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Abstract

Background: Sex differences are known to impact muscle phenotypes, metabolism, and disease risk. Skeletal muscle
stem cells (satellite cells) are important for muscle repair and to maintain functional skeletal muscle. Here we studied,
for the first time, effects of sex on DNA methylation and gene expression in primary human myoblasts (activated
satellite cells) before and after differentiation into myotubes.

Method: We used an array-based approach to analyse genome-wide DNA methylation and gene expression in
myoblasts and myotubes from 13 women and 13 men. The results were followed up with a reporter gene assay.

Results: Genome-wide DNA methylation and gene expression differences between the sexes were detected in both
myoblasts and myotubes, on the autosomes as well as the X-chromosome, despite lack of exposure to sex hormones
and other factors that differ between sexes. Pathway analysis revealed higher expression of oxidative phosphorylation
and other metabolic pathways in myoblasts from women compared to men. Oxidative phosphorylation was also enriched
among genes with higher expression in myotubes from women. Forty genes in myoblasts and 9 in myotubes
had differences in both DNA methylation and gene expression between the sexes, including LAMP2 and SIRT1
in myoblasts and KDM6A in myotubes. Furthermore, increased DNA methylation of LAMP2 promoter had
negative effects on reporter gene expression. Five genes (CREB5, RPS4X, SYAP1, XIST, and ZRSR2) showed
differential DNA methylation and gene expression between the sexes in both myoblasts and myotubes.
Interestingly, differences in DNA methylation and expression between women and men were also found
during differentiation (myoblasts versus myotubes), e.g., in genes involved in energy metabolism. Interestingly,
more DNA methylation changes occur in women compared to men on autosomes.

Conclusion: All together, we show that epigenetic and transcriptional differences exist in human myoblasts
and myotubes as well as during differentiation between women and men. We believe that these intrinsic
differences might contribute to sex dependent differences in muscular phenotypes.
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Background

Sex contributes to differences in many aspects of metab-
olism and diseases such as obesity and diabetes [1], and
it contributes to differences in skeletal muscle morph-
ology and metabolism [2, 3]. Additionally, age-related
muscle decline and remodelling differ in women versus
men [4].

Adult skeletal muscle stem cells, so-called satellite
cells, are responsible for regeneration and maintenance
of skeletal muscle [5], thereby contributing to a healthy
muscle phenotype. The satellite cells are activated in re-
sponse to stress, after, e.g. injury or exercise, which initi-
ates proliferation. Asymmetric cell division gives rise to
new stem cells as well as muscle progenitors, called
myoblasts, that eventually withdraw from the cell cycle,
differentiate, fuse into myotubes and later mature into
myofibres (Fig. 1) [6].

Studies in mice have identified sex differences in skel-
etal muscle regeneration. Female myoblasts transplanted
with higher efficiency regardless sex of the host, and
transcriptional sex differences in the myoblasts were de-
tected [7]. However, there is limited knowledge about
the impact of sex on human myogenesis. Nevertheless,
sex-specific differences in human skeletal muscle tissue
transcriptome have been shown at baseline as well as in
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response to exercise and with age [8, 9]. Sex-specific
muscle phenotypes may arise due to, e.g. hormonal ef-
fects of androgens or oestrogen, metabolic program-
ming, or genetic differences [1]. Furthermore, sex-biased
differentially expressed genes in skeletal muscle are lo-
cated both on the autosomal chromosomes and the
X-chromosome [8, 9].

Epigenetic modifications, such as DNA methylation,
are important for inactivation of one X-chromosome in
women, regulation of gene expression and differentiation
of stem cells [10]. DNA methylations can be influenced
by the environment and change with age [11]. We have
previously shown genome-wide DNA methylation
changes during differentiation of primary human myo-
blasts into myotubes, and obesity-associated epigenetic
programming of these cells [12]. Sex-specific DNA
methylation has been observed in other tissues, such as
pancreatic islets, blood and liver among others [13-17].
However, it has not yet, to our knowledge, been studied
in human muscle stem cells.

We hypothesise that sex influences DNA methylation
and gene expression in human skeletal muscle stem cells
and thereby affects myogenesis and muscle phenotypes.
Our aim is to compare the genome-wide DNA methy-
lome in primary human myoblasts and in vitro
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Fig. 1 Schematic figure of myogenesis as well as the study design. The leftmost part of the figure shows the adult myogenic process, from
activation of skeletal muscle stem cells to a mature myofibre, as it occurs naturally in vivo. The rightmost part shows our study design covering
the different analyses of genome-wide DNA methylation and gene expression in primary human myoblasts and in vitro differentiated myotubes
from women and men. BMI, body mass index; Wilcoxon, Wilcoxon signed-rank test
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differentiated myotubes from women versus men, and
relate epigenetic differences to gene transcription. We
also studied the direct effect of increased methylation on
transcriptional activity in cultured myoblasts.

Methods

Study subjects’ characteristics

Women and men were selected from a study population
which has been previously described in detail elsewhere
[12, 18, 19]. Thirteen women and 13 men without any
known disease (except 6 individuals of each sex with
obesity) were selected based on matching body mass
index (BMI) and age from a subset of the cohort where
DNA methylation and gene expression array data
already existed (part of these data have been published
previously [12] (Table 1). Data were not available for one
man for the following phenotypes: glucose 2 h, Insulin 0
h, Insulin 2 h and homeostasis model assessment of in-
sulin resistance and f-cell function (HOMA-IR and

Table 1 Phenotypes of individuals included in the study
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HOMA-B). Furthermore, mRNA expression data were
not available for two women.

Human muscle stem cell isolation and culture

A detailed description of the method can be found in
previous publications [12, 18]. In short, satellite cells
were isolated from vastus lateralis. Myoblasts were
seeded on BD Matrigel™ (BD Biosciences, NJ, USA), cul-
tured in HAM/F10 supplied with 20% fetal bovine serum
(FBS) and 1% penicillin/streptomycin (PS) and harvested
when less than 50% confluent. At 70-80% confluency,
growth medium was switched to DMEM (1.0 g/L glu-
cose) supplied with 10% FBS and 1% PS until cells were
confluent and aligned. Differentiation was then en-
hanced by switching to DMEM (4.5 g/L glucose) sup-
plied with 2% horse serum and 1% PS for 5days for
myotube formation. Full differentiation was determined
via visual confirmation where approximately 70% of
the myotubes should have >3 nuclei. DNA and RNA
was extracted from the cells using the DNeasy blood

Phenotype Women (n=13) Men (n=13) p value
Age (years) 535+79 524453 0.69

BMI (kg/mz) 30.1 £ 68 288 £ 5.1 0.59
Weight (kg) 849 + 243 969 £ 17.2 0.16
Waist-hip ratio (waist/hip) 085 + 0.1 096 + 007 51x107%
Hip circumference (cm) 1119 + 140 1075 + 84 0.34

Waist circumference (cm) 96.5 + 22.1 1035+ 134 0.34
Android fat mass (kg) 32+£21 31+£16 0.94
Gynoid fat mass (kg) 68+ 23 41414 18x10 %
Whole body fat mass (kg) 353 +16.0 265+ 108 0.12
Whole body fat-free mass (kg) 458 + 87 665+ 75 10x10°%
Glucose 0 h (mmol/l) 47 £ 05 51+05 0.06
Glucose 2 h (mmol/l) * 55+ 15 53+13 0.75
Insulin 0 h (pmol/l) * 488 £ 336 66.3 £ 36.1 0.22
Insulin 2 h (pmol/l) * 3117 £ 1768 3734 + 3261 0.56
HOMA-IR* 1.5+1.1 22+13 0.17
HOMA-B* 1111 £ 608 1322+ 923 0.50
P-cholesterol (total mmol/l) 52+08 53+ 10 0.90
P-cholesterol HDL (mmol/l) 17 +06 14+04 0.11
P-cholesterol LDL (mmol/l) 30+ 04 34+09 0.17
Systolic blood pressure (mmHg) 1274 +12.7 1445 + 128 22%x107%
Diastolic blood pressure (mmHg) 86.5 £ 10.7 906 + 8.1 0.28

Heart rate (beats/min) 685+ 88 573+ 109 85x 10 %
VO, max (I/min) 21 £07 29+ 08 0.01

VO, max per kg (ml/min/kg) 247 £87 305+ 114 0.15

Data are presented as mean * SD. p values were calculated using t-tests

*Data from 12 men are available for these characteristics
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and tissue kit (Qiagen, Hilding, Germany) and Trizol in
combination with RNeasy minElute Cleanup kit (Qia-
gen), respectively.

Purity of the cultures in this cohort has been assessed
by flow cytometry and published elsewhere [12]. All cul-
tures expressed the myogenic marker CD56, while the
endothelial and haematopoietic markers CD31 and
CD45 were not detected.

DNA methylation analysis
DNA methylation was analysed genome-wide using the
Infinium HumanMethylation450K BeadChip (Illumina,
Inc., CA, USA). The method has been described in detail
elsewhere [12]. Myoblasts and myotubes from the same
individual were analysed on the same chip. Women and
men were equally distributed on the different chips.
Y-chromosome annotated probes were removed from
initial analysis, together with rs-probes, non-CpG probes
and cross-reactive probes with at least 49-base pair (bp)
match [20]. Mean detection p value cut off was set to
0.01. Beta-mixture quantile normalisation (BMIQ) [21]
was used to normalise between Infinium I and Infinium
IT assays. COMBAT [22] was used to correct for batch
in non-paired analysis, i.e. women versus men. Methyla-
tion for each analysed site is presented as [ value ran-
ging from 0 to 1 (0-100% methylation). In total 458,475
probes were analysed for all chromosomes, 447,867 for
autosomes and 10,608 for the X-chromosome.
Y-chromosome DNA methylation data were normalised
(including all chromosomes) and analysed separately.
The Illumina 450k array annotates the probes to dif-
ferent genomic regions [23]; in relation to the transcrip-
tion start sites (TSS) either at 0 to 200 bp (TSS200) or
between 200 and 1500bp upstream of the TSS
(TSS1500), to 5" untranslated region (5'UTR), 1st exon,
gene body (introns and exons, except 1st exon), 3'UTR
or intergenic (not annotated to any gene/gene region).
The probes are also annotated to CpG island regions; in-
side the CpG island itself, defined as 500 bp with GC
content higher than 50% and observed/expected CpG
ratio > 0.6 [23]. The 2-kb regions directly flanking the
CpG island, either upstream (northern (N)) or down-
stream (southern (S)) of the islets, are called shores and
the 2-kb regions flanking the shores are called the north-
ern and southern shelf.

mRNA expression analysis

mRNA expression was analysed genome-wide using
HumanHT-12 Expression BeadChip (Illumina). The
array contains 47,231 probes and those with mean detec-
tion p value >0.01 for more than 60% of the samples
were filtered out. Data were background corrected, log2
transformed and quantile normalised using lumi package
[24] in R (Additional file 1). In total, 16,955 transcripts,
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corresponding to 10,925 unique genes, were found
expressed after quality control (QC). Of these genes,
9766 overlapped with genes from the methylation array.

Gene set enrichment analysis (GSEA)

GSEA was analysed using GSEA software [25, 26] to find
enriched KEGG pathways. This software enabled us to
analyse the complete expression data set using a
pre-ranked list, based on t-statistics, where duplicate
gene symbols were removed based on p value (lowest p
value was kept in the data set). Default setting was used,
except for minimal size of gene sets, which was set to
two genes.

Luciferase assay

The luciferase assay method to measure the direct DNA
methylation effect on gene expression has been de-
scribed in detail elsewhere [12, 13]. In short, 1500-bp
fragments of human promoters from LAMP2 and
RPS4X were cloned into a CpG-free luciferase vector
(pCpGL-basic) [27] and amplified by GenScript (Gen-
Script USA Inc., Piscataway, NJ, USA). The constructs
where then either mock methylated or methylated in
vitro using the methyltransferases Sssl, Hhal or Hpall
(2.5 U/ug DNA) (New England Biolabs), which methy-
late cytosines in the following context: CG, GCGC and
CCGG, respectively. Mouse myoblasts (C2C12) cultured
in DMEM (4.5 g/L glucose) supplied with 10% FBS and
1% PS in a 96-well plate were co-transfected with either
150 ng DNA/well (LAMP2) or 50 ng DNA/well (RPS4X)
of the pCpGL vector constructs together with a Renilla
luciferase control reporter vector (Promega, Madison,
WI, USA) using FuGeneHD (Promega). Luciferase and
Renilla activity were measured 48 h post transfection in
cell lysate using Dual-Luciferase Reporter Assay System
(Promega). Luciferase activity was calculated as the ratio
between the reporter gene firefly luciferase and the con-
trol vector Renilla luciferase.

DNA methylation and mRNA expression data in skeletal
muscle

DNA methylation and gene expression data from
non-diabetic individuals in a previously published study
were used to study differences between sexes in skeletal
muscle [28]. DNA methylation data were analysed by
Infinium HumanMethylation450K BeadChip (Illumina)
and gene expression data using GeneChip Human Gene
1.0 ST array by Applied Biosystems (Foster City, CA,
USA). DNA methylation data for myotubes and skeletal
muscle were merged based on Illumina TargetID and the
expression data based on gene symbol.
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Statistical analysis

t-tests were used to analyse differences in phenotypes
between men and women and the data are presented as
mean * standard deviation (SD).

For DNA methylation and gene expression analyses, p
values were calculated with linear regression corrected
for age and BMI in the comparisons between women
and men, and with a paired non-parametric test
(Wilcoxon) for comparisons between myoblasts and
myotubes from the same individuals. Frequencies of sig-
nificant CpG sites in different genomic regions and re-
gions in relation to CpG island were analysed with
chi-square tests against the expected frequency (5% for
p<0.05) of all analysed sites. A false discovery rate
(FDR) (Benjamini—Hochberg procedure) was performed
to correct for multiple testing and to reduce the amount
of false positives in all the array data (autosomal chro-
mosomes and X-chromosome together) and GSEA. Sep-
arate FDR analyses were run for the Y-chromosome in
men. FDR analyses of muscle data were performed after
filtering on CpG sites/genes that overlapped with signifi-
cant results in myotubes. Principal component (PC) ana-
lyses were performed after batch correction and the top
PCs correlated with sex. Correlations between expres-
sion data from all samples were calculated using Pearson
correlation analyses.

Luciferase assay results were analysed using paired
t-test against the control.

Results

Differences in clinical phenotypes between women and
men

Human myoblasts and myotubes derived from human
satellite cells from 13 healthy women and 13 healthy
men were included in the study (Fig. 1). Their character-
istics are shown in Table 1. There were no differences in
age or BMI between the groups. Women had higher
gynoid fat mass and heart rate (HR), while men were tal-
ler and had higher whole-body fat-free mass, systolic
blood pressure, waist-hip ratio and VO, max (Table 1).

Sex-specific differences in DNA methylation and gene
expression in human myoblasts

We started to analyse DNA methylation in cells har-
vested as proliferating myoblasts using Illumina 450k
array (Fig. 1). Methylation data for a total number of
458,475 CpG sites, 447,867 on autosomal chromosomes
and 10,608 on the X-chromosome were obtained from
all individuals.

To examine potential sources of variation, we per-
formed PC analysis of the methylation data set in myo-
blasts and correlated the top PCs with sex. The samples
clustered based on sex (Additional file 2), as expected
when methylation of the X-chromosome is included [13, 17].
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Furthermore, sex was significantly correlated with the third
PC (p = 147 x 10 °), suggesting that sex has a relatively large
impact on DNA methylation in myoblasts.

We continued to analyse the impact of sex on methy-
lation of individual CpG sites in the myoblasts using lin-
ear regression. Based on FDR of less than 5% (g < 0.05),
12,177 CpQG sites had significant differences, in methyla-
tion between women and men (Fig. 2a and Add-
itional file 3). Of these, 5762 CpG sites were located on
the autosomal chromosomes (g < 0.05) with absolute dif-
ferences in methylation up to 46.1%. The majority (62%)
had higher methylation in women compared to men. On
the X-chromosome, 6415 CpG sites had different methy-
lation (q < 0.05) between women and men with absolute
differences up to 60.2%. Here, 78% had a higher methy-
lation level in women, and notably 22% had a higher
methylation level in men. More differences on the
X-chromosome compared to autosomal chromosomes
are expected due to the X-chromosome inactivation in
women [13, 17, 29].

The CpG sites on the array have been annotated to
different functional genomic regions as well as regions
based on CpG content [23], see Additional file 4 for de-
tails. DNA methylation in these different regions might
have diverse effects on transcription of their correspond-
ing genes [10]. Hence, we evaluated where CpG sites
with significant differences (g <0.05) in DNA methyla-
tion between women and men are located. In general,
we found more CpG sites than expected by chance close
to TSS and in CpG islands on both autosomal chromo-
somes and the X-chromosome (Additional file 4).

To investigate if sex also affects gene expression in
myoblasts, we used a microarray approach with mRNA
from the same samples as for DNA methylation. Corre-
lations of data from all samples were high (Add-
itional file 1) and a PC analysis revealed significant
correlation between sex and the third PC (p=0.01) as
well as the fourth PC (p = 8.64 x 10™*).

We then performed GSEA [26] to analyse enrichment
of KEGG pathways in the whole expression dataset.
Twenty pathways were enriched (g< 0.05) with higher
expression levels in women compared to men, including
several pathways related to the cell cycle as well as me-
tabolism of energy, proteins and fatty acids (Fig. 2b and
Additional file 5). In contrast, only four pathways were
enriched with higher expression in men compared to
women (g < 0.05), mostly related to cell-cell communi-
cation, e.g. transforming growth factor-beta (TGF-beta)
signalling (Fig. 2c and Additional file 5).

Next, we analysed expression of individual genes in myo-
blasts and found 137 unique genes with significantly different
expression (g< 0.05) between women and men (Add-
itional file 6). Importantly, 124 of these genes were located
on autosomal chromosomes and include genes known to be
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Fig. 2 Differential DNA methylation and gene expression in human myoblasts from women and men. a Manhattan plot of all analysed CpG sites for DNA
methylation in myoblasts from women versus men. The blue line indicates the threshold for significance (g < 0.05). Green dots indicated with arrows are
selected CpG sites for some genes of interest. Manhattan plot with black points are CpG sites only on the X-chromosome. N = 13 for both women and
men. b, ¢ A selection of relevant significant KEGG pathways (g < 0.05) from GSEA of expression data in myoblasts from women versus men (N=11-13).
Total, total number of genes in the pathway in the analysed dataset; Observed, observed number of genes in the dataset contributing to the enrichment;
Val, valine; Leu, leucine; lle, isoleucine; Gnrh, gonadotropin-releasing hormone; TGF-beta, transforming growth factor-beta. d Gene expression of selected
genes in metabolic pathways and e DNA methylation of significant CpG sites annotated to these genes in myoblasts from women and men. *, g < 0.05, N
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involved in myogenesis and energy metabolism, in line with ~ (Additional file 7), whereas 10 were located on the
GSEA. For example, CTFI had higher expression in men  X-chromosome. Also here, we found several genes in-
and MAMSTR, TFBIM and LDHB had higher expression in  volved in metabolic pathways. For example, SIRTI
women. had higher expression in men, while ATP6V1B1, CPS1

DNA methylation is known to affect gene and COQ3 had higher expression in women (Fig. 2d,
expression [10], and we therefore combined our gene e). Genes on the X-chromosome with both differential
expression data with the DNA methylation data. Forty  gene expression and DNA methylation included, e.g.
unique genes had significant changes (g< 0.05) in XIST, involved in X-chromosome inactivation [30],
both mRNA expression and methylation  LAMP2 and RPS4X (Fig. 3a—d).
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DNA methylation of LAMP2 and RPS4X promoter regions
directly affects transcriptional activity in myoblasts

DNA methylation in promoter regions is associated with
low gene expression [10]. In order to study direct effects
of promoter DNA methylation on gene expression level
in myoblasts, we designed a luciferase assay by cloning

the LAMP2 and RPS4X promoter regions, respectively,
into a CpG-free vector. LAMP2 encodes lysosomal asso-
ciated membrane protein 2 (LAMP-2) involved in au-
tophagy, a process important for proper myogenesis
[31-33]. LAMP2 had a higher expression level, accom-
panied with lower methylation level in the proximal
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promoter (TSS200), in myoblasts from men (Fig. 3c, d).
RPS4X encodes a protein of the 40S ribosomal subunit
and is known to escape X-chromosome inactivation [34].
As seen in Fig. 3¢, d, RPS4X exhibited higher expression
and lower promoter methylation in women. The lucifer-
ase assay clearly showed that increased methylation in
the promoter region of these genes reduced expression
of the reporter gene (Fig. 3e). This result supports that
methylation in these promoters directly regulates the ex-
pression of their genes.

Sex-specific differences in DNA methylation and gene
expression in human myotubes

We continued to analyse DNA methylation in myotubes
derived from myoblasts of the 13 women and 13 men
(Fig. 1). The samples clustered based on sex, as was also
seen for the myoblasts, (Additional file 2), and sex was
again significantly correlated with the third PC (p=
1.47 x 10-5).

Between women and men, 11,097 CpG sites had signifi-
cantly different DNA methylation levels (g < 0.05) (Fig. 4a
and Additional file 3). Of these CpG sites, 4918 were lo-
cated on the autosomal chromosomes with absolute differ-
ences in methylation up to 39.2%, and 6179 sites were
located on the X-chromosome, with absolute methylation
differences up to 58.9%. Similar to the myoblasts, many sig-
nificant sites on the X-chromosome (19%) had higher
methylation level in men. We also found a similar pattern
between myoblasts and myotubes when we analysed the
distribution of these significant sites on the X-chromosome
in relation to gene regions and CpG island regions (Add-
itional file 4). However, these consistent patterns were not
seen for the autosomal chromosomes (Additional file 4), in-
dicating that sex-specific methylation differences on the X-
chromosome are more persistent than on autosomal chro-
mosomes during differentiation.

We proceeded to study the impact of sex on gene ex-
pression in myotubes. Correlations of data from all sam-
ples were high (Additional file 1), and sex correlated
significantly with PC 3 to 5 (p = 0.003, 0.005 and 0.03) in
a PC analysis.

GSEA of gene expression data in myotubes revealed
15 significant KEGG pathways (g < 0.05) that were up-
regulated in women compared to men (Fig. 4b and Add-
itional file 5). Of note, 12 of these were also upregulated
in myoblasts, including oxidative phosphorylation and
DNA replication. However, no gene set was downregu-
lated in myotubes from women compared to men.

Twenty-two unique genes were differently expressed (g
< 005) between women and men in myotubes
(Additional file 6). Of these, 13 genes were located on auto-
somal chromosomes and 9 genes on the X-chromosome.

Further, 9 unique genes in the myotubes had signifi-
cant changes (g< 0.05) in both expression and DNA
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methylation between women and men (Additional file 7).
Seven of these genes were located on the X-chromosome,
including KDM6A (Fig. 4a) which is a histone demethylase
important for myogenesis [35] and previously shown to be
differentially expressed and methylated between women
and men in other tissues [13, 17].

Sex differences in DNA methylation and gene expression
in human myoblasts remain and arise in myotubes

To better understand which of the sex differences seen
in myoblasts that persist after differentiation into myo-
tubes, we compared our significant (g< 0.05) DNA
methylation and gene expression hits in myoblasts and
myotubes (Fig. 5a). Interestingly, more significant
methylation and expression differences were seen in
myoblasts compared to myotubes, both on autosomal
chromosomes and on the X-chromosome. While 25%
(1453) of the CpG sites that were differentially methyl-
ated in myoblasts on autosomal chromosomes remained
significant in myotubes, 92% (5912 CpG sites) over-
lapped on the X-chromosome. Again, this suggests that
sex differences in DNA methylation on the
X-chromosome, compared to the autosomal chromo-
somes, are more persistent during myogenesis.

Nine genes were differentially expressed (g < 0.05) be-
tween women and men in both myoblast and myotubes,
and 5 of them (CREBS, SYAPI, XIST, ZRSR2 and RPS4X)
also showed differences in DNA methylation (g < 0.05)
(Fig. 5a—d). All of these genes, except CREBS, are lo-
cated on the X-chromosome. They are involved in, e.g.
splicing, X-chromosome inactivation and transcriptional
activation [30, 36—38], suggesting that they may further
regulate expression of other genes. Together, the data
show that many sex differences in DNA methylation and
gene expression, both on the X-chromosome and auto-
somal chromosomes, in human myoblasts remain after
differentiation into myotubes. The findings also indicate
that sex differences arise during cell specification, since
several differences between women and men in myo-
tubes were not seen in the myoblasts.

Sex-specific differences in global DNA methylation in
human myoblasts and myotubes

Previous studies have shown sex differences in DNA
methylation of specific functional genomic elements and
CpG island regions [13, 17]. We therefore analysed the
average DNA methylation levels in the myoblasts and
myotubes from women and men for each of these re-
gions (Additional file 8). Interestingly, men had higher
methylation than women in 3’ untranslated regions
(UTR) and shelves on the X-chromosome. Women had
higher methylation in the other regions, as expected due
to the role of DNA methylation for X-chromosome in-
activation [13, 17, 29]. On the autosomal chromosomes,
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methylation levels in myotubes, but not myoblasts, were
close to significantly higher in women compared to men
in gene bodies, 3" UTR, intergenic regions and CpG
islands (g=0.051). These data support that global
methylation differences may arise during muscle
differentiation.

Changes in DNA methylation and gene expression during
myogenesis in women and men

We have previously shown that 3.7 times more DNA
methylation changes occur during differentiation of
myoblasts from obese compared with non-obese

subjects [12]. We therefore studied whether sex also in-
fluences changes in DNA methylation and gene expres-
sion during myogenesis. Here, we analysed methylation
and expression in myoblasts versus myotubes from
women and men separately and compared the results
(Fig. 6a, b and Additional file 3).

In women, methylation status was altered in 24,723
CpG sites in the transition from myoblast to myotube
(g < 0.05) (Fig. 6a). In men, methylation was altered in
16,789 sites in the same transition. Only 4258 of these
sites were the same between women and men. Subse-
quently, most methylation changes seen during
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differentiation seem to be sex-specific. This was not
driven by changes on the X-chromosome where rela-
tively few changes occurred (212 in women and 262 in
men, with 17 overlapping CpG sites). Interestingly, CpG
sites that changed DNA methylation in women were
enriched in gene bodies and open sea, while significant
CpG sites in men were enriched close to TSS and in
CpG islands (Additional file 4).

No CpG sites with significant difference in methylation
were found on the Y chromosome in a separate analysis
of DNA methylation in myoblasts versus myotubes from
men (Additional file 9).

4333 unique genes in women and 5717 in men
were differentially expressed between myoblasts and
myotubes (g< 0.05) (Fig. 6b and Additional file 6).
Expected expression changes of myogenic regulatory
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factors, muscle-specific genes and cell cycle genes
during differentiation were seen for both women and
men (Additional file 10) [12]. These data confirm that
the myoblasts exit the cell cycle and differentiate into
functional myotubes.

3742 genes with differential expression in myoblasts
versus myotubes (g< 0.05) overlapped between
women and men (Fig. 6b and Additional file 6). In
line with the analysis in myoblasts and myotubes
where we found differences in metabolic pathways be-
tween women and men, some genes involved in en-
ergy metabolism changed expression in either men or
women during differentiation. For example, LDHB ex-
pression decreased in myoblasts versus myotubes
from only women, while NDUFB9 and NDUFCI1 ex-
pression increased in myoblasts versus myotubes from
only men (Fig. 6c). Additionally, the expression of
one myogenic regulatory factor, MYODI, was only
downregulated significantly in women (Fig. 6c).

Of note, three times more unique genes on the
X-chromosome (68 versus 22) changed expression in

men compared to women during myogenesis
(Additional file 6).
Moreover, two genes on the Y-chromosome,

KDMS5D and EIF1AY, showed significant difference (g
< 0.05) in gene expression between myoblasts and
myotubes. Both had higher expression in myotubes
(Additional file 9).

Sex-specific DNA methylation and gene expression in
human skeletal muscle

Finally, we analysed if sex-specific differences in
DNA methylation in myotubes can also be found in
skeletal muscle tissue. Here, we used skeletal muscle
from the non-diabetic individuals in a previously de-
scribed cohort [28]. Methylation data were available
from muscle of 7 women and 10 men. More than
50% of the differentially methylated CpG sites ob-
served in myotubes (6539 out of 11,056) could be
confirmed in muscle (g < 0.05) (Additional file 11).
These included for example CpG sites annotated to
KDMG6A, RPS4X, SYAPI, XIST and ZRSR2 (Fig. 7a).
A great majority of the overlapping CpG sites be-
tween myotubes and skeletal muscle showed higher
methylation in women, and most were found on the
X-chromosome.

Expression data in muscle from the same cohort
as the methylation data were available (7 women
and 12 men) for 22 of the genes with differential
gene expression between women and men in myo-
tubes (Additional file 11). Four of these (KDMG6A,
TXLNG, UBAI and ZFPI) were also differentially
expressed (g< 0.05) between women and men in
whole muscle (Fig. 7b). ZFP1 is the only autosomal
gene among these (chromosome 16), and the only
one with higher expression in men compared to
women.
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Discussion
This study casts light on epigenetic sex differences
present in human myoblasts and myotubes. Previous re-
search has shown that sex differences are present from
whole body metabolism, to tissues and on a cellular and
genetic level [1-3, 13]. It is therefore important to bear
in mind that sex might significantly influence the results
of biomedical research. However, this factor is still often
overlooked in different studies and in study designs.
Here, we found evidence that the sex origin of hu-
man myoblasts and myotubes influences their epige-
nome and transcriptome, which in turn can influence
their differentiation and metabolism [12, 35, 39].
DNA methylation and gene expression differences be-
tween women and men that persist after myoblast
differentiation into myotubes were found especially on
the X-chromosome, but also on autosomal chromo-
somes. In addition, sex differences in DNA methyla-
tion emerged during differentiation at thousands of
CpG sites, and were replicated in skeletal muscle tis-
sue from another cohort.

Our study design, where cells from women and men
were cultured under the same conditions, made it pos-
sible to study sex differences without acute effects from
external factors, such as sex hormones, which might in-
fluence the results considerably [40-42]. Thus, the dif-
ferences observed here are due to strictly genetic factors
(XX or XY) or demonstrate an epigenetic memory from
the in vivo environment. Indeed, obesity reprograms the
DNA methylome of muscle stem cells [12], and elements
such as sex hormones, exercise, diet and inflammatory
components induce a long-term memory in the skeletal
muscle [43—-46]. Individuals in this study had an average
BMI above normal weight (BMI > 25), which is also seen
at a population level in many European countries [47].
Nevertheless, we adjusted for BMI in the statistical ana-
lyses, and PC analysis plots of methylation data did not
cluster samples based on BMI or obesity. Methylation of
only two CpG sites (cg02359186 and ¢g05801817) and
expression of just one gene (MAMSTR) in myoblasts
were associated with both sex and BMI. None of the
sites/genes in myotubes significant for sex were also
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significantly associated with BMI. In addition, there were
no difference in average BMI between women and men,
and the number of obese individuals was the same in
both groups. However, blood pressure and fat distribu-
tion differ between women and men in our study as ex-
pected [48-52]. These traits may affect whole body
homeostasis and impact on the muscle stem cells [6].
We did not see a significant difference in VO, max, an
estimate of fitness levels, between the sexes after adjust-
ing for weight. On the other hand, this has been ob-
served previously and may require larger cohorts for
detection [48, 53]. It is likely that a combination of gen-
etic and environmental factors contributes to intrinsic
sex differences in muscle stem cells. Another study has
shown that knockout of the androgen receptor affects
skeletal muscle of female and male mice differently [54].
Furthermore, better engraftment of muscle stem cells
from female mice seems not to be caused by hormones
or the immune response in the host, but innate factors
in the stem cells [7]. This emphasises the importance of
taking sex into account in biomedical research, as it can
be of further relevance for future medicine related to
muscular diseases and stem cell transplantation.

DNA methylation is known to differ between women
and men, in particular due to the X-chromosome inacti-
vation in women [13, 17, 29]. As expected, expression of
XIST, a master regulator of X-chromosome inactivation,
was significantly higher in both myoblasts and myotubes
from women compared to men [13, 30]. Several CpG
sites annotated to XIST also exhibited significant sex dif-
ferences in methylation. This gene could serve as a posi-
tive control in studies regarding sex differences in gene
expression and DNA methylation. Indeed, this gene has
previously been suggested to serve as an expression
marker, independent of tissue, for sex together with four
Y-chromosome genes [55].

Epigenetic remodelling is important for cell specifica-
tion and differentiation of muscle stem cells [12, 35, 39].
DNA methylation and histone modifications are known
to cooperate during this process [56, 57]. We found
lower methylation in KDM6A together with higher ex-
pression in myotubes and skeletal muscle from women
versus men, in agreement with studies in other tissues
[13, 17]. KDMB®6A is of great importance for removing re-
pressive histone marks at muscle-specific genes during
myogenesis [35]. SIRT1, a histone deacetylase, was also
differentially methylated in myoblasts from women ver-
sus men and the expression was higher in men. A meta-
bolic switch from fatty acid oxidation towards glycolysis
during muscle stem cell activation leads to reduced
NAD-+ levels, which lowers SIRT1 activity [39]. This in
turn leads to higher levels of H4K16 acetylation and ex-
pression of myogenic genes. Together, these indicate fur-
ther differences in epigenetic regulation between women
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and men in myoblasts and myotubes. In future studies,
it would be of interest to study whether histone modifi-
cations also differ between sexes in these cells, especially
since other epigenetic enzymes changed expression in ei-
ther men or women during differentiation.

The activity of epigenetic enzymes is closely linked to the
metabolic state of the cell as indicated for SIRT1, and their
substrate/products are mainly metabolic products [58].
GSEA showed higher expression of genes in oxidative
phosphorylation in both myoblasts and myotubes from
women. Oxidative metabolism enhances myoblast differen-
tiation and muscle regeneration compared to glycolytic me-
tabolism. In myotubes, high expression of genes in this
pathway can indicate a better metabolic efficiency [39, 59,
60]. In line with this, expression of genes encoding parts of
the respiratory chain (ATP6VIB1 and COQ3) and genes
important for pyruvate generation (LDHB) were higher in
myoblasts from women. Women also showed higher ex-
pression of genes in pathways related to metabolism of fatty
acids and amino acids in myoblasts. These pathways pro-
vide metabolites to the oxidative metabolic pathways and
are expected to be upregulated during differentiation [12].
Moreover, men had higher expression of TGF-beta signal-
ling pathway in myoblasts. TGF-beta signalling promotes
myoblast proliferation and inhibits muscle differentiation
[61]. Treatment of human myoblasts with TGF-$1 reduces
electron transport chain capacity and complex IV abun-
dance [62]. It is tempting to speculate that metabolic regu-
lation during myogenesis may be sex-specific, influence
epigenetic mechanisms and thereby also the differentiation
itself. In support of this hypothesis, we found differential
DNA methylation and expression of, e.g. MAMSTR and
CTFI between women and men. MAMSTR showed higher
expression in myoblasts from women while CTFI showed
higher expression in men. Mamstr acts as transcriptional
regulator of MyoD in mice [63] and MYODI is a key myo-
genic regulatory factor that was differentially regulated dur-
ing differentiation in women and men. Downregulation of
MYODI in only women can be an indication of shorter dif-
ferentiation processes in women. However, MYODI is nor-
mally not completely repressed in myotubes and has also
been suggested to influence, e.g. fibre-type switch [64].
CTFI encodes a cytokine, CT-1, which binds to the leukae-
mia inhibitory factor receptor (LIFR), necessary for myo-
blast proliferation [65]. CT-1 also plays a role in lipid
homeostasis and improves glucose uptake [66]. Overall,
these data support the notion that myoblasts from male
mice proliferate better, while differentiation is enhanced in
females [7].

Another cellular process, autophagy, is closely related
to metabolism as well as crucial for myogenesis and
maintenance of muscle homeostasis [33, 67]. However,
the autophagic system needs to be fine-tuned. In the
present study, we found that LAMP2, encoding a key
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regulator of lysosomal function and autophagy [68], had
higher expression in men compared to women in the
myoblasts. This was accompanied by lower methylation
levels in the proximal promoter region in men. With the
luciferase assay, we demonstrated that higher DNA
methylation in the LAMP2 promoter directly reduces
expression of the reporter gene. This implies that the
methylation differences we found between women and
men drive the difference observed in expression. Higher
expression of LAMP2 in myoblasts from men can be an
indicator of altered autophagy compared to women,
which in turn might affect differentiation and myotube
function [32, 33]. There is a clear evidence of autophagic
vacuoles accumulating with LAMP-2 deficiency in
muscle cells [69]. Thus, DNA methylation of the LAMP2
promoter can potentially be a way to help regulate au-
tophagy. Of note, LAMP2 expression in monocytes from
hypogonadal men is affected by testosterone replace-
ment therapy [70].

Increased DNA methylation in the RPS4X promoter also
affected transcriptional activity of the reporter gene directly.
RPS4X escapes X-chromosome inactivation and higher ex-
pression levels in women are therefore expected [34]. In-
deed, we found higher RPS4X expression in both myoblasts
and myotubes from women, together with lower methyla-
tion levels in the promoter. Thus, genes on the
X-chromosome that escape inactivation in women can have
lower DNA methylation than in men, and this can directly
affect gene expression. This pattern with regions of lower
DNA methylation on the X-chromosome in women was
also seen in the global analysis of DNA methylation.

One limitation in our study is the lack of adjustment
for different numbers of X-chromosomes in women and
men. However, we still believe that these data are of
interest since it shows differences in DNA methylation
between myoblasts and myotubes from women and
men, respectively. Furthermore, we find regions with
higher methylation in men on the X-chromosome, des-
pite differences in the number of this chromosome, and
several of these have been described in other metabolic-
ally important tissues before [13, 17]. DNA methylation
is generally tissue-specific [10]. Differences between
women and men in multiple tissues therefore suggest a
common regulatory mechanism and point to an import-
ance. For example, interplays of sex chromosomes with
both autosomes and mitochondria have been demon-
strated and may explain sex-specific phenotypes and risk
of disease [71, 72].

Conclusions

We have shown that sex differences exist at the DNA
methylome and transcriptome level in both myoblasts
and myotubes, and these differences are likely to
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contribute to the phenotypical differences in myocytes
and muscle tissue that exist between women and men.
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