs play a major role in
cell proliferation, migration, differentiation, angiogenesis,

apoptosis, and host defense. However, MMP genes were
not expressed in hMSCs transfected with SOX9 alone or
all three SOX genes. Chondrogenesis-related markers
were analyzed by RT-PCR (Fig. 6b). MMP3 and
MMP13, which are not related to differentiation, and
COLI, an osteogenesis-related marker, were not
expressed in hMSCs transfected with SOX9 alone or all
three SOX genes (Fig. 6b, panels e and f). However, the
chondrogenesis-specific marker COLII was highly
expressed in both groups of hMSCs. The quantification of
mRNA expression confirmed that MMP3 and MMP13
levels did not differ among the various groups of hMSCs
(Fig. 6¢). However, COLI and COLII expression was al-
most twofold lower and approximately sevenfold higher,
respectively, in hMSCs transfected with SOX9 alone and
all three SOX genes than in control hMSCs and those
transfected with SOX5 or SOX6 alone.
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Evaluating the inductive level of chondrogenic differentiation
in a 3D system

The hMSCs were transfected with all three SOX genes
using various carriers and subsequently cultured in a 3D
system for 3 weeks. The transfection efficiency was de-
termined by RT-PCR and Western blotting (Fig. 7a, b).
The expression of the chondrogenesis-related marker
genes SOX9 and COLII was higher in hMSCs trans-
fected with DI-NPs than in those transfected with
trio-coated PEI or DEX/PEI (Fig. 7a, panel d). The ex-
pression of the osteogenic marker COLI was not de-
tected in hMSCs transfected with DI-NPs. Furthermore,
the expression of the hypertrophy marker, collagen type
X (COLX), in hMSCs transfected with DI-NPs was lower

than hMSCs transfected with nothing (Additional file 1:
Figure S7). Chondrogenesis-related markers were also
expressed at the protein level (Fig. 7b). SOX9 and COLII
proteins were expressed in hMSCs transfected with
DI-NPs. Although these proteins were also expressed in
hMSCs transfected with trio-coated PEI or DEX/PEI,
their expression levels were not as high as in hMSCs
transfected with DI-NPs. The glycosaminoglycan (GAG)
content, an indicator of chondrogenesis, was normalized
to the DNA content. The normalized GAG content of
hMSCs transfected with DI-NPs was higher than that of
control hMSCs and those transfected with trio-coated
PEI or DEX/PEI (Fig. 7c). The hMSCs transfected with
DI-NPs were brightly stained with Alcian blue and
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Safranin O, which label proteoglycans, whereas control
hMSCs and those transfected with other gene carriers
were not (Fig. 7d). Immunohistological analysis was per-
formed for COLIL, SOX9 (both endogenous and exogen-
ous), and COLI in transfected hMSCs (Additional file 1:
Figure S8). The masses of hMSCs transfected with
DI-NPs were compact, had a highly distributed morph-
ology, and were brightly stained green and red, repre-
senting COLII and SOXO9, respectively. In contrast, the
masses of control hMSCs and those transfected with
DEX/PEI or trio-coated PEI were not brightly stained
green or red. Thus, the transfection of DI-NPs induced
chondrogenesis of hMSCs.

Discussion

The efficient delivery of chondrogenesis-related genes to
stem cells is one of the important aims for the treatment
of cartilage defects in stem cell therapy [27]. There are few
studies on cell signaling involved in the differentiation of
mesenchymal stem cells into chondrocytes, so it is import-
ant to study the mechanism of chondrogenic differenti-
ation. Nanoparticles have already been fabricated and

studied a lot for this aim, considering biocompatibility,
biodegradability, and efficiency of uptake into cells. In this
regard, DI-NPs were designed and fabricated for inducing
chondrogenic differentiation. DI-NPs are composed of
DEX/PEI and pDNA of the SOX trio (SOX5, SOXS6,
and SOX9).

Although DEX/PEI contains a lower amount of PEI in
the same volume compared with PEI, DEX/PEI has a
higher transfection efficiency. DEX/PEI improved trans-
fection efficiency compared with PEI alone due to two fa-
vorable effects. First, DEX when conjugated to PEI led to
nuclear entry of DEX/PEI being more effective in cells.
Second, in an aqueous solution, hydrophobic DEX would
be recruited in a core and make hydrophilic PEI exist on
the surface of the structure. Therefore, the higher density
of the positive charge is represented on the surface of
DEX/PEI resulting in better complexation with pDNA.
This means that the compressed and stable structure of
DEX/PEI is effective in delivering pDNA to MSCs.

In addition, SOX9, constituting a DI-NP, is an essential
transcription factor while, though not necessarily re-
quired in chondrogenesis, SOX5 and SOX6 cooperate
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with SOX9 to activate the expression of COLII and
Aggrecan [28]. This strongly suggests that the SOX trio
proteins fulfill most of their functions in differentiated
chondrocytes cooperatively rather than independently of
one another.

Here, overexpressed SOX9, along with SOX5 and SOX6
by DI-NPs, increased the expression of COLII, Aggrecan,
and COMP. An interaction between these extracellular
matrix (ECM) proteins in differentiated chondrocytes pro-
vided a proper environment for the progression of chon-
drogenesis. Moreover, the genetic level of stem cells
induced by DI-NPs or those noninduced were screened
with genes related to chondrogenic differentiation. Chon-
drogenic differentiation-related genes (SOX9, COLI]L
Aggrecan, and COMP) were upregulated and osteogenic
differentiation-related genes (COLI) were downregulated.
Furthermore, the increase in collagen family genes and
the decrease in MMP family genes observed in hMSCs in-
duced chondrogenic differentiation. MMPs are proteolytic

enzymes for the degradation of ECM proteins [29]. Thus,
reduced MMP3 expression and increased expression of
ECM-related genes increased the levels of proteoglycans,
suggesting some degree of differentiation into chondro-
cytes, indicating that DI-NPs induced chondrogenic differ-
entiation of hMSCs.

This study increases the knowledge on SOX5, SOX6,
and SOXO9, uncovering molecular networks for the regu-
lation of chondrogenesis. It has also raised new ques-
tions for further investigation. For instance, we need to
set a framework for complementary studies to establish
the actions of the SOX trio at the stages of chondrocyte
differentiation. We also need to uncover transcription
factors that are likely to functionally interact positively
or negatively with the SOX trio in chondrocytes. In
addition, these data represent a comprehensive examin-
ation of gene expression across the process of chondro-
genic differentiation and we attempted to identify
specific genes for differentiation using microarray
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analysis. The gene-based investigations presented here,
as well as using additional approaches to represent in-
duction of differentiation, will be helpful to understand
the processes of differentiation. Furthermore, through
detailed studies of microarray analysis and based on a
comprehensive understanding of the factors related to
the cartilage tissue engineering process, further research
is needed on systemic induction of chondrogenic differ-
entiation by controlling the cell proliferation (cell cycle),
inhibition of osteogenesis, and promoting induction of
chondrogenesis.

Conclusions

The present study demonstrates that DI-NPs can be
used to deliver genes into hMSCs. This carrier can be
used to develop a nonviral gene delivery system with in-
creased cellular uptake to enhance expression at the
mRNA and protein levels. Furthermore, we show that

DI-NPs are good tracers for gene delivery and could po-
tentially be used for imaging and tracing using various
tools in vitro and in vivo. Additionally, microarray ana-
lysis revealed that the DI-NP-transfected hMSCs showed
superior expression of genes related to the differenti-
ation and proliferation of cells. Finally, the hMSCs trans-
fected with the trio of SOX genes complexed with
DI-NPs were successfully differentiated for chondrogen-
esis. Thus, the DI-NPs synthesized in the present study
will contribute to cartilage tissue engineering.

Additional file
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