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Abstract

Mesenchymal stem/stromal cells (MSCs) delivered as cell therapy to individuals with degenerative and/or inflammatory
disorders can help improve organ features and resolve inflammation, as demonstrated in preclinical studies and to
some extent in clinical studies. MSCs have trophic, homing/migration, and immunosuppression functions, with many
benefits in therapeutics. MSC functions are thought to depend on the paracrine action of soluble factors and/or the
expression of membrane-bound molecules, mostly belonging to the molecular class of adhesion molecules,
chemokines, enzymes, growth factors, and interleukins. Cutting-edge studies underline bioactive exchanges,
including that of ions, nucleic acids, proteins, and organelles transferred from MSCs to stressed cells, thereby
improving the cells’ survival and function. From this aspect, MSC death modulation function appears as a
decisive biological function that could carry a significant part of the therapeutic effects of MSCs. Identifying
the function and modes of actions of MSCs in modulating cell death may be exploited to enhance consistency and
efficiency of cell therapy that is based on MSCs as medical treatment for degenerative and/or inflammatory diseases.
Here, we review the essentials of MSC functions in modulating cell death in unfit cells, and its modes of actions based
on current advances and outline the clinical implications.
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Background
Mesenchymal stem/stromal cells (MSCs) are isolated
from different biological sources and expanded ex vivo
in culture. These MSC cultures are thought to contain
diverse cell subsets resulting from intrinsic and extrinsic
influences in addition to inherent disparities related to
sources and donors [1–5]. The MSC identity is under
scrutiny [6], despite a consensus for the minimum cri-
teria to identify MSCs proposed a decade ago by the
International Committee for Cell Therapy (ISCT) [7]: (1)
MSCs must be adherent and proliferate in vitro under
standard culture conditions; (2) MSCs must feature sur-
face expression of cluster of differentiation (CD)105, 73,
and 90 but not CD45, 34, 14, 11b, 79α, and 19, or hu-
man leucocyte antigen-DR; and (3) MSCs must, upon
suitable stimulation in vitro, demonstrate an ability to

differentiate into adipocytes, chondroblasts, and osteo-
blasts. Since then, the ISCT criteria have been used to
assess the MSC identity in preclinical and clinical studies
but often because of lack of alternative methods for
identifying MSCs per se with explicit biomarkers [6, 8–
10]. However, both scientists and clinicians alike ac-
knowledge that cell heterogeneity is to be expected in
any ex vivo MSC cultures used in preclinical and clinical
settings [2, 4, 5, 11–14]. MSCs from different biological
sources (i.e., from the bone marrow [BM-MSCs], adipose
tissue [ASCs], or umbilical cord [UC-MSCs]), a fortiori
are not alike, but these MSCs in ex vivo cultures might
share common features in agreement with the ISCT
criteria [5, 15].
The identification of unambiguous biomarkers to select

identical MSCs regardless of source, donor, or any other
variables is critical to develop MSC therapy [6]. Therefore,
investigations of MSC identity remain crucial in the search
for specific biomarkers to define MSC identity in vivo and
ex vivo. Several works have attempted to sort MSCs with
the use of “stemness” biomarkers by targeting surface
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antigens such as STRO-1, stage-specific embryonic anti-
gen 1 (SSEA-1), SSEA-4, CD271, or CD146 [6]. Still, no
marker has shown a unique specificity for identifying
MSCs per se [6, 16].
Despite these hurdles in coining MSC identity, know-

ledge of MSC functions is advancing rapidly, conveying
other means to assess MSCs in vitro according to their
actual biological functions, which can also predict the
therapeutic potency of MSCs in vivo [8, 9, 17, 18]. Usu-
ally, ex vivo-expanded MSCs are considered to exhibit
five biological functions of interest in therapy [7, 19–27]:
(1) proliferation, (2) multipotency, (3) homing/migration,
(4) trophic ability, and (5) immunosuppression, often ex-
amined independent of each other. Scientific advances
have provided further understanding of modes of actions
of each MSC function [1, 19, 25, 27–30]. Yet, MSC func-
tions remain incompletely defined because of the com-
plexity and diversity in regulation and/or modes of
actions of each MSC function considered individually as
well as overlaps in biological effects [17, 27, 31, 32].
Here, we discuss a sixth function of MSCs—death

modulation. We focus predominately on the death
modulation function of MSCs obtained from different
species and biological sources, its modes of actions, and
its clinical implications for human MSCs to be exploited
for degenerative and/or inflammatory diseases [33, 34].

Regulated cell death in diseases
Regulated cell death (RCD) is a fundamental biological
process controlling cell fate in health and diseases [33–
35]. RCD largely consists of apoptosis, necroptosis, and
pyroptosis, among the most deciphered cell death modes
[36]. Apoptosis represents an RCD whose execution de-
pends on caspases-3/6/7, whereas mixed lineage kinase
domain-like and gasdermin D proteins execute necrop-
tosis and pyroptosis, respectively [36]. Uncontrolled
RCD in diseases amplifies tissue damage and inflamma-
tion, which in turn could result in permanently impaired
organ functions [33]. Hence, RCD is often engaged in
undesirable events prolonging degenerative and/or in-
flammatory diseases [33]. However, cells that are resist-
ant to RCD might participate in tumor growth [37]. In
both cases, RCD pathways represent relevant therapeutic
targets for numerous disorders.

Biological function of MSCs in modulating cell death
Recently, an increasing number of studies have empha-
sized the ability of MSCs to promote cell rescue or cell
survival of injured adult stem cells or somatic cells, en-
during early signaling of RCD, via multifaceted modes of
actions both in vitro and in vivo [38–60]. MSC function-
ing to modulate processes of RCD could directly aid in
restraining damage caused to organs in diseases and/or
indirectly restraining the release of harmful factors by

dying cells, thereby avoiding the amplification of dele-
terious inflammation, additional tissue damage, and loss
of organ function [33]. The death modulation function
of MSCs should be considered separately from their
trophic function or immunosuppression function, be-
cause the modes of actions may be independent, al-
though the biological effects might be intertwined [17].
Actually, evidence shows that MSCs modulate RCD

occurring in third-party cells, especially those affected
by apoptosis, necroptosis, and pyroptosis [17, 39, 41,
46–48, 50, 53, 54, 56, 57, 61, 62]. The MSC death modu-
lation function has been rarely identified as such, and
conceivably, this function is confused with the MSC
trophic function or immunosuppression function be-
cause of overlap in biological effects that can be indi-
vidually attributed to each of these functions [17].
Accordingly, several preclinical studies indicated that
MSCs are susceptible to cellular interactions with adult
stem cells, progenitors, or somatic cells, such as
hematopoietic stem cells (HSCs) or cardiomyoblasts, al-
veolar epithelial cells, cardiomyocytes, endothelial cells,
macrophages, and neurons, favoring cell survival [39, 41,
46–48, 50, 53, 54, 56, 57, 61, 62]. Here, we discuss the
modes of actions that mediate the MSC death modula-
tion function.

Modes of actions of MSC death modulation function
The MSC death modulation function can be envisaged
via different elaborated modes of actions that could in-
volve (1) secreted paracrine factors [39, 42, 45, 47, 48,
50, 54–58, 61, 63–65] (Table 1), most likely (2) Ca2+ ion
exchange via the connexin (Cx)-43 gap junction [41, 43,
60, 66–68] (Table 2), (3) transfer of mitochondria via
tunneling nanotubes (TNTs) [27, 38, 41, 43, 44, 46, 69]
(Table 3), and (4) transfer of bioactive microRNAs (miR-
NAs) and/or proteins via extracellular vesicles (EVs) [27,
40, 43, 46, 51, 53, 62, 70–73] (Table 4) from MSCs to
RCD-affected cells. However, it should be noted that
modes of actions of MSCs in modulating cell death of
unfit cells that encompass secretion of paracrine factors
and/or other pathways remain uncertain (Table 1). By
contrast, modes of actions depending on gap junctions,
TNTs, and EVs appear dedicated specifically to rescue
cells from death pathways. Thereby, we evoke paracrine
factors and/or other pathways in MSC death modulation
function, but we focus explicitly on modes of actions im-
plying intercellular communications such as gap junc-
tions, TNTs, and EVs between MSCs and unfit cells.

Secreted paracrine factors
There are numerous and solid evidences supporting the
role of paracrine factors secreted by MSCs in ameliorat-
ing conditions in degenerative and/or inflammatory dis-
eases both in preclinical and clinical settings [23–25,
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74–76]. Paracrine factors secreted by MSCs, including
chemokines, cytokines, and growth factors, influence the
progress of endogenous progenitors’ differentiation such
as for angiogenesis or neurogenesis and affect the course
of an immune response [25, 74, 76, 77]. All these bio-
logical effects may indirectly modulate overall cell death
by improving cell survival and/or cell renewal in dam-
aged or diseased tissues [17, 75]. Yet, MSC death modu-
lation function must be considered separately from MSC
trophic function and immunosuppression function, as
MSC death modulation function would rather have a
direct action on death pathways occurring in unfit cells

[17]. Hence, paracrine factors secreted by MSCs might
participate to MSC death modulation function (Table 1)
in different cells subjected to different conditions of RCD.
This has been shown mostly in preclinical studies in vitro
and in vivo, especially for IL-6 and IL-10 cytokines [48,
58, 61] and brain-derived neurotrophic factor (BDNF)
growth factor [55]. Of note, in a preclinical study in vitro,
MSCs prevent RCD such as apoptosis of human resting
neutrophils and neutrophils stimulated with IL-8 [58]. In
this case, MSC death modulation function did not require
cell-to-cell contact with unfit neutrophils to rescue cells
from apoptosis [58]. The paracrine factor secreted by

Table 1 Mesenchymal stem/stromal cell (MSC) death modulation function depending on paracrine factors and/or other modes of
actions

Studies Sources of MSCs MSC death modulation function Modes of actions References

Preclinical in vitro
and in vivo

Human BM-MSCs Apoptosis in human primary CD34+ cells induced by
γ-irradiation with xenotransplantation in a baboon model

Not determined Drouet et al. [42]

Preclinical in vitro Human BM-MSCs Activation-induced cell death, apoptosis induced by
anti-CD3 Abs, or deprivation of serum or anti-Fas Abs
in primary human thymocytes and human Jurkat T cell
line

Fas-FasL pathway inhibition Benvenuto et al. [39]

Preclinical in vitro Human BM-MSCs Apoptosis in human primary neutrophils induced by IL-8,
or in resting state

IL-6, STAT3 Raffaghello et al. [58]

Preclinical in vitro Rat BM-MSCs Apoptosis in Rat PC12 neuron cell line and rat primary
cortical neurons induced by deprivation of serum and
exposure to EtOH

PI3K/Akt, ERK1/2 Liu et al. [45]

Preclinical in vitro Mouse and human
BM-MSCs

Apoptosis and/or necroptosis induced in rat PC12
neuron cell line, human ReNcell CX neural progenitor
cell line, and rat cortical primary neurons induced by
6-OHDA

Prosaposin Li et al. [65]

Preclinical in vitro Human UC-MSCs Apoptosis in human primary neutrophils induced by
deprivation of serum

Not determined Maqbool et al. [47]

Preclinical in vitro Rat BM-MSCs Apoptosis in human SH-SY5Y neuroblastoma cell line
induced by misfolded tau protein

Not determined Zilka et al. [56]

Preclinical in vitro Mouse and human
BM-MSCs

Apoptosis in rat primary cortical neurons induced by
deprivation of glucose and oxygen

PI3K/Akt, STAT3 Scheibe et al. [50]

Preclinical in vivo Rat BMMSCs Apoptosis in rat lung fibroblasts induced by cigarette
smoke extract

PI3K/Akt and Caspase-3
inhibition

Kim et al. [64]

Preclinical in vitro
and in vivo

Rat BM-MSCs Apoptosis in rat INS-1 pancreatic cell line induced by
high glucose exposure and in pancreatic β cells in STZ
induced type 2 DM in Rat

Not determined Zhao et al. [54]

Clinical Human BM-MSCs Apoptosis and necrosis in alveolar epithelial cells in
patients with ARDS

Immunosuppressive and/or
trophic factors and/or EVs

Simonson et al. [63]

Preclinical in vitro Human BM-MSCs Pyroptosis in human THP-1 monocytic cell line and
mouse MH-S alveolar macrophage cell line induced by
nanoparticles

IL-10 Naji et al. [48]

Preclinical in vitro Rat BM-MSCs Apoptosis and necroptosis in mouse primary cortical
neurons induced by deprivation of glucose and oxygen

Caspase-3 and RIP-1/3
inhibition

Kong et al. [57]

Preclinical in vivo Mouse BM-MSCs Pyroptosis in mouse hepatocyte induced by D-galactosamine
acute liver injury in a mouse model

IL-10 Wang et al. [61]

Preclinical in vitro
and in vivo

Rat BM-MSCs Apoptosis in rat primary cortical neurons induced by
deprivation of glucose and oxygen and in rat cortical
neurons induced by ischemia with right carotid artery
ligation and exposure to hypoxia in a rat model

BDNF, mTOR Zheng et al. [55]

This table is representative but not exhaustive. Although the table recapitulates studies on MSC death modulation function depending on paracrine
factors, this does not exclude the implication of other modes of actions. Studies are ordered from the oldest to the most recent. BM-MSCs, bone
marrow mesenchymal stem/stromal cells; UC-MSCs, umbilical cord mesenchymal stem/stromal cells; CD, cluster of differentiation; IL, interleukin; EtOH,
ethanol; OHDA, hydroxydopamine; STZ, streptozotocin; RIP, receptor-interacting protein; BDNF, brain-derived neurotrophic factor; mTOR, mammalian
target of rapamycin
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MSCs that were responsible for neutrophil protection
from apoptosis appeared to be IL-6 and involved signaling
via the activation of STAT-3 transcription factor [58].
Similarly, IL-10 secreted by MSCs were found to be impli-
cated in the inhibition of RCD, such as pyroptosis in hu-
man and mouse macrophages induced by nanoparticles in
vitro [48], and of pyroptosis in mouse hepatocytes induced

by D-galactosamine in vivo [61]. Furthermore, RCD occur-
ring in rat cortical neurons following hypoxia-ischemia in
vitro were prevented when in co-culture with MSCs [55].
As well, in vivo experiments in a rat ischemia model
showed that MSC adoptive transfer significantly reduced
brain damage [55]. BDNF was identified as a paracrine
factor secreted by MSCs responsible for MSC death

Table 2 Mesenchymal stem/stromal cell (MSC) death modulation function depending on gap junctions

Studies Sources of MSCs MSC death modulation function Modes of actions References

Preclinical in vitro Mouse BM-MSCs Apoptosis in rat H9c2 cardiomyoblast cell line induced
by deprivation of glucose and oxygen

Cxs and/or TNTs Cselenyak [41]

Preclinical in vitro
and in vivo

Rat BM-MSCs Apoptosis in rat MSCs induced by deprivation of oxygen
and in mouse cardiomyocytes in a myocardial infarction
mouse model induced by LAD artery ligation

Cx-43 Wang et al. [67]

Preclinical in vitro
and in vivo

Mouse and human
BM-MSCs

Apoptosis in human and mouse primary CD34+ cells in
vitro, and in vivo in a mouse model of bone marrow
transplantation

Cx-43, Cx-45, CXCL12 Schajnovitz et al. [60]

Preclinical in vivo Mouse and human
BM-MSCs

Apoptosis in alveolar epithelial cells induced by LPS in
vivo in an acute lung injury mouse model

Cx-43, transfer of
mitochondria via EVs
and TNTs

Islam et al. [43]

Preclinical in vitro Human BM-MSCs Apoptosis in human MM cell lines RPMI 8266, U266, XG-4,
XG-7, and human primary MM cells

Cx-43 Zhang et al. [68]

Preclinical in vitro Human BM-MSCs Apoptosis and/or necroptosis in human MM cell line
RPMI 8266, U266, XG-7, and human primary MM cells
induced by bortezomib

Cx-43 Fu et al. [66]

This table is representative but not exhaustive. Although the table recapitulates studies on MSC death modulation function depending on gap junctions, this does
not exclude the implication of other modes of actions. Studies are ordered from the oldest to the most recent. BM-MSCs, bone marrow mesenchymal stem/
stromal cells; Cxs, connexins; CXCL, CXC ligand; TNTs, tunneling nanotubes; LAD, left anterior descending; LPS, lipopolysaccharide; EVs, extracellular vesicles; MM,
multiple myeloma

Table 3 Mesenchymal stem/stromal cell (MSC) death modulation function depending on tunneling nanotubes

Studies Sources of MSCs MSC death modulation function Modes of actions References

Preclinical in vitro Human BM-MSCs Apoptosis in human lung epithelial cell lines A549ρ0

induced by ethidium bromide
Transfer of mitochondria via
EVs and TNTs or both

Spees et al. [27]

Preclinical in vitro Mouse BM-MSCs Apoptosis in rat H9c2 cardiomyoblast cell line induced
by deprivation of glucose and oxygen

Cxs and/or TNTs Cselenyak [41]

Preclinical in vivo Mouse and human
BM-MSCs

Apoptosis in alveolar epithelial cells induced by LPS
in vivo in an acute lung injury mouse model

Cx-43, transfer of mitochondria
via EVs and TNTs

Islam et al. [43]

Preclinical in vitro Human BM-MSCs Apoptosis in human primary HUVEC induced by
deprivation of oxygen

Transfer of mitochondria via
TNTs

Liu et al. [44]

Preclinical in vitro
and in vivo

Human BM-MSCs Apoptosis in human primary bronchial epithelial
cells and bronchial smooth muscle cells and human
epithelial cell line BEAS-2B, A549 induced by rotenone.
Apoptosis in mouse primary tracheal epithelial cells
and mouse lung epithelial cell lines ML-12 and lung
adenocarcinoma LA-4 induced by rotenone.
Apoptosis in alveolar epithelial cells in lung injury
mouse models induced by rotenone or an allergen

Transfer of mitochondria via
TNTs

Ahmad et al. [38]

Preclinical in vitro Rat BM-MSCs Apoptosis in rat cardiomyoblast cell line H9c2 induced
by deprivation of glucose and oxygen

Transfer of mitochondria via
TNTs

Han et al. [69]

Preclinical in vitro
and in vivo

Human ASCs Apoptosis in human primary cardiomyocytes or
endothelial cells induced by ethidium bromide,
hydrogen peroxide, or doxorubicin. Apoptosis in
mouse cardiomyocytes induced in a myocardial
infarction mouse model with LAD artery ligation

Transfer of mitochondria via
EVs and/or TNTs, and Heme
oxygenase

Mahrouf-Yorgov
et al. [46]

This table is representative but not exhaustive. Although the table recapitulates studies on MSC death modulation function depending on tunneling nanotubes,
this does not exclude the implication of other modes of actions. Studies are ordered from the oldest to the most recent. BM-MSCs, bone marrow mesenchymal
stem/stromal cells; ASCs, adipose tissue mesenchymal stem/stromal cells; EVs, extracellular vesicles; TNTs, tunneling nanotubes; Cxs, connexins; LPS,
lipopolysaccharide; HUVEC, human umbilical vein endothelial cells; LAD, left anterior descending
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Table 4 Mesenchymal stem/stromal cell (MSC) death modulation function depending on extracellular vesicles
Studies Sources of MSCs MSC death modulation function Modes of actions References

Preclinical in vitro Human BM-MSCs Apoptosis in human A549ρ0 lung epithelial
cell line induced by ethidium bromide

Transfer of mitochondria
via EVs or TNTs or both

Spees et al. [27]

Preclinical in vivo Mouse and human
BM-MSCs

Apoptosis in alveolar epithelial cells induced
by LPS in vivo in an acute lung injury mouse
model

Cx-43, transfer of
mitochondria via EVs and
TNTs

Islam et al. [43]

Preclinical in vitro
and in vivo

Human BM-MSCs Apoptosis in human MCF-7 breast cancer
cell line and human KHOS osteosarcoma
cell line induced by deprivation of serum.
Apoptosis in vivo in MCF-7 inoculated in a
NU/NU mouse model

Transfer of miRNA-21 and
miRNA-34a via EVs

Vallabhaneni
et al. [72]

Preclinical in vitro
and in vivo

Human BM-MSCs Apoptosis in human primary MSCs and in
mouse RAW 264.7 macrophage cell line
induced by oxidative stress and/or silica
particles in vitro and in vivo in a mouse
silicosis model

Transfer of mitochondria
and miRNA-451 via EVs

Phinney et al. [73]

Preclinical in vivo Human UC-MSCs Apoptosis in human HFL1 lung fibroblast,
HaCAT keratinocyte cell line, and rat primary
dermal fibroblasts induced by heat stress in
vitro. Apoptosis in rat skin epithelial cells in
vivo in a rat burn model

Transfer of Wnt4 via EVs Zhang et al. [93]

Preclinical in vitro
and in vivo

Mouse and human
BM-MSCs

Apoptosis in mouse primary bone marrow
cells and mouse FDC-P1 hematopoietic cell
line induced by γ-irradiation with
xenotransplantation in a mouse model

Transfer of miRNA-210-5p,
miRNA-106b-3p, and
miRNA-155-5p via EVs

Wen et al. [51]

Clinical Human BM-MSCs Apoptosis and necrosis in alveolar epithelial
cells in patients with ARDS

Immunosuppressive
and/or trophic factors
and/or EVs

Simonson
et al. [63]

Preclinical in vitro
and in vivo

Human ASCs Apoptosis in human primary cardiomyocytes
or endothelial cells induced by ethidium
bromide, hydrogen peroxide, or doxorubicin.
Apoptosis in mouse cardiomyocytes induced
in a myocardial infarction mouse model with
LAD artery ligation

Transfer of mitochondria
via EVs and/or TNTs, and
Heme oxygenase

Mahrouf-Yorgov
et al. [46]

Preclinical in vitro Human BM-MSCs Apoptosis and necroptosis human primary
B cell chronic lymphocytic leukemia induced
by bortezomib, cladribine, fludarabine,
flavopiridol, or methylprednisolone (others)

EVs Crompot et al. [40]

Preclinical in vitro
and in vivo

Human UC-MSCs Apoptosis in Human L02 hepatocyte cell line
induced by hydrogen peroxide or carbon
tetrachloride. Apoptosis induced in mouse
hepatocyte in vivo by carbon tetrachloride in
NU/NU mouse model

Transfer of GPX1 via EVs Yan et al. [92]

Preclinical in vitro
and in vivo

Human iPSC-MSCs Necroptosis in Human HK-2 epithelial cell
line induced by deprivation of oxygen.
Necroptosis in renal rat epithelial cells
induced in vivo by clamping of renal
pedicles in an acute kidney injury rat model

Transfer of SP1 via EVs Yuan et al. [53]

Preclinical in vitro
and in vivo

Mouse BM-MSCs Apoptosis in mouse primary cardiomyocytes
induced by deprivation of oxygen and serum.
Apoptosis in mouse cardiomyocytes in vivo
in a myocardial infarction mouse model
induced by LAD artery ligation

Transfer of miRNA-125b
via EVs

Xiao et al. [62]

Preclinical in vitro Human WJ-MSCS Apoptosis in mouse Neuro2a neuroblastoma
cell line induced by deprivation of glucose
and oxygen

Transfer of miRNA let-7a,
let-7e, and let-7-5p via
EVs

Joerger-Messerli
et al. [71]

Preclinical in vitro
and in vivo

Human UC-MSCs Apoptosis in human H1299 and PC-9 lung
adenocarcinoma cell lines induced by
deprivation of serum. Apoptosis in vivo in
human lung H1299 adenocarcinoma cell line
in vivo after xenotransplantation in a NU/NU
mouse model

Transfer of miRNA-410a
via EVs

Dong et al. [70]

This table is representative but not exhaustive. Although the table recapitulates studies on MSC death modulation function depending on extracellular
vesicles, this does not exclude the implication of other modes of actions. Studies are ordered from the oldest to the most recent. BM-MSCs, bone marrow
mesenchymal stem/stromal cells; ASCs, adipose tissue mesenchymal stem/stromal cells; iPSC-MSCs, inducible pluripotent stem/stromal cell mesenchymal stem
cells; WJ-MSCs, Wharton’s jelly mesenchymal stem/stromal cells; UC-MSCs, umbilical cord mesenchymal stem/stromal cells; EVs, extracellular vesicles; TNTs,
tunneling nanotubes; Cxs, connexins; LPS, lipopolysaccharide; miRNA, microRNA; LAD, left anterior descending; Wnt, wingless type; ARDS, acute respiratory
distress syndrome; GPX, glutathione peroxidase; SP, specificity protein
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modulation function in rat cortical neurons suffering is-
chemia via mammalian target of rapamycin signaling both
in vitro and in vivo [55]. Although MSC death modulation
function depending on paracrine factors may occur, this
does not exclude implication of other modes of actions
with either requirement of cell-to-cell contact, such as
with Cx gap junctions and/or TNTs, or without require-
ment of cell-to-cell contact, such as with EVs (Fig. 1).

Ca2+ ion exchange via Cx gap junctions
Intercellular communications via Cx gap junctions are
critically involved in biological processes [78]. Indeed,
gap junction channels facilitate the intercellular ex-
change between cells of ions and small molecules < 1
kDa, influencing cell functions and cell survival in tis-
sues [78]. Hence, preclinical studies showed that
BM-MSCs from rat can prevent RCD in H9c2 cardio-
myoblasts via direct cell-to-cell interactions, after ische-
mic damage induced in vitro by oxygen and glucose
deprivation [41]. Other preclinical studies of rat
BM-MSCs demonstrated specifically that Cx43 gap junc-
tions contribute to BM-MSC survival under hypoxic
conditions [67, 79]. Furthermore, upregulation of Cx43
expression by genetic manipulation of those BM-MSCs
significantly improved the therapeutic efficacy in a
model of myocardial infarction induced by ligation of
the left anterior descending (LAD) artery [67, 79]. Con-
comitantly, BM-MSCs overexpressing Cx43 can produce
significantly more pro-survival molecules, such as Bcl-2,

and fewer pro-death molecules, such as Bax, which
suggests a role for Cx43 in the function of MSCs to
prevent RCD processes in cardiomyocytes [67, 79].
Besides, adoptive transfer of mouse or human
BM-MSCs into the lung protected against acute lung
injury (ALI) induced by lipopolysaccharide in mouse
[43]. The mode of action of BM-MSCs that led to
improved alveolar cell bioenergetics and reducing cell
mortality mostly depended on Cx43 gap junctions. In-
deed, the mode of action involved at least Ca2+ ex-
change via Cx43 gap junctions between BM-MSCs
and unfit alveolar epithelial cells [43].
Human MSCs can express Cx40, 43, and 45, but the

formation of homomeric Cx43 gap junction channels be-
tween MSCs themselves and among MSCs and
third-party cells is usually detected in vitro in electro-
physiological records [80]. Of note, several Cx combina-
tions forming heteromeric gap junction channels may
occur, yet these appear to be much less predominant
than homomeric Cx43 gap junctions [80]. Thus, homo-
meric Cx43 channels between human MSCs and cardio-
myocytes are functional and might play a role in cell
survival [80]. Remarkably, human MSCs can form a dy-
namic syncytium via Cx43 and Cx45 gap junctions that
regulate CXCL12 secretion while favoring survival and
homeostasis of HSCs [60]. In a mouse model of BM
mononuclear cell transplantation, the mode of action
implied Ca2+ exchange via Cx43 and Cx45 gap junctions
among MSCs that permits signaling by cAMP–protein

Fig. 1 Diagram of possible modes of actions involved in MSC death modulation function. MSC death modulation function might have a mode of
action involving paracrine factors (such as IL-6, IL-10, and BDNF) and/or extracellular vesicles (such as for transporting miRNAs, mitochondria, and
proteins) were cell-to-cell contact is not required. By contrast, MSC death modulation function might have a mode of action involving connexins
(such as Cx-43 and Cx-45) and/or tunneling nanotubes (such as for transporting mitochondria) were cell-to-cell contact is absolutely required. IL,
interleukin; BDNF, brain-derived neurotrophic factor; Cx, connexin; miRNAs, microRNAs
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kinase A and CXCL12 secretion by MSCs, ultimately en-
hancing the cell survival of HSCs, both in vitro and in
vivo [60].
Moreover, in human multiple myeloma (MM) cell

lines including RPMI 8266, U266, and XG7, Cx43–gap
junctions formed between human MSCs and MM cells
reduced bortezomib-induced RCD, such as apoptosis
and/or necroptosis, with the function reversible by gap
junction inhibitors [66]. Of note, MSCs from MM pa-
tients express significantly more Cx43 than do MSCs
from healthy individuals, which suggests a role for Cx43
expressed by MSCs in MM cell survival within BM [66,
68]. Hence, RCD occurring in unfit MM cells might be
prevented by MSCs via Cx43 gap junction interactions,
thereby allowing their growth, but would have rather
noxious consequences in MM pathogenesis [66, 68].

Transfer of mitochondria via TNTs
Accumulating evidence suggests that MSCs rescue unfit
somatic cells by transfer of mitochondria through mem-
brane channels called TNTs [17]. TNTs are biological
structures with a diameter of up to 0.7 μm that are sus-
tained by cytoskeleton structures made of f-actin micro-
filaments and/or α/β-tubulin microtubules [81]. TNTs
are thought to support rapid transfer of cellular mate-
rials including large organelles from a donor cell to a
targeted recipient cell [81]. Intercellular transfer of mito-
chondria from MSCs to somatic cells was first reported
by Spees et al. The authors demonstrated that active
mitochondria transfer can rescue aerobic respiration in
epithelial A549ρ0 cells harboring malfunctioning mito-
chondria induced by ethidium bromide in vitro [27].
Yet, at that time, the results did not clearly establish
whether mitochondria were transferred to unfit epithe-
lial cells solely through TNTs or EVs or both [27]. After
adoptive transfer into a rat experimental model of pul-
monary diseases induced by cigarette smoke, human
MSCs were found to reduce cell death and tissue fibrosis
[82]. The reduced lung tissue damage in vivo was associ-
ated with transfer of mitochondria from human MSCs
to rat airway epithelial cells [82]. As well, transfer of
mitochondria from human MSCs to human BEAS-2B
bronchial epithelial cells exposed to cigarette smoke in
vitro also occurs via TNTs, because inhibition of TNT
formation impeded mitochondria transfer, thereby con-
tributing to decreased cell viability [82].
Furthermore, in an ALI mouse experimental model in-

duced by lipopolysaccharide, rat and human MSCs pro-
tected against ALI pathology by decreasing RCD
occurring in alveolar epithelial cells and by improving al-
veolar epithelial cell bioenergetics in part via mitochon-
dria transfer through TNTs, both in vitro and in vivo
[43]. This finding was further sustained when mitochon-
dria rho GTPase 1 (Miro-1) was identified as a critical

factor enabling MSCs to transfer mitochondria through
TNT microtubules to unfit tracheal and alveolar epithelial
cells, thus decreasing RCD including apoptosis [38]. In-
deed, Miro-1 appears essential to facilitate mitochondria
trafficking from human MSCs to unfit tracheal and alveo-
lar epithelial cells via TNTs. This process decreased apop-
tosis in lung epithelial cells in vivo, in mouse models of
both rotenone-induced airway injury and allergic airway
inflammation. In the same study, the authors underlined
that MSC secretion of immunosuppressive factors
such as nitric oxide, transforming growth factor β,
interleukin 10, and prostaglandin E2 were not signifi-
cantly involved in the beneficial effects of MSCs in
airway injury and inflammation [38]. This last finding
suggests and favors a hypothesis considering a less
predominant paracrine effect via the MSC immuno-
suppression function than an MSC death modulation
function via TNT mitochondria transfer [38].
Importantly, MSCs donating their own mitochondria

via TNTs to unfit somatic cells seem to occur once dan-
ger signals from affected cells are sensed and integrated
by MSCs, including the sensing of mitochondria released
by dying cells [46]. Indeed, human cardiomyoblasts and
endothelial cells with RCD induced in vitro by hydrogen
peroxide or doxorubicin release their mitochondria that
can be engulfed by MSCs, thus initiating MSCs rescuing
dying cells [46]. This requirement has been demon-
strated in vivo in a mouse model of myocardial infarc-
tion induced by LAD artery ligation: inhibition of
mitophagy abrogated the MSC death modulation func-
tion toward cardiomyocyte apoptosis [46].

Transfer of bioactive miRNAs and proteins via EVs
EVs are small membrane vesicles of about 40 nm to
1 μm in diameter that are derived from multivesicular
bodies and/or from the plasma membrane of cells. EVs
are released by MSCs containing biological materials
that can be transferred to targeted recipient cells modi-
fying their biology [83]. This mode of action is thought
to carry significant parts of the intercellular communica-
tion between MSCs, adult stem cells, progenitors, and
somatic cells, both locally and systemically [83]. MSCs
produce EVs containing bioactive molecules, such as se-
lective miRNAs, and specific bioactive proteins, such as
enzymes [72, 83]. The content of EVs produced by
MSCs is likely transferred after EVs fuse with the plasma
membrane of targeted recipient cells or after EV endo-
cytosis or phagocytosis by those recipient cells [72, 83].
EVs derived from MSCs have a critical impact on recipi-
ent cell biology, particularly improving cell bioenergetics,
cell metabolism, and cell survival of unfit adult stem
cells and somatic cells [40, 51, 53, 70–73, 84, 85].
The human MSC transfer of miRNAs via EVs amelio-

rated the silicosis pathophysiology and RCD-mediated
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lung injury in vivo in a mouse model [73]. Moreover,
miRNA transfer via EVs produced by human MSCs alle-
viated in vivo renal tubular epithelial RCD that can be
apoptosis and/or necroptosis induced in vivo by glycerol
or cisplatin in severe combined immunodeficient mouse
(SCID) [86, 87]. Of note, co-incubation in vitro of EVs
derived from human MSCs with human renal tubular
epithelial cells injured by cisplatin or by ATP depletion
reduced apoptosis by upregulating Bcl-xL, Bcl-2, and
BIRC8 pro-survival pathways and downregulating genes
involved in RCD, such as caspase-1 and caspase-8 [86,
87]. Mostly, EVs derived from human MSCs likely allow
transfer of miRNAs, especially miRNA-24, to renal tubu-
lar epithelial cells that modulate cell death pathways ul-
timately favoring cell survival [86, 88]. Actually, miRNAs
transferred by EVs derived from human MSCs to renal
tubular epithelial cells were critical in improving condi-
tions in glycerol-induced acute kidney injury in a SCID
mouse model; indeed, depletion of miRNAs using a
knockdown method (Drosha knockdown) abolished the
therapeutic efficacy of EVs [88]. Furthermore, EVs de-
rived from human MSCs containing miRNA-22 and its
transfer to unfit mouse neonatal cardiomyocytes abro-
gated RCD by apoptosis induced by ischemic stress via
direct interactions with methyl CpG binding protein 2
[89]. As well, EVs derived from human MSCs and con-
taining miRNA-22 significantly reduced fibrosis in a
myocardial infarction mouse model induced by LAD ar-
tery ligation [89].
Likewise, human MSC-derived EVs contain miRNA

let-7 precursors that can mature to let-7a, let-7e, and
let-7-5p miRNAs. These let-7a, let-7e, and let-7-5p miR-
NAs upregulated Bcl-2 and downregulated caspase-3 and
prevented RCD such as apoptosis and autophagy-related
cell death in MSCs themselves and in the mouse neuron
cell line Neuro2a in vitro when subjected to RCD cell sig-
naling after deprivation of oxygen and glucose [71]. In
addition, inhibition of miRNA-21 and miRNA-34a pro-
duced by human MSCs deprived of serum increased the
apoptosis of MSCs, which suggests an essential role of
miRNA-21 and miRNA-34a in preventing RCD in MSCs
[72]. Besides, EVs derived from MSCs containing
miRNA-21 and miRNA-34a inhibited apoptosis in MCF-7
breast cancer cells and KHOS osteosarcoma cells sub-
jected to RCD signaling both in vitro and in vivo [72].
Similarly, EVs containing miRNA-410 derived from MSCs
promoted the growth of lung adenocarcinoma cancer cells
in vivo that was associated with downregulation of phos-
phatase and tensin homolog protein expression, with a de-
crease in RCD such as cell apoptosis [70].
Of note, the authors of a preclinical study demon-

strated that EVs derived from MSCs transported neprily-
sin, an amyloid β (Aβ)-degrading enzyme, capable of
reducing both secreted and intracellular Aβ molecules in

mouse Neuro2a cells in vitro [90]. Hence, EV delivery of
neprilysin to affected neurons with accumulation of Aβ
peptides could potentially protect against Aβ-induced
caspase-1-dependent neuron pyroptosis involved in Alz-
heimer’s disease [90]. Moreover, EVs derived from hu-
man MSCs alleviated liver fibrosis and hepatocyte RCD
in vivo in a mouse model of acute liver injury induced
by carbon tetrachloride (CCl4) peritoneal injection [91].
Especially, EVs derived from human MSCs carrying
glutathione peroxidase 1 (GPX1) prevented hepatocyte
apoptosis and/or necroptosis in a mouse with liver injury
induced by CCl4 [92]. GPX1 knockdown revoked the
anti-RCD abilities of EVs derived from human MSCs
both in vitro and in vivo [92]. Furthermore, EVs derived
from human MSCs ameliorated cutaneous healing of
skin burn in a rat model [93]. This observation was as-
sociated with inhibited RCD by apoptosis in rat epithe-
lial cells via transfer of biologically active Wnt4 to
injured cells both in vitro and in vivo [93]. As well, hu-
man keratinocytes, HaCATs, after in vitro heat
stress-induced RCD, were rescued from apoptosis by
EVs derived from human MSCs via transfer of Wnt4
into unfit HaCATs [93]. Similarly, with human-induced
pluripotent-derived mesenchymal stem/stromal cells
(iPSC-MSCs), it has been shown that EVs produced by
iPSC-MSCs contained specificity protein 1 (SP1) tran-
scription factor. iPSC-MSC EV transfer of SP1 to hu-
man HK-2 epithelial cells undergoing necroptosis
induced by deprivation of oxygen rescues the HK-2
through transcriptional activating of sphingosine kinase
1 [53]. As well, transfer of SP1 via EVs appears critical
to inhibit necroptosis occurring in rat renal epithelial
cells in vivo in a rat model of acute kidney injury in-
duced by renal pedicle clamping [53].
In addition to MSCs transferring miRNAs and/or pro-

teins via EVs to unfit somatic cells, MSCs may also
transfer larger organelles such as mitochondria via EVs
to modulate RCD in unfit cells. Indeed, this pathway has
been suggested to play a critical role in the transfer of
mitochondria to injured alveolar epithelial cells [43, 63].
The transfer would allow for amelioration of the patho-
genesis of acute respiratory distress syndrome in vivo in
both preclinical and clinical settings [63, 94]. The MSC
death modulation function may be exploited in the clinic
for degenerative and/or inflammatory diseases. For ex-
ample, in a clinical assay, bronchoalveolar lavage fluid of
two patients with acute respiratory distress syndrome
who received adoptive transfer of MSCs showed a rapid
decrease in levels of cell death biomarkers, including
biomarkers of apoptosis and necrosis of alveolar epithe-
lial cells [63]. Fluids were assessed within just a few
hours after adoptive transfer of MSCs in both patients
and notably several hours before a decrease in inflam-
matory biomarkers were detected [63]. This finding
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might indicate that the MSC death modulation function
is implemented early and therefore is crucial in the
beneficial effect observed in this clinical assay [17, 63].

Are gap junctions, TNTs, and EVs synergistic to convey
MSC death modulation function?
The MSC death modulation function appears to contrib-
ute a part of the therapeutic effects of MSCs for various
diseases [17]. This function is implemented predomin-
antly by MSCs through modes of actions implying direct
cell-to-cell interactions requiring either cell contact with
gap junctions and TNTs, or no cell contact with EVs
(Fig. 1). Together, these modes of actions might be inter-
dependent in ultimately controlling the transfer of mito-
chondria from MSCs to unfit cells for the full potency of
the MSC death modulation function. Indeed, recent
studies suggested that Cx43 gap junctions contribute to
facilitate TNT- and EV-dependent exchange of biological
materials between cells [78]. Thus, the formation of
Cx43 gap junctions between MSCs and unfit cells may

serve as a beacon by first sensing cell needs via Ca2+ and
by directing the transfer of larger biological materials
such as proteins and organelles through TNTs and EVs
in a circumscribed microenvironment between cells.
Therefore, the three individual modes of actions de-
scribed above likely function synergistically in conveying
the MSC death modulation function (Fig. 2).

Conclusion
MSCs could be a remarkable adult stem cell source for
cell therapy and advantageous for responding to various
medical demands. Yet, there are obstacles to the devel-
opment of MSC therapy [8, 9, 15, 17, 26, 76, 95–97]. In
some clinical trials of MSC therapy, the clinical benefits
were mitigated [15, 76, 95, 96], but in others, the out-
come of MSC therapy was more encouraging [63, 98–
104]. Thus, MSC therapy must be consolidated by refin-
ing its efficacy and consistency in therapy of human
disorders. A better understanding of MSC biological
functions could help assess the potency of MSCs in

Fig. 2 Transmission electron micrography of regulated cell death (RCD) in human macrophages and cell-to-cell interactions with human bone
marrow mesenchymal stem cells. A human macrophage exposed to metallic nanoparticles undergoing (top left) pyroptosis, with an intact nucleus
and disrupted plasma membrane, and (bottom left) apoptosis, featuring an intact plasma membrane and formation of membrane blebs.
Right, co-culture of macrophages and MSCs in the presence of metallic nanoparticles. Shows human monocyte-derived macrophages
(phorbol-12-myristate-13-acetate–activated THP-1 cells) in close contact with mesenchymal stem/stromal cells (MSCs). MSCs appear as
large cells with clear cytoplasm, morphologically distinguishable from macrophages. The orange arrow indicates a tight membrane
contact between an MSC and a macrophage, and the red arrow the presence of extracellular vesicles (~ 100–200 nm in size) near the
cell-to-cell contact. Mitochondria in both cells appear co-localized to the side of the cell-to-cell contact. Macrophage to MSC ratio is 2:1.
Left, original magnification × 3000. Right, × 2000 of macrophage to MSC co-culture 12 h after pyroptosis induction in macrophages; scale
bars are 5 μm (top left), 2 μm (bottom left), 5 μm (right). One original representative image in 3 is shown (Naji Lab). Cyto, cytoplasm; N,
nucleus; M, mitochondria; MΦ, macrophage; MSC, mesenchymal stem/stromal cell
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therapeutics and could unlock the knowledge of MSC
identity. This understanding includes the MSC death
modulation function in particular, which is just being re-
vealed, and whose potential relevance in degenerative
and/or inflammatory diseases could be critical. The ex-
pression of Cx-43 as well as the mitochondria bioener-
getic (Δψm) and/or mitochondria phenotype (Miro-1)
might be good indicators of functional potency for the
MSC death modulation function of ex vivo-cultured
MSCs and useful biomarkers for identifying MSCs for
clinical use.
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