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Abstract

Background: Stem cells have great potential for tissue regeneration, but before stem cell populations can be used
in the clinic, it is crucial that the stem cells have been definitely characterized by a set of specific markers. Although
there have been attempts to identify a set of immunophenotypic markers to characterize equine mesenchymal
stromal cells (MSCs), immunophenotyping of equine MSCs is still challenging due to the limited availability of
suitable antibodies of high quality and consistent performance across different laboratories. The aim of this study
was to evaluate a strategy for mapping the equine MSCs surface proteome by use of biotin-enrichment and mass
spectrometry (MS) analysis and mine the proteome for potential equine MSCs surface markers belonging to the
cluster of differentiation protein group. Gene expression analysis was used for verification.

Methods: Equine MSCs derived from bone marrow (BM) (n = 3) and adipose tissue (AT) (n = 3) were expanded to
P3 and either used for (1) cell differentiation into mesodermal lineages (chondrogenic and osteogenic), (2)
enrichment of the MSCs surface proteins by biotinylation followed by in-gel digest of the isolated proteins and
nanoLC-MS/MS analysis to unravel the enriched cell surface proteome, and (3) RNA isolation and quantitative real-
time reverse transcriptase PCR analysis of the CD29, CD44, CD90, CD105, CD166, CD34, CD45, and CD79a gene
expression.

Results: A total of 1239 proteins at 1% FDR were identified by MS analysis of the enriched MSCs surface protein
samples. Of these proteins, 939 were identified in all six biological samples. The identified proteins included 19
proteins appointed to the cluster of differentiation classification system as potential cell surface targets. The protein
and gene expression pattern was positive for the commonly used positive MSCs markers CD29, CD44, CD90, CD105,
and CD166, and lacked the negative MSCs markers CD34, CD45, and CD79a.

Conclusions: The findings of this study show that enrichment of the MSCs surface proteome by biotinylation
followed by MS analysis is a valuable alternative to immunophenotyping of surface markers, when suitable antibodies
are not available. Further, they support gene expression analysis as a valuable control analysis to verify the data.
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Background
Similar to humans, the horse is a long-lived athletic species,
and regenerative medicine is seen as the next-generation
treatment to restore normal function of cells and tissues
damaged by time, injury or disease. Stem cells have great
potential for tissue repair and regeneration; that is why,
they are intensely investigated in equine clinical
research [1, 2]. However, before any type of stem cell
can be applied in practice, it is crucial that the isolated
stem cells have been definitively characterized by a set
of specific functional or phenotypic markers.
A common definition of equine mesenchymal stromal

cells (MSCs) is still lacking, but in humans, characterization
of these cells is well defined by the criteria of the
International Society for Cellular Therapy (ISCT) [3].
ISCT has stated that MSCs must be plastic adherent
and be capable of differentiating toward the osteogenic,
chondrogenic, and adipogenic lineage. Furthermore,
they must express CD29, CD44, CD73, CD90, and
CD105 and lack expression of CD14, CD34, CD45,
CD79a, and MHC II. Although there have been attempts
to identify a set of immunophenotypic markers to
characterize equine MSCs [4–6], immunophenotyping of
equine MSCs is still challenging due to the limited avail-
ability of suitable antibodies of high quality and consistent
performance across different laboratories [5, 7]. Radcliffe
et al. [5] found that only 4 of 15 antibodies tested (27%)
were reactive to equine molecules using flow cytometry
analysis. De Schauwer et al. [7] found that 11 out of 30
antibodies (37%) were reactive to equine molecules, and
they were not able to confirm cross-reactivity of two
tested clones used in other studies to characterize equine
MSCs. In general, cross-reactivity for antihuman mono-
clonal antibodies to equine epitopes is limited. In a large
test of 379 antihuman monoclonal antibodies, only 14 rec-
ognized the corresponding epitopes on isolated equine
leukocytes, which is less than 5% [8]. This illustrates
the need for studies evaluating alternative methods for
identification of MSCs markers.
Mass spectrometry (MS) is a rapidly advancing tech-

nology for identification and quantification of proteins
applicable to stem cell investigation [9], thus circum-
venting the need of antibodies for cell phenotyping. This
analysis technology in combination with cell surface
protein biotinylation to enrich the plasma membrane
proteins has successfully been used for comprehensive
analysis of cell surface proteomes, e.g., to identify
spermatozoa surface proteins and quantitative changes
during epididymal maturation in boars [10] and bulls
[11], and to identify surface proteins of human dental
pulp stem cells and their variation between culture
conditions [12]. Furthermore, this approach has been
used for comprehensive analysis of the human
BM-MSCs surface proteome [13, 14].

Gene expression analysis at the mRNA level is another
potentially valuable alternative to antibody-based methods,
and compared to MS, which is still only accessible at spe-
cialized proteomic core facilities, qPCR analysis is available
in most laboratories.
The aim of this study was to analyze and compare the

equine adipose tissue (AT)-derived and bone marrow
(BM)-derived MSCs surface proteome by use of biotin
enrichment and MS analysis and mine the proteomes
for potential equine MSCs surface markers appointed to
the cluster of differentiation (CD) classification system.
Gene expression analysis was used to verify the results.

Methods
The experimental protocol was approved by the Ethics
and Welfare Committee of Department of Veterinary
Clinical Sciences, University of Copenhagen, Denmark.

Animals used in the study
MSCs derived from BM (n = 3) and AT (n = 3) were
obtained from mares of mixed breeds, weighing approx.
500 kg and ranging from 13 to 17 years. The horses were
euthanized with captive bolt and exsanguination at
the Large Animal Teaching Hospital, University of
Copenhagen, for unrelated reasons.

Sampling of bone marrow and adipose tissue
BM-MSCs were isolated from sternal BM aspirates.
The skin over the sternum was surgically prepared
immediately post-euthanasia in a routine manner, and
5–7 mL BM was aspirated using a Jamshidi biopsy
needle (11 gauge, 12.7 cm) (Stryker, Kalamazoo, MI,
USA) in a 20-mL syringe preloaded with 1 mL 10%
0.109 M trisodium citrate. The aspirate was trans-
ferred to a 50-mL falcon tube and inverted gently.
AT-MSCs were isolated from adipose tissue from the

region above the biceps femoris muscle at the base of the
tail. The skin was surgically prepared immediately
post-euthanasia in a routine manner, and a 10 cm ×
10 cm piece of epidermis and dermis was removed
to expose the subcutaneous AT. Approximately 15 g
of AT was harvested, avoiding fascia and blood
vessels and transferred to a 50-mL falcon tube with
30 mL sterile PBS.
All samples were transported at room temperature

to the laboratory immediately and further processed
within ~ 1 h after sampling.

Isolation of mesenchymal stromal cells
BM was layered gently onto Histopaque-1077
(Sigma-Aldrich, St. Louis, MI, USA) 1:1 (v/v) and
centrifuged 30 min at 600g. The buffy layer
containing the mononuclear cells was recovered
and washed twice in sterile PBS (5 min at 200g),
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supernatant was discarded, and the cell pellet
resuspended in 24 mL expansion medium (EM)
(Dulbecco’s modified Eagle’s medium (DMEM) 1 g/L
glucose, with phenol red, GlutaMAX, and pyruvate
(Thermo Fischer Scientific, Waltham, MA, USA) supple-
mented with 10% (v/v) fetal bovine serum (FBS) (Thermo
Fischer Scientific, Waltham, MA, USA), 100 U/mL
penicillin and 100 μg/mL streptomycin (Thermo
Fischer Scientific, Waltham, MA, USA), and 25 μg/mL
amphotericin B (Thermo Fischer Scientific, Waltham,
MA, USA)). The cells were distributed equally in two
T75 cm2 culture flasks and cultured at 37 °C in a
humidified atmosphere containing 5% CO2.
AT was washed three times in sterile PBS, dissected

to smaller pieces, and digested in sterile filtered
(0.2 μm) (Sartorius, Goettingen, Germany) enzyme
medium (DMEM 1 g glucose/L, with phenol red, Glu-
taMAX, and pyruvate, supplemented with 100 U/mL
penicillin and 100 μg/mL streptomycin, 50 μg/mL
gentamycin (Sigma-Aldrich, St. Louis, MI, USA), and
1 mg/mL collagenase type I (Thermo Fischer Scientific,
Waltham, MA, USA)) for 3 h at 37 °C and 30 rpm. Re-
leased cells were isolated through a cell strainer (70 μm)
(Thermo Fischer Scientific, Waltham, MA, USA), rinsed
twice in sterile PBS, supernatant discarded, and the cell
pellet resuspended in 24 mL EM supplemented with
50 μg/mL gentamycin. The cells were distributed equally
in two T75 cm2 culture flasks and cultured at 37 °C in a
humidified atmosphere containing 5% CO2.
After overnight incubation, non-adherent cells were

removed and fresh medium added. Medium was chan-
ged every 2–3 days. Cells were passaged (P1) at ~ 80%
confluency (10–12 days) using trypsin-EDTA (0.25%)
(Thermo Fischer Scientific, Waltham, MA, USA), replat-
ing ratio 1:3. P1 cells were further expanded in EM
without amphotericin B, supplemented with 50 μg/mL
gentamycin (only AT-MSCs). At 80% confluency (8–
10 days), cells were detached with trypsin-EDTA, rinsed
in sterile PBS, counted, and cryopreserved in FBS supple-
mented with 10% dimethyl sulfoxide (Sigma-Aldrich, St.
Louis, MI, USA) in 1–2 × 106 aliquots. Cryopreserved
MSCs (~ 2 × 106 cells) were thawed (P2) and expanded in
two T75 cm2 flasks in EM without amphotericin B,
supplemented with 50 μg/mL gentamycin (only
AT-MSCs). At ~ 90% confluency (10–12 days), the cells
were passaged using trypsin-EDTA (0.25%) and replated
in ratio 1:3 (P3). P3 cells at ~ 90% confluency (5–6 days)
were either used for cell differentiation into mesodermal
lineages (chondrogenic and osteogenic), biotinylation of
cell surface proteins, or RNA isolation.

Cell differentiation into mesodermal lineages
Cells were passaged (P4) to 48-well plates at a density
of ~ 103 cells/well (9090 cells/cm2) and expanded in

EM without amphotericin B, supplemented with 50 μg/mL
gentamycin (only AT-MSCs). At ~ 80% confluency, cells
were washed with sterile PBS and medium was changed to
chondrogenic differentiation medium (DMEM 4.5 g/L
glucose, without phenol red, supplemented with 1%
(v/v) GlutaMAX (Thermo Fischer Scientific, Waltham,
MA, USA), 1% (v/v) pyruvate (Thermo Fischer Scientific,
Waltham, MA, USA), 2% (v/v) FBS, 1% (v/v)
insulin-transferrin-selenium (ITS) (Thermo Fischer
Scientific, Waltham, MA, USA), 100 U/mL penicillin and
100 μg/mL streptomycin, 10−7 M dexamethasone
(Sigma-Aldrich, St. Louis, MI, USA), 50 μg/mL ascorbic
acid (L-ascorbic acid 2-phosphate) (Sigma-Aldrich, St.
Louis, MI, USA), 10 ng/mL TGF-ß3 (recombinant human
TGF-ß3) (R&D Systems, Inc., Minneapolis, MI, USA), and
50 μg/mL gentamycin (only AT-MSCs)) or osteogenic
differentiation medium (DMEM 1 g/L glucose, without
phenol red, supplemented with 1% (v/v) pyruvate
(Thermo Fischer Scientific, Waltham, MA, USA), 2% (v/v)
FBS, 1% (v/v) ITS, 100 U/mL penicillin and 100 μg/mL
streptomycin, 10−7 M dexamethasone, 50 μg/mL ascorbic
acid (L-ascorbic acid 2-phosphate), 10 μL/mL 1 M ß-glyc-
erophosphate (ß-glycerophosphate, disodium salt, penta-
hydrate) (Merck KGaA, Darmstadt, Germany), and
50 μg/mL gentamycin (only AT-MSCs). Differentiation
medium was changed every 3 days for 21 days. Con-
firmation of chondrogenic and osteogenic differenti-
ation was performed by staining for proteoglycans in the
extracellular matrix using 0.1% Safranin O, pH 4.6 (Merck
KGaA, Darmstadt, Germany) and calcified extracellular
matrix deposits using 2% Alizarin red staining, pH 4.2
(Sigma-Aldrich, St. Louis, MI, USA), respectively.

Mesenchymal stromal cell surface biotinylation
Cell surface proteins were biotinylated and isolated
according to the manufacturer’s protocol (Pierce cell
surface protein isolation kit, https://www.thermofisher.-
com/order/catalog/product/89881) with few modifica-
tions. In short, EM was removed and cells were washed
twice in ice-cold PBS and incubated with a biotin label-
ling solution for 30 min at 4 °C on a rocking platform.
The reaction was quenched with a quenching solution
and cells were scraped (cell scraper, Corning Incorpo-
rated, Corning, NY, USA) into solution, pooled in a
50 mL conical tube, and washed twice with TBS. Cells
were resuspended in lysis buffer supplemented with
protease inhibitor (complete protease inhibitor cocktail
tablets) (Roche, Basel, Switzerland) 25:1 (v/v), trans-
ferred to a 1.5-mL microcentrifuge tube, and incubated
on ice 30 min, vortexing every 5 min for 5 s. Cell lysate
was centrifuged at 10,000 g for 2 min at 4 °C and the
supernatant was transferred to a new tube. The cell
lysate was applied to a neutravidin agarose gel column,
incubated for 60 min at RT on a rocking platform, and
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then centrifuged for 1 min at 1000g. The column was
washed with wash buffer supplemented with protease
inhibitor (25:1 (v/v)), and centrifuged for 1 min at 1000 g.
This step was repeated three times. A 4× Laemmli
sample buffer (Bio-Rad Laboratories, Inc., Hercules,
CA, USA) with 50 mM dithiothreitol was added to
the column, and the reaction was incubated for
60 min at RT on a rocking platform followed by
centrifugation for 2 min at 1000 g. The eluate was
stored at − 80 °C until further processing.

SDS-PAGE and in-gel digestion of biotinylated cell surface
proteins
Samples were thawed on ice and the proteins in 25 μL
4× Laemmli buffer were reduced by heating for 7 min at
95 °C, and further processed by SDS-PAGE (10 well,
mini protean TGX gel 4–20%) (Bio-Rad Laboratories,
Inc., Hercules, CA, USA) at 180 V for 10 min, to remove
lithium dodecyl sulphate from the sample and separate
proteins according to molecular weight allowing the
proteins to penetrate the resolving gel for approx. 1 cm.
After staining with coomassie blue (Sigma-Aldrich, St.
Louis, MI, USA), the visible band was excised into small
cubes and transferred to individual 1.5 mL microcen-
trifuge tubes. The gel pieces were washed with
50 mM triethylammonium bicarbonate buffer (TEAB)
(Sigma-Aldrich, St. Louis, MI, USA) for 15 min at
RT, followed by addition of acetonitrile (Honeywell-Fluka,
Morris Plains, NJ, US) in a 1:1 solution with TEAB and
incubation for 15 min at RT, removing of all liquids and
shrinking of the gel pieces with acetonitrile. These wash-
ing steps were repeated four times. Proteins in the gel
pieces were reduced and alkylated by incubation with
1.2 μL 0.5 M tris (2-carboxyethyl)phosphine hydrochlorid
(Sigma-Aldrich, St. Louis, MI, USA) per 50 μL TEAB and
6 μL 0.5 M chloroacetamide (Sigma-Aldrich, St. Louis,
MI, USA) per 50 μL TEAB for 30 min at 37 °C followed
by a fifth washing sequence. Proteins were digested with
12.5 ng trypsin (Thermo Fischer Scientific, Waltham, MA,
USA)/μL TEAB at 37 °C overnight, and the supernatant
containing the extracted peptides was transferred to a
fresh microcentrifuge tube. The gel pieces were then
incubated in 1:20 (v/v) formic acid (Honeywell-Fluka,
Morris Plains, NJ, USA) in TEAB for 15 min at RT, the
supernatant added to the peptide solution, the gel pieces
incubated in acetonitrile for 15 min at RT, and the super-
natant transferred to the peptide solution. The peptides
were concentrated in a vacuum centrifuge and stored at −
80 °C until further processing.

LC-MS/MS analysis
Peptides were resuspended in resuspension buffer (2%
acetonitrile, 0.1% triflouroacetic acid (Thermo Fischer
Scientific, Waltham, MA, USA), 0.1% formic acid in

MilliQ water) and a volume corresponding to ~ 1 μg
peptide was analyzed by nanoLC-MS/MS (Thermo
Scientific Dionex Ultimate 3000 RSLC) coupled in-line
to a Thermo Scientific Q Exactive HF mass spectro-
meter. The peptide separation was accomplished using a
precolumn setup (Acclaim PepMap 100 C18 2 cm
100 μm precolumn; 75 μm 75 cm main column)
(Thermo Fischer Scientific, Waltham, MA, USA) and a
35-min gradient from 10% buffer B (99.9% acetonitrile)
to 35% buffer B and the buffer A being 99.1% MilliQ
with 0.1% formic acid. The mass spectrometer was set to
acquire MS1 data from m/z 375–1500 at R = 60 k and
MS2 at R = 30 k allowing up to 20 precursor ions per
MS1 scan.

RNA isolation and quantitative real-time reverse
transcriptase PCR analysis
Cells were lysed in TRI Reagent (Molecular Research
Center, Inc., Cincinnati, OH, USA) and stored at − 80 °C
until further processing. After thawing, the cell lysate
was further homogenized through a QIAshredder col-
umn (Qiagen, Hilden, Germany) for 2 min at 12,000 g.
The homogenate was phase separated by adding 0.2 mL
chloroform per mL TRI Reagent, shaked vigorously for
15 s allowing it to stand for 15 min at RT, and centri-
fuged at 12,000 g for 15 min at 4 °C. The upper phase
containing the RNA was transferred to a fresh tube. The
RNA was precipitated by adding 0.5 mL 2-propanol per
mL TRI Reagent, incubation for 8 min at RT, followed
by centrifugation at 12,000 g for 8 min at 4 °C. After
removing the supernatant, the RNA pellet was washed
by adding 1 mL 75% ethanol per 1 mL TRI Reagent and
centrifugation at 7500 g for 5 min at 4 °C. The
supernatant was removed, and the pellet was air dried
for 5–7 min. The pellet was resuspended in distilled
water and incubated for 15 min at 60 °C. Total RNA
concentration was determined by optical density
measurement (NanoDrop TM Spectrophotometer
(Thermo Fischer Scientific, Waltham, MA, USA)),
and total RNA isolates were kept at − 80 °C until
further processing.
cDNA was synthesized from 200 ng total RNA.

Reverse transcriptase PCR mastermix (Promega,
Madison, WI, USA) consisted of 5 μL RT buffer, 1.3 μL
dNTP mix (10 μM) (Thermo Fischer Scientific,
Waltham, MA, USA), 0.25 μL random hexamer primers
(2 μg/μL) (TAG Copenhagen, Copenhagen, Denmark),
0.25 μL Oligo-dT primers (0.5 μg/μL) (TAG
Copenhagen, Copenhagen, Denmark), 0.8 μL RNasin®
Plus RNase inhibitor (40 U/μL) (Promega, Madison, WI,
USA), 1 μL M-MLV Reverse Transcriptase (200 U/μL)
(Promega, Madison, WI, USA), and sterile water.
Reverse transcription was performed in a BIOmetra®
T-Gradient thermocycler (Thermo Fischer Scientific,
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Waltham, MA, USA) at 25 °C for 10 min, 42 °C for
60 min, and 95 °C for 5 min. Samples were stored at −
20 °C.
Species-specific intron-spanning equine primers were

used to amplify CD29, CD44, CD90, CD105, CD166,
CD34, CD45, and CD79a. Primers are listed in Table 1.
Primers were purchased from TAG Copenhagen
(Copenhagen, Denmark). Quantitative real-time reverse
transcriptase PCR was performed in triplicates using the
LightCycler® Fast Start DNA Master SYBR Green I and
LightCycler® Real-Time PCR System (Roche, Basel,
Switzerland). cDNA from equine spleen was used as a
positive control.

Data analysis
Raw data was searched against the Equus caballus refer-
ence sequence database from Uniprot (UP000002281;
May 16, 2017; 22,698 proteins) using MaxQuant search
engines (MaxQuant v.1.6.0.1 and Perseus v.1.6.0.2).
Label-free quantification (LFQ) was based on total ion
chromatogram normalization [15]. The online database
STRING-DB was used to further identify uncharacter-
ized proteins based on gene [16]. Only proteins with at
least two unique peptide sequences and FDR < 1% was
included. The MS proteomics data have been deposited
and made publically available to the ProteomeXchange
Consortium via the PRIDE partner repository with the
dataset identifier PXD008884 [17].
Relative mRNA expression was calculated using the

efficiency corrected calculation method also known as
the Roche Applied Sciences E(efficiency)-method:
Normalized relative ratio (NRR) = Et

CT (target calibrator) – CT

(target sample)/Er
CT (reference calibrator) – CT (reference sample). All

results were normalized to the reference gene
gluceraldehyde-3-phosphate dehydrogenase (GAPDH)
selected after initial testing of three reference genes
(GAPDH, β-actin and ribosomal RNA (18 S)) [18].

Results
Cellular morphology and differentiation into mesodermal
linages
All cell lines were plastic adherent and exhibited a
fibroblast-like morphology. Chondrogenic differentiated
cells stained positive for proteoglycans in the extracellu-
lar matrix and osteogenic differentiated cells stained
positive for calcified extracellular matrix deposits on day
21 after induction of differentiation.

MS analysis
A total of 1239 proteins were identified with at least two
unique peptide sequences and FDR < 1%. Among the
identified proteins were a total of 19 proteins appointed
to the CD classification system as potential cell surface
targets for immunophenotyping of cells (Tables 2 and 3).
The CD proteins were identified in all samples, except
CD49c and CD228, which were not identified in the
samples from AT-MSCs; CD61, which was not identified
in one of the samples from AT-MSCs; CD56, which was
not identified in any of the BM-MSCs samples; and
CD105, which was not identified in one of the samples
from BM-MSCs.

The protein and gene expression pattern for selected
MSCs markers
The protein and gene expression pattern was measured
for the commonly used positive MSCs markers CD29,
CD44, CD90, CD105, and CD166, and negative MSCs
markers CD34, CD45, and CD79a.
The mean label-free quantification (LFQ) intensity was

above 107 for CD29, CD44, CD90, and CD166, with a
higher mean LFQ intensity in samples from AT-MSCs
compared to BM-MSCs, except for CD29 where the
LFQ intensity was higher in the samples from BM-MSCs
(Fig. 1a). The cell surface protein CD105 was identified
in all AT-MSCs samples, but only in two of the three
BM-MSCs samples. The LFQ intensity ranged from

Table 1 Species-specific primers used to amplify specific genes

Primer name Forward primer 5′-3′ Reverse primer 5′-3′

CD29 GTG AGA TGT GTC AGA CGT GC AGA ACC AGC AGT CAT CCA CA

CD44 TTC ATA GAA GGG CAC GTG GT GCC TTT CTT GGT GTA GCG AG

CD90 TCT CCT GCT GAC AGT CTT GC GGA CCT TGA TGT TGT ACT TGC

CD105 TTC TGG GCC ACT GGT GAA TA TGC AAT GCA GAC TCG AGA TG

CD166 GCA GAA AAC CAG CTG GAG AG AGC GAG GAG TAG ACC AAC GA

CD34 CTC CAG CTG TGA GGA CTT TA AAG TTC TGG ATC CCC ATC CT

CD45 CTC CTC ATT CAC TGC AGA GA GGT ACT GCT CAA ATG TGG GA

CD79a AGG GAG CCA CAT CAA CAT CA CGT TGC CTT CCT TAG CTT GG

18 s GAT ACC GCA GCT AGG AAT ATC TGT CAA TCC TGT CCG

ß-actin CGT GGG CCG CCC TAG GCA CCA TTG GCC TTA GGG TTC AGG GGG G

GAPDH GGG TGG AGC CAA AAG GGT CAT CAT AGC TTT CTC CAG GCG GCA GGT CAG
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4.2 × 106–1.7 × 107 (Fig. 1a). The cell surface proteins
CD34, CD45, and CD79a were not identified in any of
the samples (Fig. 1a).
The relative gene expression ratio for CD29, CD44,

and CD90 ranged from 0.06 to 3.14, and for CD105 and
CD166, the relative gene expression ratio ranged from
0.002 to 0.014 except for one AT-MSCs sample, where
the relative gene expression ratio for CD166 was 0.15.
The mean relative gene expression ratios for CD29,
CD44, CD90, CD105, and CD166 were higher in
AT-MSCs samples compared to BM-MSCs samples. The
relative gene expression ratios for CD34, CD45, and
CD79a were < 0.0003 in all AT-MSCs and BM-MSCs
samples and > 0.05 in the positive control samples.

Discussion
This is the first study in the horse, where the cell surface
proteomes of AT-MSCs and BM-MSCs have been
analyzed by use of biotinylation of the intact cells to
enrich the plasma membrane proteins followed by MS
for identification of the proteins with high confidence.
This pipeline revealed identification of 1239 proteins
including 19 CD markers.

Enrichment procedures like biotinylation aim to
increase the relative abundance of proteins of interest,
but all accessible proteins in the sample will be labeled
with biotin, including intracellular proteins released due
to cell death and extracellular proteins. However, the
enrichment strategy in this study was considered
successful, because the relative number of CD markers
compared to the total number of identified proteins was
markedly higher than the relative number of CD
markers identified in a comparable MS study of equine
umbilical cord MSCs without enrichment of the cell
surface proteins [19]. Here, a total of 2118 proteins was
identified of which only 14 proteins were assigned as CD
markers [19].
The 19 identified CD markers included CD29, CD44,

CD51, CD71, CD73, CD90, CD105, and CD166, which
have also been identified as equine stem cell surface
proteins in previous studies [5, 7, 19–21]. CD29, CD44,
CD73, CD90, and CD105 are the five positive surface
markers included in the ISCT criteria of human MSCs.
However, in studies of equine stem cell surface proteins,
only CD29 has been robustly positive in equine stem cells,
while CD44, CD73, CD90, and CD105 have been identified

Table 2 Identified genes and/or proteins appointed to the cluster of differentiation (CD) classification system

Protein Alternative protein name Accession number Gene name AT-MSCs1 AT-MSCs2 AT-MSCs3 BM-MSCs1 BM-MSCs2 BM-MSCs3

CD29 Integrin subunit beta 1 F6UR46 ITGB1 +/+ +/+ +/+ +/+ +/+ +/+

CD44 Q05078 CD44 +/+ +/+ +/+ +/+ +/+ +/+

CD49a Integrin subunit alpha 1 F6SHD8 ITGA1 + + + + + +

CD49c Integrin subunit alpha 3 F6W8D8 ITGA3 + + + + + +

CD49d Integrin subunit alpha 4 F6ZZX8 ITGA4 – – – + + +

CD49e Integrin subunit alpha 5 F6QLZ6 ITGA5 + + + + + +

CD51 Integrin subunit alpha V F6W3W7 ITGAV + + + + + +

CD56 Neural cell adhesion molecule 1 F7BT93 NCAM1 + + + – – –

CD61 Integrin subunit beta 3 F7A370 ITGB3 + + – + + +

CD71 Transferrin receptor 1 Q2V905 TFRC + + + + + +

CD73 Ecto 5′ nucleotidase F6XEP5 NT5E + + + + + +

CD90 Thy-1 cell surface antigen F6ZC75 THY1 +/+ +/+ +/+ +/+ +/+ +/+

CD91 Alpha-2-macroglobulin receptor F6Q221 LRP1 + + + + + +

CD105 Endoglin F6W046 ENG +/+ +/+ +/+ +/+ −/+ +/+

CD109 F6V1V8 CD109 + + + + + +

CD142 Tissue factor F6UIK6 F3 + + + + + +

CD166 Activated leukocyte cell adhesion
molecule

F7B5L3 ALCAM +/+ +/+ +/+ +/+ +/+ +/+

CD228 Melanotransferrin F7DGD6 MFI2 – – – + + +

CD315 Prostaglandin F2 receptor inhibitor F6WPE1 PTGFRN + + + + + +

Cells are isolated from samples harvested from three different horses (1–3). The cell surface proteins were enriched with biotinylation, and the samples analyzed
by mass spectrometry. Raw data was searched against the Equus caballus reference sequence database from Uniprot (UP000002281; May 16, 2017; 22,698
proteins) giving information about protein names, accession numbers, and gene names. Gene expression was used to verify the data. (+) indicates that the
protein was identified in the sample, (−) indicates that the protein was not identified in the sample. (+/+) indicates identification both on the protein and gene
level. (−/+) indicates no identification on the protein level, but identification on the gene level
AT-MSCs adipose tissue-derived mesenchymal stromal cells, BM-MSCs bone marrow-derived mesenchymal stromal cells
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with different expression patterns [5, 7, 19, 21, 22]. The
inconsistent findings of CD105 on the surface of equine
stem cells [7, 21, 22] were supported by the observations in
this study, but the other four human ISCT-positive surface
markers were identified with high confidence.
CD51 has been identified on the surface of MSCs

derived from equine peripheral blood and AT [20] and
CD71 in the proteome from MSCs derived from equine
umbilical cord [19]. CD51 is known to be an endothelial
cell marker and has been shown to be upregulated in
mouse BM-MSCs during osteoblastic differentiation,
suggesting a putative role in osteogenesis [20]. The role of
CD51 and CD71 in equine MSCs is not clearly known,
and further studies are required to establish them as stem

cell markers. Stem cells should lack expression of CD45,
CD34, and CD79a, and these proteins were not observed
in the MS analysis of the enriched MSCs samples. Equine
CD34 and CD45 have been identified in a previous com-
prehensive MS analysis of different equine tissues and
body fluids [23], showing that the proteins can be identi-
fied using MS. Since CD34 and CD45 were not identified
in this study, our findings support their capacity as true
negative identifiers. To our knowledge, equine CD79a has
never been identified by MS analysis. Identification of this
protein in another cell type is needed to confirm that this
is a true negative identifier for MSCs in MS studies.
Multiple factors have been suggested to explain the

variable expression pattern of equine stem cell surface

Table 3 Cluster of differentiation proteins (CD) identified in equine AT-MSCs and/or equine BM-MSCs and their characteristics in
relation to AT-MSCs and BM-MSCs described in the literature

Protein Gene name Characteristics References

Identified cluster of differentiation proteins previously reported as present on the surface of equine MSCs

CD29 ITGB1 Consistently observed equine MSCs surface protein. Positive human MSCs surface
marker according to ISCT

[5, 7, 19, 21]

CD44 CD44 Inconsistently observed equine MSCs surface marker. Positive human MSCs
surface marker according to ISCT

[5, 7, 19, 21]

CD51 ITGAV Identified on the surface of MSCs derived from equine peripheral blood and AT.
Human endothelial cell marker. Upregulated in mouse BM-MSCs during
osteoblastic differentiation

[20]

CD71 TFRC Identified on MSCs derived from equine umbilical cord intervascular matrix [19]

CD73 NT5E Inconsistently observed equine MSCs surface marker. Positive human MSCs
surface marker according to ISCT

[22]

CD90 THY1 Inconsistently observed equine MSCs surface marker. Positive human MSCs
surface marker according to ISCT

[5, 7, 19, 21]

CD105 ENG Inconsistently observed equine MSCs surface marker. Positive human MSCs
surface marker according to ISCT

[7, 19, 21]

CD166 ALCAM Identified on MSCs derived from equine umbilical cord intervascular matrix [19]

Identified cluster of differentiation proteins previously reported as present on the surface of human MSCs

CD49a ITGA1 BM mononuclear stem cell marker for multipotency [25, 26]

CD49c ITGA3 Potential predictive stem cell marker for BM-MSCs and AT-MSCs [27, 28]

CD49d ITGA4 AT-MSCs surface protein sensitive for cryopreservation [30]

CD49e ITGA5 Part of the expression profile of AT-MSCs [28, 29]

CD56 NCAM1 Negative marker for AT-MSCs [31]

CD109 CD109 Identified on MSCs derived from equine umbilical cord intervascular matrix [32, 33]

CD142 F3 Stem cell surface protein, but not specific to MSCs [34]

Identified cluster of differentiation proteins that have not previously been described in the literature in relation to AT-MSCs or BM-MSCs neither in
human nor horse

CD61 ITGB3 Have not previously been described in the literature in relation to AT-MSCs or
BM-MSCs neither in human or horse

CD91 LRP1 Have not previously been described in the literature in relation to AT-MSCs or
BM-MSCs neither in human or horse

CD228 MFI2 Have not previously been described in the literature in relation to AT-MSCs or
BM-MSCs neither in human or horse

CD315 PTGFRN Have not previously described in the literature studied in relation to AT-MSCs or
BM-MSCs neither in human or horse

AT-MSCs adipose tissue-derived mesenchymal stromal cells, BM-MSCs bone marrow-derived mesenchymal stromal cells, ISCT International Society for Cellular Therapy
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markers, for example differences in culture conditions
and timeframes [5], distinct surface antigens for MSCs
of different origin [22], and even individual differences
between donors [22]. Another challenge often encoun-
tered in equine research is the lack of suitable antibodies
of high quality and consistent performance across differ-
ent laboratories [5, 7]. In this study, we employed two
technologies that do not rely on antibodies as alterna-
tives to immunophenotyping: MS to identify relevant
proteins, and qPCR to identify relevant genes. Mass
spectrometry has the advantage of identifying the markers
at protein and peptide level being independent of protein
antibodies for specific identification [23, 24]. However, this
technology is still reserved for specialized proteomic core
facilities, and its applicability for more general use is
therefore limited. qPCR is a more commonly available
technology. Radcliffe et al. [5] studied the temporal
expression of CD29, CD44, CD90, CD11a/CD18, and
CD45RB, both at the mRNA and protein level. They
found that at all culture points tested, the gene mRNA
expression followed the same pattern as the cellular
protein expression. The uniformity between mRNA
and protein expression patterns was supported by the
observations of this study in terms of both expression
pattern and positive and negative identifiers. Taken
together, the results of these studies emphasize that
gene expression analysis on mRNA might be of great
value for identification of equine MSCs and as a
method to verify findings on protein level, especially
when suitable antibodies are lacking.
To our knowledge, this is the first study to identify

CD49a, CD49c, CD49d, CD49e, CD56, CD61, CD91,
CD109, CD142, CD166, CD228, and CD315 in equine

MSCs. The majority of these proteins have been re-
ported to be present on the surface of human AT-MSCs
and BM-MSCs. In humans, CD49a proved useful as a
positive marker for the most multipotent cells from a
heterogeneous pool of BM mononuclear stem cells [25].
However, selection for CD49a-positive cells in a
AT-MSCs population showed only a minor advantage to
reduce heterogeneity [26]. In an attempt to identify
chondrogenic potency predictors prior to chondrogenic
differentiation of human BM-MSCs and AT-MSCs, it
was demonstrated that CD49c was positively associated
with GAG quantitation [27]. In another study of human
BM-MSCs, the expression level of CD49c and CD49e
was found to decrease after induction of chondrogenic
differentiation in the presence of TGF-ß3 [28], which
suggests that CD49c may be a predictive stem cell
marker in humans. CD49e has also been identified as
part of the expression profile of human AT-MSCs al-
though less than 28% of the cells were positive for this
marker [29]. The expression of CD49d on human
AT-MSCs was found to decrease after cryopreservation
and thawing even though the immunophenotypic marker
expression was largely preserved, and their multipotency
was maintained [30]. We also observed a lack of CD49d in
AT-MSCs, but further investigation is needed to state if
this is related to the phenotype. CD56 was observed in all
AT-MSCs samples from horses and absent in all
BM-MSCs samples. Human AT-MSCs have shown a vari-
able positivity for CD56, and it is generally considered a
negative marker for human AT-MSCs [31]. The diverging
results could be due to different biological characteristics
of this protein across species. In humans, CD109 and
CD142 have been identified as stem cell surface proteins,

A B

Fig. 1 Heat maps showing the uniformity of the protein expression pattern (a) and gene expression pattern (b) in samples from equine adipose
tissue-derived mesenchymal stromal cells (AT-MSCs) and bone marrow-derived mesenchymal stromal cells (BM-MSCs), for the commonly used
positive mesenchymal stromal cell markers CD29, CD44, CD90, CD105, and CD166, and negative mesenchymal stromal cell markers CD34, CD45,
and CD79a. The protein expression pattern is given by the mean of the label free quantification intensity measured in samples from three
individuals. The gene expression pattern is given by the mean of the gene expression relative to GAPDH in samples from three individuals
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but their presence has not been specific to the MSCs
phenotype [32–34].
CD61, CD91, CD228, and CD315 have not previously

been studied in relation to AT-MSCs and BM-MSCs ei-
ther in human or horse. Further investigation and valid-
ation will be needed to test the immunological
characterization of these proteins in the horse and deter-
mine their value as equine MSCs surface markers.

Conclusions
In conclusion, the findings of this study show that
enrichment of the MSCs surface proteome by biotinyl-
ation followed by MS analysis is a valuable alternative to
immunophenotyping of surface markers, when suitable
antibodies are not available. Furthermore, the method is
very useful for mining of the cell surface proteome to
identify potential additional equine stem cell markers.
Furthermore, the results support using gene expression
analysis to verify the data by another method, and as a
valuable alternative to immunophenotyping for identifi-
cation of specific MSCs markers.
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