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Abstract

Background: Mesenchymal stem cells (MSCs) and their cellular response to various stimuli have been characterized
in great detail in culture conditions. In contrast, the cellular response of MSCs in an in vivo setting is still uncharted

injury (SCI).

immunohistochemistry, and flow cytometry.

characteristics within the recipient.
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territory. In this study, we investigated the cellular response of MSCs following transplantation into spinal cord

Methods: Mouse bone marrow-derived MSCs were transplanted 24 h following severe contusion SCI in mice. As
controls, MSCs transplanted to the uninjured spinal cord and non-transplanted MSCs were used. At 7 days post
transplantation, the MSCs were isolated from the SCI, and their global transcriptional changes, survival,
differentiation, proliferation, apoptosis, and phenotypes were investigated using RNA sequencing,

Results: MSCs transplanted into SCI downregulated genes related to cell-cycle regulation/progression, DNA
metabolic/biosynthetic process, and DNA repair and upregulated genes related to immune system response,
cytokine production/response, response to stress/stimuli, signal transduction and signaling pathways, apoptosis, and
phagocytosis/endocytosis. MSCs maintained their surface expression of Scal and CD29 but upregulated expression
of CD45 following transplantation. Transplanted MSCs maintained their surface expression of MHC-I but
upregulated surface expression of MHC-II. Transplanted MSCs survived and proliferated to a low extent, did not
express Caspase-3, and did not differentiate into neurons or astrocytes.

Conclusion: MSCs transplanted into SCI upregulate expression of CD45 and MHC-Il and expression of genes related
to cytokine production, phagocytosis/endocytosis, and immune cells/response and thereby adopt immune cell-like
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Background

Traumatic spinal cord injury (SCI) leaves an affected indi-
vidual with reduced motor, sensory, and autonomic func-
tions as well as reduced quality of life. Mesenchymal stem
cells (MSCs) are fibroblast-like cells that adhere to plastic,
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grow in colonies, self-renew, and differentiate along the
mesodermal lineage. MSCs transplanted following SCI in
rodents reduce glial scar formation, cystic cavity size, and
lesion size and enhance angiogenesis, tissue sparing,
axonal regeneration, and re-myelination. They also alter-
natively activate macrophages and reduce inflammation.
These beneficial modulations have been correlated with
improved recovery in hind limb motor function [1-8]. It
has been suggested that transplanted MSCs differenti-
ate along the ectodermal lineage [4, 6, 9], but others
have suggested different mechanisms [2, 10, 11].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-019-1218-9&domain=pdf
http://orcid.org/0000-0003-4408-7817
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lou.brundin@ki.se

Hakim et al. Stem Cell Research & Therapy (2019) 10:115

Transplanted MSCs have demonstrated the capacity
to enhance the expression of neurotrophic and
growth factors in the recipient [2, 4, 7]. Both the dif-
ferentiation and the elevation of neurotrophic and
growth factors have been proposed as possible expla-
nations for the enhanced recovery of hind limb motor
function [2, 7, 9, 12, 13]. In culture conditions, MSCs
release extracellular vesicles (MSC-EVs) containing
proteins, trophic factors, cytokines [14, 15], mRNA
[14, 16], and microRNA [14, 17, 18] through which
they modify neighboring cells and mediate neuropro-
tective and immunomodulatory effects [19-21]. The
regenerative potential of MSC-EVs seems to depend
on the culture conditions [22, 23]. For the time being,
the release of MSC-EVs is thought to be the main
mechanism of action of MSCs.

The cellular response of MSCs in culture and the ef-
fect of MSC transplantation following SCI have been re-
ported repeatedly. However, the SCI environment is
vastly more complex than what can be simulated in cul-
ture conditions, and observations made concerning the
cellular response of MSCs in culture conditions cannot
be assumed to valid in an in vivo environment. Thus, in
this study, we investigated the cellular response of trans-
planted MSCs following SCI with regard to their tran-
scriptional changes, phenotypic profile, proliferation,
apoptosis, and differentiation. Understanding the cellular
response and especially the mechanism of action of
MSCs allows for modification, enhancement, or replace-
ment of MSCs, which could ultimately be transformed
into a cell-free therapy that maximizes the patient’s re-
covery following SCI.

Methods

Mice

Wild-type female mice (C57BL/6], 10-12 weeks, 18-20 g)
were purchased from Scanbur (Stockholm, Sweden).
Animals were kept at 20°C+1°C in a room equipped
with a 12-h:12-h light/dark cycle switch. Animal care and
experiments were approved by the local ethical committee
(Stockholm, Sweden) and maintained according to per-
mits (N196/15, N12317-2017, N38/16) and local guide-
lines at Karolinska Institutet.

Contusion spinal cord injury

Animals were anesthetized using 0.5 mg/kg medetomi-
dine i.p. (Domitor® vet., Orion Pharma Animal Health, 1
mg/ml) and 75mg/kg ketamine ip. (Ketador vet.,
Salfarm Scandinavia, 100 mg/ml) in combination with
0.05 mg/kg buprenorphine s.c. (Temgesic®, Indivior 0.3
mg/ml) and 5 mg/kg carprofen s.c. (Rimadyl® vet. Orion
Pharma Animal Health, 50 mg/ml). Animals were given
0.1 ml normal saline s.c.,, weighed, and shaved on the
back. The skin was incised, and the paravertebral
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muscles separated. The vertebrae at Th10 were stabilized
using bilateral fixators in a stereotaxic frame (Model 900
& 900-c, Kopf’). Using a surgical drill (Anspach’,
EMAX" 2), the dorsal part of the vertebrae was removed.
The dura mater was cut open. Using the infinite horizon
impactor (Infinite Horizon, IH-0400), a severe contusion
spinal cord injury (SCI, 75kdyn) was induced at Th10.
When no hemorrhage was visible in the injury area,
bupivacaine (Marcain®, Aspen Nordic, 2.5 mg/ml) was
injected into the surrounding tissue, and the skin was
sutured (Vicryl, 4.0). Buprenorphine 0.05 mg/kg was ad-
ministrated twice daily and carprofen 5 mg/kg once daily
for a total of 3 days post-surgery. Mice were weighed
weekly, and 25% weight loss was deemed the humane
endpoint. The urine bladders were manually compressed
until recovery of reflexive bladder emptying.

Establishment of mesenchymal stem cells

Bone marrow mouse mesenchymal stem cells (MSCs)
were established from 4—6-week-old male C57BL/6]
mice using methods described elsewhere [24]. Briefly,
animals were sacrificed, and the tibia and femur from
both legs were harvested. The epiphysis of the tibias and
femurs were cut open, and the bone marrow was ex-
truded by flushing with pre-warmed basal medium (89%
a-MEM (Gibco®, 22561054), 1% Pen-Strep (Gibco®,
10.000 U/ml, 15140122), and 10% fetal bovine serum
(Gibco®, 10082147)). The bone marrow was dissociated
by trituration and filtered through a 70-um cell strainer
(Corning, Inc., 352350). Bone marrow cells were
re-suspended in basal medium and plated at a density of
145x10° cells/cm® in 100-mm tissue culture-treated
dishes (150350, Nunc™). At 8—10 days post initial plating,
the plastic adherent bone marrow cells were harvested
using 0.5% trypsin (Gibco™, 15400054) for immune deple-
tion. MSCs were depleted of CD34-positive (eBioscience,
13-0341-85), CD45-positive (BD, 553078), and CD11b-
positive (BD, 553309) cells. Immune-depleted MSCs were
characterized in terms of differentiation potential, pheno-
typic profile, colony-forming potential, and growth
dynamics.

Transfection of mesenchymal stem cells

A modified enhanced episomal vector system (EEV;
CAT#EEV600A-1, System Biosciences) was used to mark
the MSC genetically with mCherry. A construct contain-
ing the mCherry ¢cDNA linked to the cDNA of the
HBEGF/DTR [25, 26] via a 2a self-cleaving peptide
linker was directionally cloned into the multiple cloning
sites of the vector, downstream of the CAG promoter.
Prior to transfection, the plasmid was cleared from en-
dotoxins by using the endo-free kit (Qiagen, 12362). At
96 h prior to transplantation, MSCs were plated at a
density of 10e3 cells/cm® in tissue culture-treated
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six-well plates (Corning™, 3516). At 48 h prior to trans-
plantation, the MSCs were transfected (2.5ul cDNA/
well) using Lipofectamine™ 3000 (Invitrogen, L3000001).
The transfection efficiency was 40—50% (Additional file 1:
Figure S1A-C).

Transplantation of mesenchymal stem cells

Prior to transplantation (24 h post SCI, 48 h post trans-
fection), the fluorescence (mCherry) of the MSCs was
confirmed (Zeiss, Axiovert 200). The MSCs were har-
vested using 0.5% trypsin, washed and collected in
0.2-ml Eppendorf tubes, and kept at 4°C until trans-
plantation. Animals were anesthetized using the same
principles as during SCI induction, the sutures were
opened, and the spinal cord was exposed. Using a glass
capillary needle (WPI, 1B150F-6) attached to a 10-pl syr-
inge (Hamilton®, 80330), ~ 0.5 x 10° MSCs were injected
into the SCI epicenter under microscopic visualization.
The skin was sutured (Vicryl, 4.0), and post-operative
procedures as described for SCI were implemented.

Sacrifice and tissue harvesting

At 7 days post transplantation, animals were euthanized
using pentobarbitalnatrium. For histological evaluation,
animals were sacrificed at 7 and 14 days post transplant-
ation. Animals were transcardially perfused with 1xPBS
using a peristaltic pump (Watson Marlow, 120S). Spinal
cords intended for evaluation using flow cytometry of
fluorescence-activated cell sorting (FACS) were dissected
and stored in 1xPBS on ice. Animals intended for histo-
logical evaluation were further perfused with paraformal-
dehyde (PFA, 4%). These spinal cords were dissected
and post-fixated in PFA overnight.

Isolation of transplanted mesenchymal stem cells from
the spinal cord

Spinal cords were dissociated using trituration in L-15
medium (Thermo Fisher, 11415064) containing 10 U/ml
papain (Worthington, L5003126). Two hundred units
per milliliter DNAse (Sigma, D7291) was added during
the dissociation. Papain was inactivated using 1% bovine
serum albumin (BSA; Gibco®, 15260-037) in 1xDPBS.
Myelin was removed using a 30% Percoll (Sigma, P1644)
gradient and centrifugation at 750xg for 10 min at 4°C
with slow brake. The pellet was re-suspended in FACS
buffer (1% BSA, 2mM EDTA (Gibco®, 15575-038), 25
mM HEPES (Sigma, H0887)) and filtered through a
pre-wet 100-pm cell strainer (Corning, 431752) followed
by a pre-wet 40-um strainer (Corning, 431750).
mCherry+MSCs (Additional file 2: Figure S2A-R) were
isolated from the dissociated spinal cord using FACS
(BD Influx™). Sorted cells (28,000 + 14,000 MSCs) were
collected in FACS buffer, centrifuged at 300xg for 5 min,
and re-suspended in 1 ml Trizol reagent (Thermo Fisher,
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15596026), incubated for 5 min, vortexed, frozen on dry
ice, and stored at —70 °C until downstream processing.

Extraction of RNA from isolated mesenchymal stem cells
RNA from isolated MSCs was isolated using Trizol (manu-
facturer’s protocol). Contaminating genomic DNA was re-
moved during the RNA isolation by on-column digestion
with DNAse (DNAse I Qiagen, 79254). RNA clean-up was
conducted using the RNeasy micro kit (Qiagen, 74004).
RNA was stored at — 70 °C until sequencing.

Analysis of global transcriptional changes in
mesenchymal stem cells

Sequencing libraries were prepared using the SMARTer
Stranded Total RNA-Seq Kit - Pico Input Mammalian
kit (Clontech). Libraries were sequenced 2 x 125bp in
two lanes using the HiSeq2500 system and v4 sequen-
cing chemistry (Illumina Inc.) to a combined total of at
least 15.7 x 10° reads/sample. TrimGalore (Babraham
Bioinformatics) was used for the removal of adapter se-
quences and low-quality regions. The splice-aware
aligner STAR was used for aligning remaining pair-end
reads to the mouse genome (build GRCm38). Feature-
Counts and Ensembl annotation (release 81) were used
for summarization of read counts over genes. Annota-
tion and data analysis were conducted in R (version
3.5.1) using packages limma and edgeR with annotations
from Mus.musculus (https://www.bioconductor.org/),
GEO accession number: GSE125176.

Functional analysis

Significantly differentially expressed genes (FDR < 0.01,
LogfC=1) for each contrast were analyzed using
over-representation enrichment analysis (ORA) and net-
work topology-based analysis (NTA) using WEB-based
Gene SeT AnaLysis Toolkit (WebGestalt) implemented
with R package “WebGestaltR.” Up- and downregulated
genes in each contrast were analyzed separately. In
ORA, the Gene Ontology (GO) terms related to bio-
logical process (BP), molecular function (MF), and cellu-
lar component (CC) were investigated. Furthermore, in
ORA, pathways were investigated using Kyoto
Encyclopedia of Genes and Genomes (KEGQG) terms. In
NTA, both network retrieval and prioritization (NRP)
and network expansion (NE) were used for network con-
struction. All terms (and related genes) which fulfilled
FDR < 0.01 were exported for each method (BP, MF, CC,
KEGG, NRP, NE), contrast and direction. Each term was
then manually categorized into more general categories
for enhanced interpretation. For each contrast and cat-
egory, the median FDR was calculated. Competitive gene
set testing accounting for inter-gene correlation was per-
formed on all unique genes in each category for each
contrast. A category was deemed significant if median
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EFDR for GO/KEGG terms and exact FDR for competi-
tive gene set testing were both <0.05 for that specific
category. The categories were ordered based on the
number of GO/KEGG terms that were detected for the
specific category. Gene set enrichment analysis (GSEA)
was conducted using Molecular Signatures Database
(MSigDB, v6.2) using collections: hallmark gene sets, cu-
rated gene sets (C2), and immunologic gene sets (C7).

Flow cytometry

Spinal cords containing transplanted MSCs were dissoci-
ated using papain (above). Cells were blocked in Mouse
Fc Block (BD, 553141) for 5min and stained using
pre-conjugated antibodies (Table 1) in 100-ul FACS buf-
fer on ice for 30 min. Following the wash, the cells were
re-suspended in 250 ul FACS buffer. Non-transplanted
MSCs were harvested (above) from culture 48 h post
transfection and stained in the same fashion. Flow cy-
tometry was conducted using a BD LSRFortessa™ cell
analyzer and data analyzed in Kaluza Analysis Software
(Beckman Coulter).

Immunohistochemistry

Post-fixed spinal cords were cryo-protected in 15% and
30% sucrose (Sigma, S9378) in 1xPBS. Spinal cords were
mounted in cryomolds (Tissue-Tek® Cryomold®, 420572)
using compound (Tissue-Tek® O.C.T.™) and rapidly fro-
zen to -60°C. Twenty-micrometer coronal sections
were produced using a cryostat (Leica, CM1850, - 22 °C)
and mounted on slides (VWR, SuperFrost® Plus,
48311-703). Sections were thawed, rehydrated in 1xPBS,
blocked for 2h at RT in blocking solution (0.3% Triton
X-100 (Sigma, 93443), 5% normal goat serum (Serotec,
301104, 1xPBS and 0.01% sodium azide (Sigma,
S$-2002)). Primary antibody (Table 1) was added, and
sections were incubated at 4 °C for 24 h. Sections were
rinsed in 1xPBS followed by incubation in secondary

Table 1 Primary, secondary, and pre-conjugated antibodies
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antibody (Table 1) at RT for 1 h. Sections were incubated
at RT for 20 min with nucleic acid stain (Hoechst 33258,
Invitrogen™ H3569). Prior to confocal microscopy, the
slides were rinsed and mounted using Mowiol (Sigma,
81381) and a cover slip (Marienfeld, 010243).

Immunocytochemistry

FACS isolated MSCs were collected at 500xg for 5 min at
4°C and re-suspended in basal medium. Cells were plated
at a density of 20.000 cells/cm? on tissue culture-coated
slides (Nunc™ Lab-Tek® Chamber Slide™, 177402) in
0.3-ml basal medium. Following 3 days of culture, the
MSCs were washed and fixated using 2% PFA for 30 min.
MSCs were stained using the procedure described for fro-
zen sections and imaged using confocal microscopy.

Proliferation assay

MSCs in culture were exposed to 1:1000 5-ethynyl-
2'-deoxyuridine (EAU; Thermo Fisher, A10044) for 24 h
prior to assessment of proliferation. Proliferation of
transplanted MSCs was assessed by administration of
0.75mg/ml EdU in the drinking water of the mice.
Drinking water containing EAU was offered to the ani-
mals from transplantation to sacrifice. The water was
supplemented with 1% sucrose (Sigma Aldrich, S0389).
Proliferation of MSCs in culture was assessed using flow
cytometry (above). Proliferation of transplanted MSCs
was assessed using immunohistochemistry. For both
evaluations, the Click-iT™ Plus EdU Alexa Fluor™ 488/
555 Imaging Kit (Thermo Fisher, C10637) was used ac-
cording to the manufacturer’s instructions.

Differentiation assay

Differentiation of transplanted MSCs was evaluated
using immunohistochemistry. The co-expression of
mCherry and either GFAP, NeuN, or TuJ1 (Table 1) was
evaluated using confocal microscopy.

Antibody type Host Target Fluorochrome Manufacturer (ID) Dilution
Primary Mouse NeuN NA Merck Millipore (MAB377) 1:1000
Mouse Tu NA Merck Millipore (MAB1637) 1:100
Rabbit GFAP NA Dako (Z0334) 1:1000
Rat MHC-I NA Abcam (ab25333) 1:200
Rabbit Caspase-3 NA Abcam (ab13847) 1:100
Secondary Goat Mouse Alexa 488 Life Technologies (A11001) 1:500
Goat Rabbit Alexa 488 Life Technologies (A11008) 1:400
Pre-conjugated NA CD29 APC eBioscience (17-0291-80) 1ug per 1x10° cells
NA Scal FITC BD (561077)
NA CD45 v450 BD (560697)
NA MHC- FITC BioLegend (125508)
NA MHC-II FITC BioLegend (107606)
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Confocal microscopy and automatic cell quantification
Stained frozen sections and stained fixed MSCs were im-
aged using a confocal microscope (Zeiss LSM 880
Airyscan). For estimation of proliferation, differentiation,
apoptosis, and survival of mCherry+MSCs, all cells in four
random sections from every animal were imaged for ana-
lysis. Orthogonal projections using x 40 as well as over-
view images using x 20 for quantification were collected.
The proportion of MSCs co-expressing mCherry and the
specific marker was estimated using a custom built auto-
matic cell quantification macro (https://github.com/S-B-
lab/confocal_image_quantifier) implemented in Image
Processing and Analysis in Java (Image], 64-bit Java
1.6.0_24). For each animal and staining, the images were
imported, and an image sequence was created. The macro
allows the user to select one, two, or three channels for
evaluation of co-localization. The macro splits the image
into its three color channels. The selected color channels
are multiplied, and the image is converted to binary format
and water-shedded. Co-localized cells are then identified
and labeled based on user-defined settings for desired size
and circularity of cells. The accuracy was always evaluated
using overlays. In case the macro had too low accuracy in
a given image sequence, a manual cell count was done in-
stead using the “Cell Counter” plugin in Image].

Statistical analysis

Mean with 95% confidence interval or median with range
(25th and 75th percentile) was presented when appropri-
ate. p values < 0.05 were considered significant. When ap-
plicable, the assumption of normality of the data was
evaluated using Shapiro-Wilk’s test. The assumption of
homogeneity of variances between groups was evaluated
using Bartlett’s test when data was normally distributed
and Fligner-Killeen’s test when data departed from normal-
ity. Depending on the fulfillment of assumptions, multiple
group comparisons were evaluated using Kruskal-Wallis H
test followed by pairwise comparisons between group
levels with correction for multiple testing using Holm’s
method or using one-way ANOVA followed by Tukey’s
post hoc test. Independent two-group comparisons were
conducted using the Wilcoxon rank-sum test or Student’s ¢
test depending on the fulfillment of assumptions. Analysis
was conducted, and figures were prepared in R (version
3.5.1) mainly using packages data.table and ggplot2.

Results

MSCs transplanted into SCI downregulate genes related to
cell-cycle and DNA metabolic/biosynthetic processes and
upregulate genes related to immune system response,
cytokine production, and phagocytosis/endocytosis

MSCs transfected to express mCherry were transplanted
into the uninjured and injured spinal cord. At 7 days fol-
lowing transplantation, the MSCs were isolated using

Page 5 of 16

FACS. MSCs transplanted to spinal cord injury (SCI)
were compared to MSCs transplanted into the uninjured
spinal cord and to non-transplanted MSCs in terms of
global transcriptional changes (Fig. la). Dimensionality
reduction (Fig. 1b, Additional file 3: Figure S3A) and
clustering (Fig. 1c, Additional file 3: Figure S3B, C) re-
vealed a distinct separation between transplanted
(MSCI[SCI], MSC[Naive]) and non-transplanted MSCs
(MSC][In vitro]). A more modest separation was detected
between MSC[SCI] and MSC[Naive]. Numerous signifi-
cantly differentially expressed genes were detected in
contrasts MSC[SCI] vs MSC[In vitro] and MSC[Naive]
vs MSC][In vitro] but not in MSC[SCI] vs MSC[Naive]
indicating similarity between transplanted MSCs but a
dissimilarity between transplanted and non-transplanted
MSCs (Fig. 1d, e). Heat map representation of all signifi-
cantly differentially expressed genes confirmed that the
largest differences were found between transplanted and
non-transplanted MSCs and that transplanted MSCs up-
regulated rather than downregulated their gene expres-
sion (Fig. 1f). Functional analysis revealed that genes
mainly related to cell-cycle regulation/progression, DNA
metabolic/biosynthetic processes, and DNA repair were
downregulated and genes related to immune system re-
sponse, cytokine production/response, response to
stress/stimuli, signal transduction and signaling path-
ways, apoptosis, and phagocytosis/endocytosis were up-
regulated in transplanted MSCs as compared to
non-transplanted MSCs (Fig. 1g, Table 2). Immune sys-
tem response was characterized by genes related to both
the innate and the adaptive immune system as indicated
by the GO terms: activation of innate immune response,
adaptive immune response, activation of immune re-
sponse, and immune system process but also the activa-
tion of macrophages (macrophage activation).
Interestingly, the cytokine production was related to cy-
tokines commonly produced by macrophages and were
mainly pro-inflammatory as indicated by the GO terms:
interleukin-6 production, tumor necrosis factor produc-
tion, interleukin-1 production, interferon-gamma produc-
tion, interleukin-12 production, chemokine production,
interleukin-8 production, interleukin-10 production,
interleukin-2 production, and positive regulation of
interleukin-17 production. Thus, the MSCs seem to
adopt a secretory profile similar to classically activated
macrophages. The genes related to signal transduction
and signaling pathways were related to a variety of path-
ways as indicated by the GO terms: regulation of kinase
activity, regulation of MAPK cascade, Ras protein signal
transduction, Fc receptor signaling pathway, regulation of
small GTPase mediated signal transduction, and Jak--
STAT signaling pathway. Taken together, transplanted
MSCs suppress genes related to cell-cycle activity and
DNA processes/repair but upregulate genes related to
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Fig. 1 Global transcriptional changes in MSCs. a Experimental design. Transplanted MSCs were evaluated 7 days following transplantation.

b Principal component analysis using the 500 genes with the highest inter-sample variance. Spheres represent biological replicates in 3D, while
squared dots represent biological replicates in 2D (on the walls of the box), comparing two components at a time. ¢ Agglomerative hierarchical
clustering of biological replicates presented using a dendrogram. Data is based on the value of the first and second principal component for
each biological replicate. Numbers in parentheses are animal index numbers. d Unique number of significantly differentially expressed genes in
each contrast and the number of genes shared between the contrasts. Color of text specifying the contrast corresponds to the color of the circle
in the Venn diagram. e Differentially expressed genes presented using a volcano plot. f Heat map of unique significantly differentially expressed
genes based on all three contrasts with row- and column-wise agglomerative hierarchical clustering. g Up- and downregulated categories for
contrasts MSC[SCI] vs MSC[In vitro] and MSC[Naive] vs MSCIIn vitro]. Barcode plots are presented with a p value determined using a competitive
gene set test. Representative Gene Ontology (biological process) terms are presented for each category. Green color indicates a category
downregulated in MSC[SCI)/MSC[Naive], while red indicates a category upregulated in MSC[SCI]/MSC[Naive] as compared to MSC[In vitro]
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Table 2 Functional analysis of significantly differentially expressed genes (FDR < 0.01; LogFC = 1)
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Contrast Direction Category ORA and NTA Competitive gene set test
Terms (n) FDR (median) Genes (n) FDR (exact)
MSC[Naive] vs MSC[In vitro] Down Cell-cycle regulation and progression 159 2.1e-04 276 2.3e-03
DNA recombination/metabolic process 46 3.6e-04 412 29e-03
Chromosome (condensed) 22 1.7e-06 129 5.5e-03
DNA repair and response to stress 1" 1.9e—-04 64 1.9e—-03
Up Immune system response 718 1.2e—05 940 7.6e—05
Signaling pathway 222 33e-04 862 3.7e—06
Cytokine production and response 207 7.1e—05 433 34e—-04
Cellular response to stress and stimuli 198 1.3e-05 1346 1.2e—-05
Metabolic process 161 24e-04 1345 2.3e-05
Protein modification/assembly/transport 112 6.4e-05 1061 34e-05
lon transport and homeostasis 99 5.9e—06 420 34e-06
Cell migration and chemotaxis 91 8.1e-05 461 8.9e—07
Trans (cell) membrane transport 90 9.0e—04 372 9.8e—05
Ubiquitination and apoptosis 83 2.0e—04 546 8.8e—05
Signal transduction 67 9.9e-08 973 4.5e-06
Tissue development and regeneration 63 1.3e-04 1120 8.1e—06
Biosynthetic process 61 1.2e-03 656 8.5e-04
Cell-cell adhesion 59 1.1e-05 625 3.7e-06
Phagocytosis and endocytosis 43 1.7e—05 280 1.0e-03
Catabolic process 37 1.0e-03 277 4.1e-04
Regulation of (cell) proliferation 37 1.8e—05 524 1.7e—04
Cell membrane activity 31 4.0e-07 791 2.9e—-05
Regulation of (cell) differentiation 28 74e-04 592 7.5e—07
Synaptic function and activity 22 3.1e-03 184 7.1e-04
Cell and tissue morphology 17 1.2e—03 496 5.6e—-04
Receptor binding 15 1.3e-03 10 6.8e—03
Transcriptional activity 15 2.8e—-03 485 1.2e—02
I-kappaB kinase/NF-kappaB signaling 14 2.6e-04 82 2.3e-03
Regulation of (cell) activation 12 0.0e+00 267 1.4e-03
Regulation of cell homeostasis 11 1.5e-03 161 9.1e-04
MSCISCI] vs MSC[In vitro] Down Cell-cycle regulation and progression 220 1.3e-04 253 3.8e—-03
DNA recombination/metabolic process 51 2.2e—04 370 9.6e—03
Chromosome (condensed) 25 6.1e—08 122 8.9e—03
DNA repair and response to stress 16 1.2e—-05 76 5.1e-03
Meiotic cell-cycle process 15 7.5e—05 49 1.1e-02
Up Immune system response 642 2.5e-05 836 2.6e-04
Cellular response to stress and stimuli 176 1.7e—05 1215 5.9e—05
Signaling pathway 173 3.5e-04 697 4.9e-05
Cytokine production and response 157 6.5e—05 399 7.1e-04
Metabolic process 122 7.0e—04 1126 2.0e—04
lon transport and homeostasis 17 4.2e-07 439 14e-05
Protein modification/assembly/transport 102 3.2e-04 765 1.2e-04
Trans (cell) membrane transport 81 4.0e-04 372 1.4e—04
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Table 2 Functional analysis of significantly differentially expressed genes (FDR < 0.01; LogFC = 1) (Continued)

Contrast Direction Category ORA and NTA Competitive gene set test
Terms (n) FDR (median) Genes (n) FDR (exact)
Cell migration and chemotaxis 77 1.1e-04 290 9.9e-05
Signal transduction 73 2.8e—06 723 5.5e-05
Tissue development and regeneration 67 2.1e-04 925 1.7e—06
Ubiquitination and apoptosis 63 6.5e—04 472 33e-04
Biosynthetic process 54 1.0e-03 558 1.1e-03
Cell-cell adhesion 49 3.1e-05 499 1.9e—05
Synaptic function and activity 38 2.1e-04 171 3.7e—05
Phagocytosis and endocytosis 36 1.7e—05 242 1.7e-03
Microtubuli and cytoskeleton 32 6.1e—04 508 2.7e—02
Cell membrane activity 31 3.1e-06 670 1.1e-04
Regulation of (cell) proliferation 29 2.6e—-05 429 1.8e—04
Regulation of (cell) differentiation 25 1.5e-03 506 1.3e-05
Transcriptional activity 18 3.0e-03 356 1.6e—04
Catabolic process 17 5.5e-03 233 1.3e—03
Cell and tissue morphology 15 4.6e—03 275 2.3e—05
Regulation of (cell) activation 12 5.0e-10 252 22e-03
I-kappaB kinase/NF-kappaB signaling 11 5.9e-04 70 2.3e-03
Secretion 1 2.3e-03 89 1.8e—04
Neuronal cell activity 10 24e-07 366 2.7e-05
Sensory perception process 10 1.8e-03 59 4.7e-05
MSC[SCI] vs MSC[Naive] Up Tissue development and regeneration 52 8.7e—04 43 6.3e—04
Cell morphology 27 9.6e—04 36 9.6e—-04

ORA over-representation enrichment analysis, NTA network topology-based analysis. Terms: unique terms identified using Gene Ontology (GO)-biological process,
GO-molecular function, GO-cellular component, Kyoto Encyclopedia of Genes and Genomes (KEGG), network retrieval and prioritization (NRP), network expansion
(NE). Genes: unique genes constituting the (unique) GO and KEGG terms for a specific category. Categories with a total of less than ten unique GO/KEGG terms

are omitted from the table for enhanced interpretation

cytokine production/response, immune system cells, and
phagocytosis/endocytosis, suggesting that transplanted
MSCs adopt immune cell-like characteristics.

Transplanted MSCs express CD29, Scal, and CD45

Phenotypic characterization of positive and negative sur-
face markers of MSCs was performed at 7 days following
transplantation (Fig. 2a). A majority of non-transplanted
MSCs expressed CD29 and Scal (Additional file 4:
Figure S4C3, C4, C6). Transplanted MSCs maintained
expression of CD29 and Scal in both injured (88.2%, CI
87.9-88.5%) (Fig. 2b, c) and uninjured (90.9%, CI 87.9—
93.9%) spinal cord (p <0.05) (Fig. 2b, d). Transplanted
MSCs had a similar but slightly lower gene expression of
CD29 (SCI -0.58, naive -0.85) as compared to
non-transplanted MSCs (p <0.01) (Fig. 2e). However,
transplanted MSCs upregulated their gene expression of
Scal (SCI 2.87, naive 2.57) as compared to
non-transplanted MSCs (p <0.001) (Fig. 2e). MSCs did
not express CD45 in culture conditions (Additional file 4:
Figure S4C5, C7, C8). Following transplantation, a

majority of Scal+ MSCs expressed CD45 in the injured
(59.5%, CI 58.6—-60.3%) and uninjured (58.2%, CI 56.2—
60.3) spinal cord (p < 0.05) (Fig. 2b—d). This was also true
for CD29+ MSCs in both injured (66.0%, CI 64.6—67.4%)
and uninjured (63.1%, CI 58.8-67.4%) spinal cord (p < 0.05)
(Fig. 2b—d). Transplanted MSCs significantly upregulated
their gene expression of CD45 (SCI 12.81, naive 12.26) as
compared to non-transplanted MSCs (p < 0.001) (Fig. 2e).
Cells expressing Cx3crl aggregated around the grafted
MSCs but did not infiltrate the graft at 7 days after trans-
plantation (Additional file 5: Figure S5). Taken together,
MSCs transplanted into the uninjured or injured spinal
cord have a surface and gene expression of Scal and CD29
comparable to non-transplanted MSCs but significantly up-
regulate surface and gene expression of CD45 as compared
to non-transplanted immunodepleted MSCs.

Transplanted MSCs express MHC-I and MHC-II

MSC:s in culture express MHC-I but not MHC-II on the
cell surface. Ninety percent of MSCs exposed to IFN-y
for 48 h in culture express MHC-II on the cell surface
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[27]. We hypothesized that the same type of upregula-
tion of MHC-II on the cell surface could occur in MSCs
transplanted into SCI (Fig. 3a). We confirmed that
MSCs in culture express MHC-I (37.3%, CI 37.0-37.5%)
but not MHC-II (1.7%, CI 1.6-1.8%) (Fig. 3b, c, e). Ex-
pression of MHC-I on the cell surface of transplanted
MSCs was not significantly altered following exposure to
the injured (16.9%, CI 3.1-30.6%) or uninjured (15.6%,
CI 4.9-26.2%) spinal cord compared to MSCs in culture
(Fig. 3b, c¢). Transplanted MSCs upregulated gene ex-
pression of MHC-I (SCI 2.34, naive 2.51) as compared
to non-transplanted MSCs (p <0.001) (Fig. 3d). In com-
parison, MSCs transplanted to the injured (7.6%, CI 6.7—
8.4%) or uninjured (6.0%, CI 5.5-6.4%) spinal cord had a

higher surface expression of MHC-II as compared to
MSCs in culture (p <0.01) (Fig. 3b, e). Gene expression
analysis confirmed that MHC-II was significantly upreg-
ulated in transplanted MSCs (SCI 9.25, naive 9.14) as
compared to non-transplanted MSCs (p < 0.001) (Fig. 3f).
Histological evaluation of transplanted MSCs confirmed
co-expression of mCherry and MHC-II in both injured
and uninjured spinal cord (Fig. 3g). The percentage
mCherry+MHC-II+MSCs was not significantly different
between MSCs in the injured (7.2%, CI 4.5-9.9%) and
uninjured spinal cord (11.0%, CI 3.3-18.6%) but compar-
able to findings in Fig. 3e (Fig. 3h). Taken together,
MSCs transplanted into the injured or uninjured spinal
cord maintain their surface and gene expression of
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MHC-I but upregulate surface and gene expression of
MHC-II in comparison to non-transplanted MSCs.

Transplanted MSCs survive and proliferate but do not
undergo apoptosis or neural differentiation

Survival, proliferation, apoptosis, and differentiation of
transplanted MSCs were assessed at 7 and 14 days post
transplantation (Figs. 4a and 5a). Transplanted MSCs
could be detected for 7 but not 14 days in the uninjured

(261, CI 167-355) and injured (335, CI 195-476) spinal
cord, respectively (Fig. 4b). The spinal cord environment
did not affect MSC survival. MSCs proliferated to a low
extent in both uninjured (6.9%, CI 1.1-12.8%) (Fig. 4c, f)
and injured (3.7%, CI 1.5-5.9%) (Fig. 4c, g) spinal cord.
Although the proliferation tended to be higher for MSCs
exposed to the uninjured spinal cord, no significant dif-
ference could be detected between the experimental
groups. The proliferation rate of transplanted MSCs was
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about one ninth of the proliferation rate in culture
(Additional file 4: Figure S4B1-B3). MSCs downregu-
lated gene expression of Caspase-3 following trans-
plantation into both injured (-0.79) and uninjured
spinal cord (-0.72) (p <0.001) (Fig. 4d). Histological
examination revealed no relevant co-expression be-
tween mCherry+MSCs and Caspase-3 in the injured
(0.4%, CI -0.05-0.8%) and uninjured spinal cord

(0.2%, CI -0.2-0.7%) (Fig. 4e, h, i) using positive
control as the reference (Additional file 6: Figure S6).
No significant difference in the number of mCherry
+Caspase-3+MSCs could be detected between MSCs
in the injured and uninjured spinal cord (Fig. 4e).
Gene expression analysis revealed an upregulation of
TuJl in MSC[SCI] as compared to MSC[In vitro]
(2.17, p<0.001) while MSC[Naive] did not have an
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upregulation (0.66, p = 0.1) (Fig. 5b). However, MSCs up-
regulated gene expression of GFAP in both injured (4.78,
»<0.001) and uninjured spinal cord (5.69, p<0.001).
Histological examination of co-expression between
mCherry and GFAP, NeuN, or TuJl revealed no double
positive cells in neither uninjured (Fig. 5¢, d) nor injured
(Fig. 5¢, e) spinal cord, suggesting a lack of detectable
neuronal or astrocytic differentiation. Taken together,
MSCs transplanted into the uninjured or injured spinal
cord survive for 1 week and proliferate to a low extent but
do not undergo neural or astrocytic differentiation.

Discussion

In this study, we investigated the cellular response of
MSCs following transplantation into spinal cord injury
(SCI). We found that MSCs transplanted into SCI up-
regulate expression of CD45 and MHC-II and expres-
sion of genes related to cytokine production,

phagocytosis/endocytosis, and immune cells/response
and thereby adopt immune cell-like characteristics
within the recipient.

Transplanted MSCs were detected in both injured and
uninjured spinal cord at 7, but not 14, days following
transplantation. The short-term survival is in line with
the findings of Jung et al. [28] and others [13, 28-31].
However, it was not within the scope of this study to de-
termine whether the fluorescence faded or if the MSCs
perished. Considering that a commonly available expres-
sion construct was implemented, the fluorescence did
not fade in culture conditions, and other authors have
reported short-term survival, we confidently hypothesize
that the MSCs perish between 7 and 14 days following
transplantation. Hence, the lower limit of survival seems
to be 7 days, but the upper limit remains uncertain. Even
though the Caspase-3 expression in transplanted MSCs
was negligible, the global transcriptional analysis
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revealed that transplanted MSCs significantly upregu-
lated genes and GO/KEGG terms related to ubiquitina-
tion and apoptosis. In the few cells which were observed
and reported as Caspase-3 positive, the staining was
sometimes difficult to distinguish from phagosomes.
However, considering that the global transcriptional ana-
lysis revealed an upregulation of genes related to phago-
cytosis, it is likely that the MSCs did indeed have
phagosomes, which confirms their adoption of immune
cell-like characteristics. Hence, the lack of detectable
MSCs at 14 days post transplantation is likely cell death
resulting from the challenging environment. Addition-
ally, the downregulation of genes related to DNA repair
in transplanted MSCs, in combination with the down-
regulation of genes related to cell-cycle activity, supports
the theory that MSCs are struggling to survive within
the recipient and simply perish between 7 and 14 days
post transplantation. Given that the MSCs manage to se-
crete enough tissue and immunomodulatory factors [14,
15, 21, 32—40] during this time to enhance recovery, the
short-term survival is not of great concern. However, it
is interesting to speculate whether long-term survival
could enhance recovery further. Transplanted MSCs did
proliferate in both injured and uninjured spinal cord,
but at about one ninth of the rate in culture. This is in
line with the findings in the global transcriptional ana-
lysis which indicated that genes related to cell-cycle pro-
gression/regulation were downregulated and detected
using EdU in a small number of cells. This in combin-
ation with the downregulation of genes related to DNA
processes and repair indicates that the MSCs are active
within the recipient but slowing down. The lower rate of
proliferation in vivo as compared to in culture is most
likely also a consequence of the hazardous SCI environ-
ment limiting the nutrition and oxygen supply and result-
ing in a less beneficial growth environment. Transplanted
MSCs did not differentiate in the injured or uninjured
spinal cord. Since MSCs are from mesodermal and not
ectodermal origin, this result was expected. However, Aras
et al. [4] and others found that transplanted MSCs could
differentiate into astrocytes [12, 41, 42], oligodendrocytes
[4, 43], and neurons [4, 6, 9]. Interestingly however, the
global transcriptional analysis revealed that MSCs in
SCI upregulated gene expression of TuJl and GFAP,
which is more in line with previous reports. The lack
of differentiation detected in this study might be due
to the time point of evaluation, the tissue from which
the MSCs were established, the severity of the injury,
the type of injury, or a similar factor. However, most
authors in the field are convinced that MSCs mediate
their beneficial modulation of the microenvironment
mainly by paracrine effects [2, 10, 13, 28]. Assuming
that this is true, the lack of ectodermal differentiation
is of minor importance. Taken together, MSCs survive
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for a brief period of time during which the MSCs do
not undergo apoptosis but a fraction is active and
proliferate. Moreover, MSCs do not undergo neural dif-
ferentiation following transplantation, which supports the
theory that MSCs act through tissue and immune system
modulation early on following transplantation rather than
trans-differentiation and integration.

Transplanted MSCs maintained their expression of
CD29 and Scal but also expressed CD45 on the cell sur-
face, which was in line with gene expression analysis.
Hence, MSCs preserve stem cell characteristics but
adopt an immune cell-like phenotype following trans-
plantation. CD45 expression could indicate that the
MSCs respond to the in vivo environment and therefore
alter their phenotypic profile. The fact that the MSCs
did express CD29 and Scal to a high extent indicates
that the CD45 expression is not a result of the MSCs be-
ing phagocytized by macrophages. Transplanted MSCs
maintained their expression of MHC-I but upregulated
expression of MHC-II detected using flow cytometry,
immunohistochemistry, and gene expression analysis.
MSCs in culture conditions express MHC-II within the
cell but not on the cell surface [27, 44]. Le Blanc et al.
[27] demonstrated that MSCs in culture, exposed to
IFNy for 48 h, express MHC-II on the cell surface. IFNy
is critical for the innate and adaptive immune response
and is present in a SCI environment [45, 46]. Thus, the
ability of IFNy to induce MHC-II expression seems to
be true not only in vitro but also in vivo. Moreover,
MHC-II is a macrophage marker which further supports
that MSCs adopt an immune cell-like phenotype. The
histological evaluation clearly demonstrated the MHC-II
expression. Careful inspection of the MSCs reveal struc-
tures which might resemble phagosomes, which is in
line with and supports the MHC-II expression consider-
ing that MSCs transform into macrophage-like cells and
should gain the ability to phagocytize, which was also
predicted by the global transcriptional analysis. The fact
that MSCs maintain their CD29 and Scal expression sig-
nificantly lowers the probability of the MSCs being
engulfed by macrophages and rather supports the fact
that the cells are still MSCs, but with an immune
cell-like phenotype and function and they themselves
phagocytize. This is further supported by the fact that
the immune cells clearly surrounded the graft but did
not enter into it as revealed by Additional file 5:
Figure S5. Furthermore, global transcriptional analysis
revealed that MSCs upregulate genes related to im-
mune system response, phagocytosis/endocytosis, and
cytokine production and release, which further sup-
ports the fact that MSCs seem to take an immune
cell-like phenotype following transplantation. Genes
related to both the innate and the adaptive immune
system but also to leukocytes (CD45+ cells) were
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identified. The upregulation of genes related to pro-
duction and release of pro-inflammatory cytokines
further suggests that MSCs take a macrophage-like
profile with secretory capabilities. Furthermore, this
sheds new light on the assumed immune privilege of
MSCs and might have to be taken into account in
MSC-based therapies, not limited to SCI. Taken to-
gether, transplanted MSCs upregulate expression of
CD45 and MHC-II and thereby adopt an immune
cell-like phenotype but also upregulate genes related
to cytokine production, immune cells/response, and
phagocytosis/endocytosis indicating that the MSCs
also undertake immune cell-like functions and that
this is induced by the SCI environment.

Cytokine expression is usually upregulated in both the
spinal cord and the cerebrospinal fluid following SCI as
a result of activation of macrophages. We found that
genes relating to cytokine stimulus response and pro-
duction were upregulated in MSCs transplanted into
SCI and that pathways related to TNFa were affected
specifically. Both IL-1 [47] and TNFa [48] activate
NE-«kpB-dependent transcription [49]. The increased re-
sponse to cytokines coincided with significant upregula-
tion of genes related to signaling pathways, especially
NE-«p signaling pathways. MSCs upregulated GO terms
related to increased response to IFNy which might be
related to the elevated MHC-II expression on MSCs, as
indicated by Le Blanc et al. [27].

Extracellular vesicles are secreted from endosomal
compartments of MSCs (MSC-EVs) [50, 51] and have
been characterized as mediators of the immune-modu-
latory effects of MSCs [15, 32-40]. Assuming that
MSCs mediate the majority of their therapeutic effect
through paracrine effects, the content of the MSC-EVs
is highly interesting to investigate. But, it is reasonable
to hypothesize that at least some of the transcriptional
changes induced in MSCs by the in vivo environment
are transmitted to the surrounding tissue using
MSC-EVs. Identifying, isolating, and sequencing
MSC-EVs released by transplanted MSCs would poten-
tially reveal the full mechanism of action of MSCs.
Given that the cargo—or at least essential parts of the
cargo—could be constructed synthetically and adminis-
trated directly to a patient, the need for MSC trans-
plantation could perhaps be abolished. This study
however aimed at investigating the cellular response of
transplanted MSCs and did not aim to identify any po-
tential therapeutic agents secreted by the MSCs.

The low number of genes significantly differentially
expressed between MSC[Naive] and MSC[SCI] indicated
a similarity between these two experimental groups. The
comparison between these two and MSC[In vitro] indi-
cated up- and downregulation of the same type of func-
tional categories further emphasizing their similarity.
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Evaluation of phenotypes, proliferation, survival, and dif-
ferentiation also indicated a striking similarity between
MSC[SCI] and MSCI[Naive]. The similarity between
MSC[SCI] and MSC[Naive] is probably a consequence
of the non-significant injury caused by the glass capillary
needle during transplantation. This is not only a limita-
tion in this study, but also a limitation in stem cell
transplantation as a therapeutic approach for SCI
Furthermore, the results presented in this study might
vary with the time point of evaluation, the severity of
the injury, the injury type, the species, and/or the
strain. One additional crucial limitation to keep in
mind in all transplantation studies is transplantation
accuracy. Furthermore, the results in this study were
not adjusted for differences in force, displacement,
and/or velocity of the SCL

Conclusion

In this study, we found that MSCs transplanted into SCI
upregulate expression of CD45 and MHC-II and expres-
sion of genes related to cytokine production, phagocyt-
osis/endocytosis, and immune cells/response and
thereby adopt immune cell-like characteristics within
the recipient. Understanding the cellular response of
MSCs allows for modification, enhancement, and/or re-
placement of the effect mediated by MSCs. This could
lead the way toward not only a more efficient therapy,
but perhaps also a cell-free therapy that could be benefi-
cial in terms of recovery, time, effort, and cost.

Additional files

Additional file 1: Figure S1. MSCs pre- and post transplantation.
Figure S1A, B mCherry+MSCs prior to transplantation (48 h following
transfection). Figure S1C mCherry+MSCs transplanted, sorted (FACS)
following 7 days in the recipient, plated and kept in culture for 72 h.
Fluorescence of mCherry in MSCs evaluated using excitation at wavelength
633 nm. Figure S1D co-expression of mCherry and Scal in MSCs isolated
from spinal cord 7 days following transplantation. (TIF 27481 kb)

Additional file 2: Figure S2. Physical parameters and gating strategy of
transplanted MSCs. Figure S2A-C non-transplanted non-transfected MSCs.
Figure S2D-F non-transplanted transfected MSCs. Figure S2G-| uninjured
spinal cord. Figure S2J-L uninjured spinal cord with transplanted
transfected MSCs. Figure S2M-O injured spinal cord. Figure S2P-R injured
spinal cord with transplanted transfected MSCs. (TIF 46283 kb)

Additional file 3: Figure S3. Global transcriptional changes in MSCs -
extended analysis. Figure S3A two first components/variables following
dimensionality reduction using principal component analysis (PCA) and
t-distributed stochastic neighbor embedding (tSNE, perplexity = 3,

theta = 0.5). Each dot represents one biological replicate. Ellipse
represents 95% confidence interval. Figure S3B bootstrapped (1000 runs)
first three components of PCA clustered using affinity propagation (left)
and k-means clustering (right, 3 clusters, 20 starts). Figure S3C two first
components following PCA and tSNE clustered using K-means clustering
(KM, 3 clusters, 20 starts), affinity propagation (AP), expectation maximum
(EM), and K-nearest neighbor (KNN, 60:40 split). Figure S3D top positive
and negative loadings for the first and second principal component
following PCA. (TIF 23979 kb)
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Additional file 4: Figure S4. Proliferation and expression of CD29, Scal
and CD45 in non-transplanted MSCs. Figure S4A experimental design.
Figure S4B1-B3 expression of EAU in mCherry+MSCs. Figure S4C1-C5
expression of CD29, Scal, and CD45 in mCherry+MSCs. Figure S4C6-C8
co-expression of CD29, Scal, and CD45 in mCherry+MSCs. (TIF 16399 kb)

Additional file 5: Figure S5. Interaction between transplanted MSCs
and immune cells. MSCs in relation to immune cells at 7 days following
transplantation into injured spinal cord. (TIF 6636 kb)

Additional file 6: Figure S6. Caspase-3 positive control. Mouse liver
tissue stained with Caspase-3 acting as positive control to Caspase-3
staining of mCherry+MSCs. Scale bar represents 20 pm. (TIF 894 kb)
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