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Abstract

Background: We have shown that the differentiation of human-induced pluripotent stem cells (hiPSCs) into
endothelial cells (ECs) is more efficient when performed with a 3-dimensional (3D) scaffold of biomaterial than
in monolayers. The current study aims to further increase hiPSC-EC differentiation efficiency by deciphering the
signaling pathways in 3D scaffolds.

Methods and results: We modified our 3D protocol by using U-46619 to upregulate both p38 mitogen-activated
protein kinase (p38MAPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, which increased the
differentiation efficiency (as measured by CD31 expression) to as high as 89% in two established hiPSC lines.
The differentiated cells expressed arteriovenous, but not lymphatic, markers; formed tubular structures and EC
lumen in vitro; had significantly shorter population-doubling times than monolayer-differentiated hiPSC-ECs;
and restored perfusion and vascularity in a murine hind limb ischemia model. The differentiation efficiency
was also >85% in three hiPSC lines that had been derived from patients with diseases or disease symptoms
that have been linked to endothelial dysfunction.

Conclusions: These observations demonstrate that activating both p38MAPK and ERK1/2 signaling pathways
with U-46619 improves the efficiency of arteriovenous hiPSC-EC differentiation and produces cells with greater
proliferative capacity.

Keywords: Human-induced pluripotent stem cells, Endothelial differentiation, Signaling pathways

* Correspondence: majianhua@china.com; jayzhang@uab.edu;
yeleislp@yahoo.com

fLiping Su and Xiaocen Kong contributed equally to this work.
’Department of Endocrinology, Nanjing First Hospital, Nanjing Medical
University, 68 Changle Road, Nanjing 210006, China

8Department of Biomedical Engineering, The University of Alabama at
Birmingham, Birmingham, AL 35294-2182, USA

'National Heart Research Institute of Singapore, National Heart Centre
Singapore, Singapore 117609, Singapore

Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-018-1061-4&domain=pdf
http://orcid.org/0000-0001-5039-6224
mailto:majianhua@china.com
mailto:jayzhang@uab.edu
mailto:yeleislp@yahoo.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Su et al. Stem Cell Research & Therapy (2018) 9:313

Background

Vascular endothelial cells (ECs) form a physical barrier
between the vessel wall and lumen, are metabolically ac-
tive, and play a key role in the maintenance of cardiovas-
cular homeostasis [1, 2] by producing molecules that
regulate vascular tone, cell adhesion, clotting, and fibrin-
olysis [2]. Pathophysiological conditions, such as hyper-
glycemia, hypercholesterolemia, hypertension, and
stress, can lead to EC functional abnormalities that have
been linked to atherosclerosis, coronary artery disease,
diabetes, and hypertension, as well as normal physio-
logical aging [1-4]. However, the availability of primary
human ECs for investigations of cell therapy or to serve
as an in vitro platform for drug testing and disease mod-
eling is limited. Human-induced pluripotent stem cells
(hiPSCs) could relieve this scarcity because they can be
differentiated into theoretically unlimited numbers of
any type of cell. Since hiPSCs are generated from a pa-
tient’s own somatic cells, they carry genetic variations
that may contribute to the development of the patient’s
disease [5-10].

Traditional protocols for differentiating hiPSCs into ECs
(hiPSC-ECs) are performed in two-dimensional (2D) cul-
ture systems [11-17], likely because the endothelium is a
2D tissue. However, we have previously shown that
hiPSC-EC differentiation can be remarkably efficient when
conducted in three-dimensional (3D) fibrin scaffolds [18];
up to 45% of the hiPSCs assumed an EC phenotype, and
the phenotype remained stable for up to 4 weeks in vitro.
Here, we investigated the pathways involved in hiPSC-EC
differentiation to determine whether our protocol could be
made even more efficiently by targeting the p38 mitogen-
activated protein kinase (p38MAPK) and extracellular
signal-regulated protein kinases 1 and 2 (ERK1/2) signaling
pathways, which have been shown to contribute inde-
pendently to the EC differentiation of pluripotent
stem cells [19, 20]. Thus, we investigated the tem-
poral dependence of our hiPSC-EC differentiation
protocol on these signaling pathways by treating the
cells with selective inhibitors of p38MAPK (losmapi-
mod [Losma]) [21] or ERK1/2 (SCH772984 [SCH])
[22] during differentiation stages. We found that our
enhanced protocol can not only be used to generate
ECs from the non-disease hiPSCs, but also cells of patients
whose disease or disease symptoms have been linked to
endothelial dysfunction, such as type 2 diabetes and ath-
erosclerosis in patients with Hutchinson-Gilford progeria
syndrome [23-25], which have not been achieved with
high differentiation efficiency.

Materials and methods

hiPSC generation

The five hiPSC lines used in this study were reprogrammed
from dermal fibroblasts by using non-integrating Sendai
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virus and the reprogramming factors OCT4, SOX2, KLF4,
and C-MYC, as described previously [26]. PCBC16iPS and
GRIPS cells were reprogrammed from neonatal human der-
mal fibroblasts (Lonza, USA) [18]. PG-608iPS cells were de-
rived from a patient of the Coriell Institute for Medical
Research (USA) who had Hutchinson-Gilford progeria syn-
drome. DP1-C9iPS and DP3-C6iPSC cells were repro-
grammed from the cells of two patients with type 2
diabetes mellitus (T2DM). The procedures were approved
by the ethics committee of Nanjing Hospital, Nanjing,
China, and the Centralised Institutional Review Board of
Singapore Health Services Pte Ltd., Singapore; informed
consent forms were signed by all patients. PCBC16iPSCs
were used as representative hiPSCs in all experiments un-
less stated otherwise. hiPSCs were cultured in a feeder-free
system with a 1:1 mixture of E8/mTeSR (STEMCELL
Technologies, Canada) and passaged every 4 days with Ver-
sene (Thermo Fisher, USA).

hiPSC-EC differentiation

3D scaffolds

This differentiation protocol was modified from a proto-
col that has been described previously [18]. Briefly, stage
1 began 2 days before initiating differentiation, when
hiPSCs were dissociated into single cells, seeded into a
0.4-mL fibrin scaffold on a 24-well plate, and transferred
to 6-well plates. Stage 2 of the protocol was initiated on
day 0 by culturing the cell-containing fibrin/thrombin
scaffold in EBM2 medium (Lonza, USA) supplemented
with B27 without insulin and CHIR99021 (CHIR) with
or without U46619 for 24 h. The third stage began on
day 1 when the medium was replaced with EBM2
medium supplemented with B27 without insulin, vascu-
lar endothelial growth factor-165 (VEGF), transforming
growth factor Bl (TGFP1), and erythropoietin (EPO);
the cells were cultured for 48 h, the medium was
refreshed on day 3, and the cells were cultured for an-
other 48 h. On day 5, the differentiating hiPSCs were re-
leased and cultured in EGM2-MV medium (Lonza,
USA) supplemented with B27, VEGF, and SB-431542
(SB). The medium was changed every 2 days, and differ-
entiation efficiency was evaluated on day 11 via
fluorescence-activated cell sorting (FACS); cells positive
for CD31 expression and for both CD31 and CD144 ex-
pression were collected and expanded. For investigations
of p38MAPK and ERK1/2 inhibition, the inhibitors
(10 uM Losma, an inhibitor of p38MAPK [21], and/or
5 uM SCH, an inhibitor of ERK1/2 [22]) were added to
the differentiation medium 30 min before CHIR, VEGF/
TGEBL/EPO, or U46619 treatment was initiated.

2D monolayers
The monolayer culture protocol was identical to the 3D
culture protocol with the following exceptions. In stage
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1, the dissociated hiPSCs were seeded into 6-well plates
and cultured in monolayers, and on day 5, one well of
the differentiating hiPSCs was harvested and cultured in
a T-25 flask with EGM2-MV medium supplemented
with B27, VEGF, and SB. The medium was changed
every 2 days, and differentiation efficiency was evaluated
on day 11 via FACS.

The EC population doubling time was calculated
within 7 days after cell sorting. Briefly, ECs were har-
vested on day 2 after purification and cultured in 6-well
plates (2 x 10° cells/well). The medium was changed
every 2 days, and ECs were harvested and counted on
day 7.

Flow cytometry

Flow cytometry analyses were conducted as described pre-
viously [18, 27]. Briefly, the differentiated hiPSC-ECs were
trypsinized and re-suspended as single cells in glass tubes,
incubated with 2% fetal bovine serum (FBS) in
phosphate-buffered saline (PBS) containing primary
phycoerythrin (PE)- or allophycocyanin (APC)-conjugated
anti-human CD31 antibodies (clone WM59, BD Pharmin-
gen, USA), FITC or PE-conjugated anti-human CD144
antibodies (clone 55-7H1, BD Pharmingen, USA), or iso-
type control antibodies for 30 min at 4 °C. To determine
EC type, purified ECs on day 7 were incubated with
FITC-conjugated anti-Eph-B4 antibodies, PE-conjugated
anti-human CXC chemokine receptor type 4 (CXCR4)
antibodies, APC-conjugated anti-human delta-like 4
(DLL4) or anti-human podoplanin antibodies (Miltenyi
Biotec, Germany), or isotype control antibodies for
30 min at 4 °C. The cells were washed with 2% FBS/PBS,
re-suspended in 0.3 mL 2% FBS/PBS containing 5 pL of
propidium iodide (10 pg/mL), and evaluated with a FACS
Aria instrument (BD Biosciences, USA).

Western blot

Phosphorylated and non-phosphorylated p38MAPK and
ERK1/2 protein levels were determined by Western blot
analysis as described previously [28]. The cell lysate was
prepared with PhosphoSafe™ Extraction Reagent (Merck,
Germany), and protein concentrations were determined
with Bradford reagent (Bio-Rad Laboratories, USA). Pro-
teins were separated, electrophoretically blotted onto
nitrocellulose membranes, and washed with 10 mM
Tris-HCl buffer (pH 7.6) containing 0.05% Tween-20;
then, the membranes were incubated in blocking buffer
(5% non-fat dry milk, 10 mM Tris pH 7.5, 100 mM NaCl,
0.1% Tween-20) at room temperature for 3 h and with di-
luted primary antibodies (glyceraldehyde phosphate de-
hydrogenase [GAPDH 1:2000, pERK1/2 [Thr202/Tyr204]
1:1000, Santa Cruz Biotech, USA; p-p38MAPK [Thr180/
Tyr182] 1:500, ERK1/2 1:1000, and p38MAPK 1:1000, Cell
Signaling, USA) at 4 °C overnight. Bound antibodies were
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detected with HRP-conjugated anti-rabbit IgG (dilution
1:1000 and 1:8000) and visualized with a ChemiDocTM
MP Imaging System (Bio-Lab, USA) and Image Lab 5.1
software (Bio-Lab, USA).

Quantitative RT-PCR

RNA isolation and cDNA synthesis was performed as de-
scribed previously [26, 29], and PCR thermal cycling was
conducted with the following primers: Brachyury, forward:
AAAGAGATGATGGAGGAACCCGGA, reverse: AGGA
TGAGGATTTGCAGGTGGACA; Etv2, forward: GGGC
TTGAAGGAGCCAAATTA, reverse: CAGGGATGAGCT
TGTACCTTTC; Gata-2, forward: GACGACAACCACCA
CCTTAT, reverse: AGTCTGGATCCC TTCCTTCT; Tal-1,
forward: AAATGGAGCAAAGTGGTAGGT, reverse: GTG
ACAACTCCAGCCTCTTAC; CD34, forward: TAGC
CTGTCACCTGGAAATG, reverse: TGCCTTGATGTCA
CTTAGGATAG; and CD31, forward: TTGAGACCAGCC
TGATGAAACCCT, reverse: TCCGTTTCCTGGGTTCA
AGCGATA. Thermal cycling was performed 40 times, and
each cycle consisted of enzyme activation at 95 °C for
15 min, denaturation at 95 °C for 30 s, and annealing at
60 °C (for all PCR reactions) for 30 s and extension at 72 °C
for 30 s. Endogenous GAPDH (forward: TCGACAGTC
AGCCGCATCTTCTTT, reverse ACCAAATCCGTTGA
CTCCGACCTT) levels were used as an internal control
for normalization [26]. Brachyury expression was presented
as a percentage of measurements obtained after Activin-A/
BMP-4 treatment, and the expression of other genes was
presented as a percentage of their expression at day 0.

Dil-conjugated acetylated low-density lipoprotein uptake
and tube formation

Dil-conjugated acetylated low-density lipoprotein (Dil-a-
ce-LDL) uptake and tube formation were evaluated as
described previously [18]. For the Dil-ace-LDL uptake
assay, hiPSC-ECs were incubated with DAPI overnight
(1:1000 dilution) and then in EGM supplemented with
10 pg/mL of Dil-ace-LDL (Life Technologies, USA) at
37 °C for 12 h. For the tube formation assay, cells were
seeded in 48-well plates that had been coated with
Matrigel (BD Pharmingen, USA) and incubated at 37 °C
for 24 h. Numbers of node, junction, and mesh per low
magnification (x 4) were quantified using angiogenesis
analyzer of Image]. For tube formation in 3D, 2 x 10*
hiPSC-ECs were seeded into 3D fibrin-thrombin scaf-
folds composed of 50 pL of 25 mg/mL fibrinogen and
50 pL of 20 U/mL thrombin and cultured in EGM sup-
plemented with a x 100 dilution of B27, 100 ng/mL
VEGF, SB, and 100 U/mL aprotinin.

Murine hind limb ischemia model and treatment
The experimental protocol and animal maintenance pro-
cedures were approved by the Institutional Animal Care
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and Use Committee and performed in accordance with
the Animal Use Guidelines of Singapore Health Services
Pte Ltd. Eight-week-old NOD-SCID mice (InVivos,
Singapore) were anesthetized with intraperitoneal injec-
tions of ketamine (100 mg/kg) and xylazine (2.5 mg/kg).
The right limb was shaved and disinfected with betadine
and 70% alcohol; then, the femoral artery of the right
hind limb was exposed and freed from the inguinal liga-
ment via a longitudinal incision extending to a point just
proximal to the patella. The artery and all branches from
the inguinal ligament to the point where it bifurcates
into the popliteal and saphenous arteries were closed
with 6-0 polypropylene sutures; then, the wound was
closed, and the animals were allowed to recover. Keto-
profen (2.5 mg/kg, subcutaneous) was administered for
pain control and Baytril (15 mg/kg, intramuscular) to
prevent infection for at least 3 days after the surgical
procedure. Animals were randomly assigned to treat-
ment with 1.5 x 10° hiPSC-ECs in 0.2 mL EBM (i.e., the
hiPSC-EC group, n=8) or with 0.2 mL EBM (ie., the
basal medium [BM] group, n=9). The hiPSC-ECs had
been differentiated from the PCBC16 cell line, and the
treatments were administered 3 days after hind limb is-
chemia (HLI) induction via four intramuscular injections
into the center of the ligated area and the surrounding
region along the femoral artery.

Laser Doppler imaging

Mice were anesthetized with intraperitoneal injections of
ketamine (100 mg/kg) and xylazine (2.5 mg/kg), their
hind limbs were shaved, and laser Doppler imaging was
performed with a PeriScan PIM 3 System (Perimed,
Sweden). Measurements in the ischemic (right) limb
were normalized to measurements in the non-ischemic
(left) limb and expressed as a percentage.

Immunohistochemistry

For characterization of hiPSC-ECs in vitro, cells were
fixed with 4% paraformaldehyde for 20 min at room
temperature and then blocked with UltraV block (Fisher
Scientific, USA) for 7 min. Primary antibodies (monoclo-
nal anti-CD31 and mouse anti-CD144 [BD Pharmingen,
USA]J; 1:100 concentration) were added to the UltraV
block buffer and incubated overnight at 4 °C; then, the
cells were incubated with PE-conjugated goat
anti-mouse IgG secondary antibodies in PBS for 1 h at
room temperature, labeled with 4’,6-diamidino-2-pheny-
lindole (DAPI), washed, and viewed under a fluorescence
microscope (Olympus, Japan).

To determine the neovascularization in ischemic limb,
mice limb muscles were collected, frozen, and cut into
8-um-thick sections; then, the sections were stained for
CD31 expression (rabbit anti-CD31 [Abcam, USA]
which targets both human and mouse ECs and goat
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anti-rabbit IgG conjugated with FITC [Thermo Fisher
Scientific, USA]) to evaluate total vessel density, for
smooth muscle actin (SMA) expression (Cy3-conjugated
mouse anti-SMA antibodies [Sigma-Aldrich] which tar-
gets both human and mouse SMCs) to evaluate arteriole
density. Vascular structures that were positive for CD31
expression (i.e., FITC fluorescence) and for both CD31
and SMA expression (i.e., simultaneous FITC and Cy3
fluorescence) were counted for all animals in both
groups, three to four slides per animal, six to eight fields
per slide.

To identify transplanted hiPSC-ECs, a primary anti-
body specifically against human CD31 (hCD31, mouse
anti-human CD31-Biotin) was used and visualized by
mouse anti-Biotin-VioBright 515 (both from Miltenyi
Biotec, Germany). Fluorescence images were taken with
an Olympus IX71 fluorescence microscope.

Statistics

Data are presented as mean * standard deviation (SD).
Comparisons among groups were analyzed for signifi-
cance via one-way analysis of variance (ANOVA) with
the Tukey correction. Analyses were performed with
SPSS software. A value of p<0.05 was considered
significant.

Results

CHIR99021 dose-dependently promotes the mesodermal
specification of hiPSCs

The 3D differentiation protocol consists of three stages
(Fig. 1a). In stage 1, the cells were seeded into the 3D scaf-
fold and maintained under standard hiPSC culture condi-
tions for 2 days (i.e., from day — 2 to day 0). Differentiation
begins in stage 2 (day O to day 1) when the cells are di-
rected toward an intermediate, mesodermal lineage; then,
the final hiPSC-EC phenotype is induced during stage 3
(day 1 to day 5) by exposing the cells to VEGF, TGFp1, and
EPO. In our previous report, stage 2 was initiated by cultur-
ing the cells with 50 ng/mL Activin-A and 25 ng/mL
BMP-4 [18]; however, mesodermal commitment can also
be induced with the glycogen synthase kinase 3a/f inhibi-
tor, CHIR [30], so we compared expression of the early
mesodermal marker, Brachyury, in hiPSCs cultured with
varying concentrations of CHIR. Brachyury mRNA levels
increased logarithmically as CHIR concentrations were
raised from 5 to 15 pM in 5 pM increments, and after 24 h
of differentiation, measurements were ~ 23-fold greater
with 15 uM CHIR than when differentiation was initiated
with Activin-A/BMP-4 (Fig. 1b). Furthermore, upon com-
pletion of the entire hiPSC-EC differentiation protocol, flow
cytometry assessments of CD31 expression (Fig. 1c) indi-
cated that the efficiency of differentiation increased from 10
to 58% over the same range of CHIR concentrations and
was ~2-fold greater with 15 pM CHIR than with
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Activin-A/BMP-4 (Fig. 1d, p < 0.01). Thus, the mesodermal
commitment was initiated by culturing the hiPSCs with
15 pM CHIR, rather than Activin-A/BMP4, for all subse-
quent experiments.

hiPSC-EC differentiation declines when p38MAPK
signaling or ERK1/2 signaling is inhibited

Because the p38MAPK and MEK/ERK signaling path-
ways contribute independently to the EC differentiation
of pluripotent stem cells [19, 20], we investigated the
temporal dependence of our hiPSC-EC differentiation
protocol on these signaling pathways by treating the
cells with selective inhibitors of p38MAPK (10 puM
Losma) or ERK1/2 (5 uM SCH) during each of the three
stages. Western blot analyses confirmed that treatment
with Losma or SCH did not alter ERK1/2 or p38MAPK
signaling, respectively (Additional file 1: Figure S1).

Flow cytometry analyses of CD31 expression indicated
that the differentiation efficiency declined to 6-10% with
Losma treatment in all three stages (Fig. 2a) and with
SCH (Fig. 2b) treatment in stage 1. Differentiation was
also substantially impaired by combined Losma and

SCH treatment in stage 1; however, when SCH was
added either alone or in combination with Losma during
stage 2 or stage 3, differentiation was completely
blocked. Furthermore, qRT-PCR analyses indicated that
when added in stage 2 (Additional file 1: Figure S2A-F),
SCH, but not Losma, reduced Brachyury mRNA levels,
as well as the expression of the hematopoietic stem cell
marker CD34. Thus, ERK1/2 signaling, but not
p38MAPK signaling, appears to have a key role in the
mesodermal specification of hiPSCs. Both treatments
during stage 2 led to declines in CD31 mRNA levels,
and expression of the endothelial transcription factors
Evt2, Gata-2, and Tal-1 were either reduced (Evt2,
Gata-2) or delayed (Tal-1) in Losma-treated cells; the ex-
pression of all three factors declined in response to SCH
treatment.

When SCH was added during stage 3, the expression of
all three endothelial transcription factors, as well as CD34
and CD31, declined (Additional file 1: Figure S2G-K);
whereas treatment with Losma in stage 3 led to declines
in Gata-2, CD34, and CD31 mRNA, but Etv2 and Tal-1
expression were largely unchanged. Collectively, these
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observations suggest that ERK1/2 signaling is crucial for
hiPSC-EC differentiation, particularly during stages 2 and
3 of our protocol, whereas the p38MAPK signaling path-
way may play in more of an auxiliary role.

U-46619 improved hiPSC-EC differentiation efficiency by
activating both p38MAPK and ERK1/2 signaling

Because our observations indicated that both the
p38MAPK and MEK/ERK pathways contribute to
hiPSC-EC differentiation, we evaluated whether the effi-
ciency of our hiPSC-EC differentiation protocol could be
improved by supplementing the medium with the prosta-
glandin H2 analog U-46619, which has been shown to ac-
tivate p38MAPK and ERK1/2 signaling [31, 32].
Experiments were conducted with hiPSCs from the
PCBCI16iPS, which were reprogrammed from neonatal
human dermal fibroblasts and have been used extensively
in another investigation [18]. U-46619 did not improve
differentiation efficiency when added during the first stage
of our protocol; however, when 1 uM U-46619 was added
during stage 2 or stage 3, > 85% (stage 2 89.1 + 4.3%, stage
3 85+3.2%) of the differentiated cells expressed CD31
(Fig. 3a). Higher U-46619 concentration (5 pM) was less
effective at promoting hiPSC-EC differentiation; < 40% of
the differentiated cells expressed CD31 when 5 pM
U-46619 was added to the medium during protocol stage
2 or stage 3 (Additional file 1: Figure S3). Differentiation
also declined to < 25% when U-46619 treatment was com-
bined with Losma and was completely blocked when
U-46619 was combined with SCH or both SCH and
Losma in stage 2 or 3 (Fig. 3b, c). Western blots confirmed

that Losma specifically inhibited U-46619-induced
p38MAPK activity, that SCH specifically inhibited
U-46619-induced ERK1/2 activity, and that the combin-
ation of Losma and SCH inhibited the U-46619-induced
activity of both pathways (Additional file 1: Figure S4).
Furthermore, qRT-PCR analyses indicated that when
added in stage 2 (Additional file 1: Figure S5A-F) or stage
3 (Additional file 1: Figure S5G-J), U-46619 enhanced or
prolonged Etv2, Gata-2, Tal-1, CD34, and CD31 gene ex-
pression but not in the presence of SCH alone or com-
bined SCH/Losma treatment. Losma impeded the
expression of all five markers when added to U-46619-
treated cells in stage 2; however, when added in stage 3,
Etv2 expression in U-46619-treated cells was prolonged,
while the expression of Gata-2, Tal-1, CD34, and CD31
gene expression was largely unchanged (Gata-2, Tal-1) or
only moderately reduced (CD34, CD31).

The dramatically enhanced differentiation efficiency
achieved with U-46619 treatment prompted us to modify
our protocol by adding U-46619 (1 uM) to the medium
during stage 2 (Fig. 4a). The modified protocol was tested
in four additional hiPSC lines: GRiPS, which has been well
characterized in another study [18]; DP1-C9 and DP3-C6,
which were derived from patients with T2DM; and
PG-608, which was derived from a patient with
Hutchinson-Gilford progeria syndrome; all four lines were
reprogrammed from dermal fibroblasts. The differenti-
ation efficiency, as determined via flow cytometry analysis
of CD31 expression, exceeded 85% in all lines tested
(Fig. 4b). After purification, >95% of the cells expressed
the arteriovenous EC marker CXCR4 [33, 34] and the
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Fig. 5 hiPSC-ECs were differentiated from A PCBC16, B GRiPSC, C DP1-C9, D DP3-C6, and E PG-608 lines and evaluated for the expression of (1)
CD31 and (2) CD144, for (3) Dil-ace-LDL uptake, for (4) tube formation on Matrigel, and for (5) EC lumen formation in fibrin-thrombin scaffolds.

(Bar =100 pm. Magnification of tubule formation and EC lumen =X 4). F Quantifications of numbers of nodes, junctions, and meshes formed by
ECs on Matrigel. (n =5 each for PCBC16, GRiPSC, DP1-C9, and DP3-C6; n =4 for PG-608). (*p < 0.05 and **p < 0.01 vs PG-608. Ap < 0.01 vs DP1-C9.

*p <005 vs DP3-C6)

arterial marker DLL4 [33, 35-37], while ~ 16% expressed
the venous marker EphB4 [38, 39], but expression of the
lymphatic EC marker podoplanin [40, 41] was undetect-
able (Fig. 4c). The differentiated cells also co-expressed
CD31 and CD144, and functional assessments confirmed
that the cells were capable of Dil-ace-LDL uptake and
formed tubular structures on Matrigel, as well as EC
lumen in fibrin-thrombin scaffolds (Fig. 5A—E). However,
the formation of tubular structures and EC lumen was less
extensive for ECs differentiated from disease-specific
hiPSC lines (particularly PG-608) rather than non-disease
hiPSC lines. Quantification showed that ECs derived from
PCBC and GRiPSCs had the highest numbers of nodes
and junctions (both ~3-fold of PG-608), followed by
DP1-C9 and DP3-C6 (both ~ 2-fold of PG-608) as com-
pared with PG-608 (Fig. 5F). Furthermore, the numbers of
meshes formed by PCBC16 and GRiPSCs were 7- or
5.5-folds of PG-608, while the numbers of meshes formed
by DP1-C9 or DP3-C6 were 3- or 4-folds of PG-608.

When the same cell lines were differentiated in mono-
layers, the differentiation efficiencies were ~75% for
PCBC16 and GRiPSC cells and 47-63% for the three
disease-specific hiPSC lines (Additional file 1: Figure S6).
Population-doubling times were also 40-57% shorter in
PCBC16-ECs and GRiPSC-ECs (p < 0.05), and tended to
be shorter in disease-specific hiPSC-ECs (but not signifi-
cantly), when the cells were differentiated in 3D scaffolds
rather than in monolayers (Additional file 1: Figure S7).
Thus, the modified 3D differentiation protocol was ex-
ceptionally efficient, yielded arteriovenous, but not
lymphatic ECs, and may produce cells that are more
proliferative than those achieved when the cells are dif-
ferentiated in monolayers.

hiPSC-EC transplantation improves perfusion and
vascularity in the ischemic limbs of mice

The hiPSC-ECs produced via our U-46619-enhanced 3D
differentiation protocol were also evaluated in a murine
HLI model (Fig. 6a). HLI was surgically induced via per-
manent ligation of the right femoral artery. Three days
later, animals in the hiPSC-EC group (n = 8) were treated
with injections of basal medium containing 1.5 x 10°
hiPSC-ECs, and animals in the BM group (n=9) were
treated with an equivalent volume of cell-free basal
medium. The hiPSC-ECs had been differentiated from
PCBC16 cells, and injections were administered directly
into the ischemic limb muscle. Perfusion was evaluated

in both the ischemic and non-ischemic contralateral
limbs immediately before HLI induction, at the time of
treatment administration and 2 weeks after treatment
via laser Doppler imaging (Fig. 6b). Measurements in
the ischemic limb were normalized to measurements in
the non-ischemic contralateral limb.

No evidence of perfusion was observable in images ob-
tained at the time of cell administration, and the ischemic
limbs of animals in the BM group were lost in four (out of
nine) mice by week 2. However, all limbs were retained by
animals in the hiPSC-EC group, and perfusion in their is-
chemic limbs had recovered to approximately 50% of mea-
surements in their non-ischemic limbs, which was
significantly greater than the extent of recovery observed in
the five BM-treated mice that had not lost their ischemic
limbs (6%, p < 0.001) (Fig. 6¢). Furthermore, assessments in
sections stained for CD31 and SMA (Fig. 6d) indicated that
measurements of total vessel density and arterial density in
the ischemic limbs of animals in the hiPSC-EC group were
~80% (Fig. 6e) and ~90% (Fig. 6f), respectively, of mea-
surements in their non-ischemic limbs and significantly
higher than measurements in the ischemic limbs of
BM-treated mice. Tissue sections stained for SMA and the
human-specific isoform of hCD31 indicated that the trans-
planted hiPSC-ECs were present both in smooth muscle-
containing vessels and in vessels that lacked smooth muscle
(Fig. 6g), suggesting that transplanted hiPSC-ECs can con-
tribute to capillary and arteriole formation. Collectively,
these observations suggest that transplanted hiPSC-ECs
can restore perfusion in the ischemic limb muscles of mice
by promoting neovascularization.

Discussion

In a previous report, we demonstrated that hiPSCs can be
differentiated into ECs with reasonable efficiency (~ 45%)
by culturing the cells in a 3D fibrin scaffold, rather than as
a 2D layer [18]. The protocol consisted of three stages: in
stage 1, the hiPSCs were seeded into the scaffold and
maintained under standard conditions; then, in stage 2,
the cells were directed toward the mesodermal lineage by
culturing them with Activin-A and BMP4, and the EC
phenotype was induced in stage 3 by exposing the cells to
VEGE, TGF, and EPO. For the experiments reported here,
we used the GSK-3a/f inhibitor CHIR rather than
Activin-A and BMP4 in stage 2, which modestly improved
the efficiency of our protocol (to ~58%). Then, we identi-
fied two signaling pathways, p38MAPK and MEK/ERK,
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Fig. 6 a A schematic diagram of the HLI model and treatment. b Laser Doppler imaging of mouse limbs before femoral artery ligation, 3 days
after femoral artery ligation (i.e, at the time of treatment administration) and 17 days after treatment with basal medium or hiPSC-ECs. Laser
Doppler imaging was performed with a PeriScan PIM 3 System with a similar setting. ¢ Recovery of right limb perfusion was expressed as a
percentage of measurements in the uninjured contralateral limb. d Fluorescence staining for CD31 and smooth muscle actin (SMA) in the
ischemic limb (right leg) and uninjured limb (left leg) of animals treated with basal medium or hiPSC-ECs after femoral artery ligation. e Vessel
density and f arteriole density in ischemic limbs and uninjured contralateral limbs. g Fluorescence staining for human-specific CD31 and SMA in
the injured limbs of hiPSC-EC-treated animals (**p < 0.01 and ***p < 0.001; Bar: D= 100 um, G =50 pm)

that contributed to hiPSC-EC differentiation. We upregu-
lated the activities of those pathways by adding the prosta-
glandin H2 analog U-46619 to the medium in stage 2. The
differentiation efficiency achieved with this enhanced
protocol was as high as 89% when evaluated in an estab-
lished hiPSC line and between 83 and 90% in all five
hiPSC lines tested. Three cell lines were reprogrammed
from the cells of patients with diseases or disease symp-
toms that are associated with endothelial dysfunction:
T2DM (two lines) [23] and Hutchinson-Gilford progeria
syndrome (one line) [24, 25]. Analysis of the expression of
markers for arterial (DLL4 and CXCR4) [33-37], venous
(EphB4 and CXCR4) [33, 34, 38, 39], and lymphatic
(podoplanin) [40, 41] ECs indicated that the population of
differentiated cells contained only arteriovenous ECs.
hiPSC-ECs formed tubular structures and EC lumens
in vitro and restore perfusion and improve vascularity in a
murine HLI model after transplantation in vivo.

Although both ERK1/2 and p38MAPK signaling par-
ticipate in the differentiation of hiPSC-ECs, their in-
volvement during our protocol appears to be of varying
importance. Treatment with the ERK1/2 inhibitor SCH
led to declines in Brachyury expression when the in-
hibitor was added during stage 2 and in the expression
of Etv2, a master regulator of EC development [42, 43],
when it was added in stage 3. Thus, ERK1/2 activity is
required for both the mesodermal specification of
hiPSCs [44] and for inducing the terminal EC pheno-
type. Some evidence suggests that p38MAPK activity is
also required for Etv2 gene expression during endothe-
lial differentiation [19]. However, hiPSC-EC differenti-
ation was only impaired, not blocked, by treatment
with the p38MAPK inhibitor Losma, and Etv2 expres-
sion levels only declined when Losma was added in
stage 2, but not when it was added in stage 3. Losma
treatment also reduced, while SCH treatment blocked,
hiPSC-EC differentiation in the presence of U-46619,
which activated p38MAPK and ERK1/2 [35, 36] and in-
creased the magnitude and duration of the expression
of endothelial transcription factors such as Etv2,
Gata-2, and Tal-1. Thus, although our observations
confirm that both p38MAPK and ERK1/2 activities
contribute to hiPSC-EC differentiation, ERK1/2 appears
to be indispensable, while p38MAPK likely serves in an
auxiliary role.

Our hiPSC-EC differentiation protocol produced cells
with shorter population-doubling times, indicating that
the 3D environment enhanced cell growth and prolifera-
tion [45]. Furthermore, the efficiency of our differenti-
ation protocol exceeded 85% when tested with hiPSCs
that had been reprogrammed from the cells of patients
whose disease or disease symptoms have been linked to
endothelial dysfunction. These observations are notable
because the biological activity of disease-specific stem/
progenitor cells is often impaired [46—48]. The protocol
may also overcome epigenetic factors that the hiPSCs re-
tain from their tissues of origin (i.e., epigenetic memory)
[49] and, consequently, could improve hiPSC-EC differ-
entiation in hiPSC lines that have been reprogrammed
from non-endothelial cells.

Conclusion

We have developed an enhanced 3D protocol for differ-
entiating hiPSCs into ECs that uses the prostaglandin
H2 analog U-46619 to upregulate p38MAPK and ERK1/
2 activity. The protocol produced populations of arterio-
venous ECs that were up to 89% pure, formed tubular
structures and EC lumens in vitro, and restored perfu-
sion and improved vascularity in a murine HLI model
after transplantation in vivo. Collectively, these observa-
tions have important implications for the use of ECs in
tissue engineering or as an in vitro platform for drug
testing and disease modeling.

Additional file

Additional file 1: Figure S1. Western blot analysis for protein
expression of phosphorylated p38MAPK (p-p38MAPK), p38MAPK,
phosphorylated ERK1/2 (p-ERK1/2), ERK1/2, and internal control GAPDH in
differentiating hiPSCs treated with CHIR, or Losma+CHIR, or SCH+CHIR at
stage 2. Figure S2. (A) Brachyury gene expression level in presence of
SCH and/or Losma at stage 2. Gene expression levels of Etv2 (B), Gata-2
(O), Tal-1 (D), CD34 (E), and CD31 (F) as a function of differentiation time
when SCH and/or Losma was supplemented in differentiation stage 2.
Gene expression levels of Etv2 (G), Gata-2 (H), Tal-1 (1), CD34 (J), and CD31
(K) as a function of differentiation time when SCH and/or Losma was supple-
mented in differentiation stage 3. Figure S3. (A) Typical flow cytometry result
of hiPSC-EC differentiation efficiency when 5 uM U46619 was supplemented
in differentiation stages 2. The proportion of cells expressed CD31 were com-
pared with respective isotype controls. (B) Mean differentiation efficiency of
hiPSC-ECs when 5 pM U46619 was supplemented in differentiation stage 2 or
3. Figure S4. Western blot analysis for protein expression of p-p38MAPK,

P38MAPK, p-ERK1/2, ERK1/2, and internal control GAPDH in differentiating
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hiPSCs treated with U46619, or Losma+U46619, or SCH+U46619, or Losma
+SCH-+U46619. Figure S5. (A) Brachyury gene expression level in presence of
U46619, or SCH and/or Losma at stage 2. Gene expression levels of Etv2 (B),
Gata-2 (O), Tal-1 (D), CD34 (), and CD31 (F) as a function of differentiation time
when U46619, or SCH and/or Losma was supplemented in differentiation
stage 2. Gene expression levels of Etv2 (G), Gata-2 (H), Tal-1 (1), CD34 (J), and
(D31 (K) as a function of differentiation time when U46619, or SCH and/or
Losma was supplemented in differentiation stage 3. Figure S6. hiPSC-EC dif-
ferentiation efficiencies when hiPSC were differentiated in monolayer. Figure
S7. Cell doubling time of ECs differentiated in 3D or monolayers. (PPT 2185 kb)
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EDTA: Ethylenediaminetetraacetic acid; EGM: Endothelial growth medium;
EphB4: Ephrin B4; EPO: Erythropoietin; ERK1/2: Extracellular signal-regulated
protein kinases 1 and 2; FACS: Fluorescence-activated cell sorting; FBS: Fetal
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