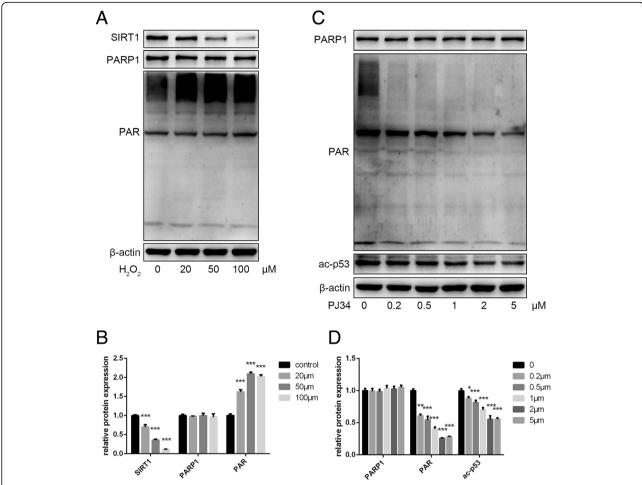
CORRECTION Open Access

Correction to: PARP1 inhibitor (PJ34) improves the function of aging-induced endothelial progenitor cells by preserving intracellular NAD⁺ levels and increasing SIRT1 activity

Siyuan Zha, Zhen Li, Qing Cao, Fei Wang and Fang Liu*

Correction

The original article [1] contains an error regarding the erroneous inclusion of 3 μ l as a parameter in the x-axis of Fig. 2c; the correct version of Fig. 2c can instead be seen below.


Received: 3 October 2018 Revised: 3 October 2018 Accepted: 3 October 2018 Published online: 25 October 2018

Reference

 Zha S, et al. PARP1 inhibitor (PJ34) improves the function of aging-induced endothelial progenitor cells by preserving intracellular NAD⁺ levels and increasing SIRT1 activity. Stem Cell Res Ther. 2018;9:224 https://doi.org/10. 1186/s13287-018-0961-7.

^{*} Correspondence: liufang@xinhuamed.com.cn Department of Geriatrics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Fig. 2 Effects of H_2O_2 and PJ34 treatment on EPC protein expression. **a, b** Expression of sirtuin 1 (SIRT1), poly (ADP-ribose) polymerase 1 (PARP1), and poly ADP-ribose (PAR) as analyzed by Western blot. **c, d** Expression of PARP1, PAR, and acetylated (ac)-p53 as analyzed by Western blot. *P < 0.05, **P < 0.01, ***P < 0.001, versus the control