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Exosomes secreted by mesenchymal ")
stromal/stem cell-derived adipocytes
promote breast cancer cell growth via
activation of Hippo signaling pathway
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Abstract

Objective: Although adipocytes are the most abundant stromal cell component in breast cancer tissues, their
interaction with breast cancer cells has been less investigated compared to cancer-associated fibroblasts or
macrophages. Exosomes are a novel way of cell-cell communication and have been demonstrated to play an
important role in various biological processes. However, to our knowledge, only a few studies have reported the
effects of adipocyte exosomes on tumor development. Here, utilizing exosomes isolated from in vitro mesenchymal
stromal/stem cell (MSC)-differentiated adipocytes, we systematically investigated this issue in a breast cancer model.

Material and methods: Exosomes were isolated from MSC-differentiated adipocytes and added to breast cancer
cells MCF7. Cell proliferation was detected by MTS, and migration was analyzed by wound healing and transwell
assay. An in vivo mouse xenograft model was used to evaluate MSC-differentiated adipocyte exosomes’
contribution to tumor growth. Signaling pathway activation was evaluated by western blot and
immunofluorescence staining.

Results: We found MSC-differentiated adipocyte-derived exosomes are actively incorporated by breast cancer cell
MCF7 and subsequently promote MCF7 proliferation and migration as well as protect MCF7 from serum derivation
or chemotherapeutic drug-induced apoptosis in vitro. In the in vivo mouse xenograft model, depletion of
exosomes reduces tumor-promoting effects of adipocytes. Transcriptomic analysis of MSC-differentiated adipocyte
exosome-treated MCF7 identified several activated signaling pathways, among which we confirm the Hippo
signaling pathway and found a blockade of this pathway leads to a reduced growth-promoting effect of adipocyte
exosomes.

Conclusion: Taken together, our findings provide new insights into the role of adipocyte exosomes in the tumor
microenvironment.
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Background

Breast cancer is one of the most common cancers and
the second leading cause of cancer-related mortality in
women worldwide [1]. Various factors such as genetic
and epigenetic mutations, abnormal hormone levels, and
environmental stimulus contribute to breast cancer de-
velopment [2, 3]. Emerging evidence indicates that the
tumor microenvironment plays a vital role in cancer ini-
tiation and progression [4]. The tumor microenviron-
ment consists of a number of different components
including non-malignant cells, surrounding blood ves-
sels, extracellular matrix (ECM), and signaling molecules
[5]. In breast cancer, studies focusing on interactions be-
tween cancer cells and tumor microenvironment have
emphasized the important roles of stromal compart-
ments such as cancer-associated fibroblasts and
cancer-associated macrophages [6]. One critically im-
portant, yet often overlooked, tumor microenvironment
component is adipocytes, which are the most abundant
stromal cells in human breast tissue. Increasing evidence
suggests that adipocytes are not merely an
energy-storing cell, but can function as endocrine cells
by producing hormones, growth factors, cytokines, and
adipokines [7, 8]. Herroon et al. found bone-trophic
breast tumor cells could upregulate the oxidative stress
enzyme upon exposure to adipocyte-rich environments
in vitro or in vivo [9]. Similarly, a conditioned medium
from adipocytes was reported to increase motility of
breast cancer cell lines [10]. Adipocytes could transfer
free fatty acids (FFAs) to stimulate breast cancer inva-
sion via metabolic remodeling of tumor cells [11]. These
studies suggest there is an intimate interaction between
breast cancer cells and adipocytes. However, the under-
lying mechanism governing adipocyte crosstalk with
breast cancer cells is not fully understood.

Exosomes are a novel way of cell-cell communication
and play an important role in tumor development [12—
14]. Adipocyte-secreted exosomes have been shown to
aggravate atherosclerosis by increasing angiogenesis [15]
and induce insulin resistance in skeletal muscle through
repression of PPARy [16]. Adipocytes, which are special-
ized in storing and releasing FFAs, are able to shift
tumor metabolism toward the use of FFAs via extracellu-
lar vesicles [17]. Currently, most studies use mouse cell
line 3T3-L1-differentiated adipocytes as a cellular model.
Here, we induced human adipose tissue-derived mesen-
chymal stromal/stem cells (MSCs) into adipocytes.
MSCs were defined in 2006 by the International Society
of Cellular Therapy (ISCT) as cells with the three prop-
erties: (1) be adherent to plastic under standard tissue
culture conditions, (2) express certain cell surface
markers such as CD73, CD90, and CD105 and lack ex-
pression of other markers including CD45, CD34, CD14,
or CD11b, CD79alpha, or CD19 and HLA-DR surface

Page 2 of 12

molecules, (3) have the capacity to differentiate into os-
teoblasts, adipocytes, and chondroblasts under in vitro
conditions [18]. According to ISCT criteria, the isolated
MSC:s are a heterogeneous population of cells containing
both stem cells and cells with lower multipotential prop-
erties [19]. So many experts recommend the use of mes-
enchymal stromal/stem cells (MSCs) [20-22]. MSCs,
especially adipose tissue-derived MSCs, can be differen-
tiated into adipocytes under proper in vitro culture con-
ditions [23, 24]. To our knowledge, only a few studies
have reported the effects of adipocyte exosomes on
tumor development. Here, utilizing exosomes isolated
from in vitro MSC-differentiated adipocytes, we system-
atically investigated this issue in breast cancer. We found
mesenchymal stem cell (MSC)-differentiated adipocyte
exosomes could promote breast cancer cell proliferation
and migration as well as protect breast cancer cells from
serum derivation or chemotherapeutic drug-induced
apoptosis in vitro. Furthermore, exosomes contribute to
in vivo tumor growth in a mouse xenograft model
Mechanistically, the Hippo signaling pathway was dem-
onstrated to be partially responsible for the
tumor-promoting effects of MSC-differentiated adipo-
cyte exosomes. Taken together, our findings provide new
insights into the role of adipocyte exosomes in the
tumor microenvironment.

Material and methods

Cell line and culture

MCE-7 cells were purchased from The Cell Center of the
Chinese Academy of Medical Sciences (Beijing, China)
and cultured in Dulbecco’s modified Eagle’s medium with
4.5 g/L glucose (H-DMEM) containing 10% FBS, 100 U/
ml penicillin, and 100 pg/ml streptomycin.

Isolation and expansion of MSCs from adult human
adipose tissue

Human adipose tissue was obtained from donors under-
going liposuction according to procedures approved by
the Ethics Committee at the Chinese Academy of Med-
ical Sciences and Peking Union Medical College. The
isolation and culture procedure for human adipose
tissue-derived MSCs was described in our previous pa-
pers [25, 26]. MSCs of the third passage were used for
the following study. It has been reported that senescent
cells may produce anti-cancer factors that block cancer
growth [27]. We performed beta-galactosidase assay and
found no senescent cells at passage 3.

Adipogenesis and analysis

The culture-expanded cells of the third passage at 100%
confluence were induced in the following adipogenic media
for 12 days: H-DMEM supplemented with 10% FBS, 1 uM
dexamethasone, 0.5mM isobutylmethylxanthine, and 1
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mM ascorbic acid (all reagents were from Sigma Aldrich).
For cell staining, cells were stained with filtered Oil Red O
solution (stock solution: 3 mg/ml in isopropanol; working
solution: 60% Oil Red O stock solution and 40% distilled
water) for 1h at room temperature and 2 uM BODIPY
staining solution for 15min at 37 °C, respectively. Then,
cells were washed with water to remove unbound dye, visu-
alized by microscopy, and photographed.

Exosome isolation and analysis

Cell cultures used to isolate exosomes were grown in
serum-free H-DMEM. Exosomes were isolated from
conditioned media collected at 48 h by serial centrifuga-
tion as previously described (Thery et al., 2006: Isolation
and Characterization of Exosomes from Cell Culture Su-
pernatants and Biological Fluids), and exosome pellets
were resuspended in PBS. Exosomes were quantified by
BCA protein quantification. Morphology of the exo-
somes was examined by electron microscopy using nega-
tive staining. To examine exosome markers, cellular and
exosome protein was extracted by 10% SDS lysis. Exo-
some markers include CD63 (Proteintech), TSG101
(Proteintech), Calnexin (Proteintech), and beta-actin
(Santa Cruz). Exosome sizes were identified by nanopar-
ticle tracking analysis with ZETA VIEW (Particle
Metrix), and the exosomes were diluted 100-400 times
in 100 pL of sterile PBS. The exosome-depleted culture
media were obtained after exosome isolation from con-
ditioned culture media by ultracentrifugation. Exosomes
taking-up was investigated by labeling exosomes with
Dil (Invitrogen) and labeling cell nucleus with Hoch-
est33342. Dye transfer was visualized by fluorescent mi-
croscopy. The co-culture of exosome pellets and MCF-7
cells were performed at a concentration of 200 ug/ml.

Proliferation assay

Cells were plated in 96-well plates at a density of 2 x 103
cells per well. To reduce differences within the group,
each group of cells samples a set of five parallel holes.
Then, the cells were incubated with an MTS reagent
(CellTiter 96° AQueous One Solution Cell Proliferation
Assay, Promega) for 2h in 37°C and 5% CO,. The op-
tical density (OD) value was measured by an ELISA
reader (Bio-Tek).

Scratch assay

1x10° cells/well were plated in a 24-well plate. The
other day, the cells formed a monolayer. A 10-pL pipette
tip was used to make a straight scratch. The culture
medium was changed to H-DMEM which contained
exosomes or PBS in the same volume. The cells were in-
cubated in a 37 °C humidified incubator with 5% CO,.
The wound distance was measured in a light microscope
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and the total time was 24 h. All samples were tested in
triplicate, and the data are expressed as the mean + SD.

Migration assay

Briefly, MCF-7 cells were cultured in H-DMEM which
contained exosomes or PBS in the same volume for 48
h. Then, 200 pL of cells (1 x 10%/ml) suspended in a
DMEM-only medium was loaded in triplicate upper
chambers of the transwell chambers (Costar) with a
8-pm pore size. And a 600-pL. H-DMEM medium with
20% FBS was added into the lower chamber. After incu-
bated for 12 h in a 37 °C humidified incubator with 5%
CO,, the migrated cells were fixed, washed, and stained
with crystal violet staining solution. Then the staining
solution was extracted by 30% glacial acetic acid, and
the optical density (OD) value was measured by an
ELISA reader (Bio-Tek). All samples were tested in trip-
licate, and the data are expressed as the mean + SD.

Apoptosis analysis by flow cytometry

Annexin V-FITC/PI double labeling was used to deter-
mine the apoptosis of MCF-7 cells cultured in
H-DMEM which contained exosomes or PBS in the
same volume, as well as the apoptosis-inducing effect of
60 pM 5FU (MEC) on MCF-7 cells cultured in
H-DMEM which contained 10% FBS with exosomes or
PBS in the same volume. Cells were plated in the
12-well plate and treated the same as above. After 48 h
treatment, the cells were harvested by trypsinization and
incubated with FITC-conjugated Annexin V and PI ac-
cording to the manufacturer’s instruction (BD Biosci-
ences). The flow cytometer BD Bioscience Accuri C6
and ModiFit Software were applied for apoptosis ana-
lysis. A total of at least 1 x 104 cells were analyzed for
each sample. All samples were tested in triplicate, and
the data are expressed as the mean + SD.

Animal experiments

BALB/C mice (5-6 weeks) were purchased from the La-
boratory Animal Center of the Chinese Academy of
Medical Sciences (Beijing, China). All mice were bred
and maintained under specific pathogen-free conditions.
Animal use and experimental procedures were approved
by the Animal Care and Use Committee of the Chinese
Academy of Medical Sciences. The mice were divided
into four groups: one group received a subcutaneous in-
jection of 2x10° MCEF-7 cells. The second group re-
ceived an injection of 2 x 10° MCE-7 cells and 1 x 10°
MSC-differentiated adipocytes. The other group received
an injection of 2x10° MCF-7 cells and 1x10°
MSC-differentiated adipocytes pretreated with 20 uM
GW4869 for 48 h. When MSC-differentiated adipocytes
were pretreated with 20 pM GW4869 for 48 h, the iso-
lated adipocyte exosomes were undetectable while, in
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Fig. 1 In vitro differentiation of adipocytes from AD-MSCs. a Morphology, Oil Red O staining, and BODIPY staining during in vitro adipocyte
differentiation from human AD-MSCs. b Expression of specific adipogenic marker genes analyzed by gqRT-PCR. GAPDH was used as internal
control (**P<0.01)

the control group, exosome yield is about 100 pg/10”
MSC-differentiated adipocytes. The last group received
2x 106 MCF-7 cells and 20 uM GW4869. The tumor
volume was measured weekly. The tumor tissues were
fixed with 10% PFA. Each group was treated with HE
and Ki67 staining. Ki67 antibody was purchased from
Proteintech.

Quantitative real-time polymerase chain reactions
Cultured cells were lysed by TRIzol (Invitrogen), and
RNA was extracted according to the manufacturer’s in-
struction. One microgram of total RNA from each sam-
ple was reverse transcribed using M-MLV (Takara) in a
final volume of 30 uL. The polymerase chain reaction
(PCR) amplification was carried out using the Step-one
System (Bio-Rad) with SYBR Green Mastermix (Takara).
All quantitative real-time PCR (qRT-PCR) results were
carried out in duplicate and normalized to GAPDH.

Western blotting

After washing twice with cold PBS, cells were lysed in
RIPA lysis buffer (Beyotime) with 1 mM PMSF and prote-
ase inhibitor cocktail on ice for 30 min, manually scraped
from culture plates, and then quantified using the BCA
Protein Assay Kit (Beyotime). Proteins were separated on
10% sodium dodecyl sulfate—polyacrylamide gel electro-
phoresis (SDS-PAGE) gels, electroblotted onto a polyviny-
lidene difluoride (PVDF) membrane (0.22 um, Millipore).
The membranes were blocked with 5% BSA and incubated
with specific antibodies overnight at 4°C and then were

incubated with horseradish peroxidase (HRP)-conjugated
secondary antibody for 1 h at room temperature. The pri-
mary antibodies were as follows: GAPDH (Santa Cruz),
YAP, p-YAP (Serl127), JAK2, p-JAK2 (Tyrl007), Stat3,
p-Stat3 (Tyr705), SAPK/INK, p-SAPK/JNK (Thr183/
Tyr-185), P38, p-P38 (Thr180/Tyr182), ERK, p-EKR1/2
(Thr202/Tyr204), Akt, p-AKT (Ser473), MST1, p-MST1
(Thr183)/MST2 (Thr180), LATS1, p-LATS1 (Ser909)
(Cell Signaling Technology). Antibody and antigen com-
plexes were detected using a chemiluminescent ECL re-
agent (Millipore).

Immunofluorescence staining

The cultured cells were fixed at 4 °C in ice-cold metha-
nol for 10 min, washed three times in phosphate buff-
ered saline (PBS), and then permeabilized in 0.1% Triton
X-100/PBS for 10 min at room temperature. Nonspecific
binding was blocked with 0.5% Tween-20/PBS contain-
ing 3% bovine serum albumin (BSA) for 30 min. The pri-
mary antibodies (YAP and TAZ, Cell Signaling
Technology) were incubated at 4 °C overnight. The sec-
ondary antibodies (Alexa Fluor 488 goat anti-rabbit IgG,
Alexa Fluor 594 goat anti-mouse IgG, Invitrogen) were
incubated for 1h at room temperature. The incubated
cells were washed in PBS, and Hoechst 33342 (Gibco)
was used to visualize the nuclei.

Statistical analysis
Data are presented as mean + SD. For data analysis, we
used GraphPad Prism 6.05 software. Comparisons
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between two groups were analyzed via Student’s ¢ test.
Comparisons among three or more groups were ana-
lyzed by a one-way or two-way analysis of variance
(ANOVA). Differences were considered statistically sig-
nificant at *P < 0.05 and **P < 0.01.

Results

In vitro differentiation of adipocytes from AD-MSCs

To investigate the role of adipocyte exosomes in tumor de-
velopment, we first explored the feasibility of using human
in vitro differentiated adipocytes as a new cellular model
since most studies use mouse cell line 3T3-L1-
differentiated adipocytes. hAD-MSCs were cultured under
an adipogenic induction medium for 12 days, and differen-
tiated cells exhibited typical adipocyte phenotypes as dem-
onstrated by morphology and staining(Fig. 1a). Lipid
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accumulation is an important indicator of adipogenesis.
The Oil Red O staining and BODIPY staining showed small
round lipid droplets in differentiated adipocytes. The ex-
pression of adipocyte differentiation markers including
PPARYy, c/EBPa, HSL, aP2, LPL, AdipoQ, and FABP4 was
significantly increased in MSC-differentiated adipocytes as
measured by gqRT-PCR (Fig. 1b).

Characterization of MSC-differentiated adipocyte
exosomes

Exosomes released by MSC-differentiated adipocytes were
observed under a transmission electron microscope and
found to present typical exosome ultrastructure (Fig. 2a)
and diameter ranging from 30 to 200 nm (Fig. 2b). West-
ern blot showed the absence of the cell-specific marker
calnexin or actin and the enrichment of the exosomal
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marker CD63 and TSG101 in adipocyte exosomes (Fig. 2c).
Adipocyte exosomes labeled with the membrane dye Dil
were readily observed under a fluorescent microscope 4 h
after co-culture with breast cancer cell MCF7 and reached
peak after 20-24-h (Fig. 2d). Together, we show that hu-
man in vitro differentiated adipocytes secrete exosomes
with common exosomal features, which are actively taken
up by breast cancer cells.

MSC-differentiated adipocyte exosomes promote breast
cancer cell proliferation and migration

We then evaluated MSC-differentiated adipocyte exo-
somes’ effects on breast cancer cell proliferation and
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migration and characteristic abilities of tumor devel-
opment. The proliferation rate of MCF7 cells treated
with exosomes was significantly increased compared
with that of control cells treated with PBS as showed
by MTS assay (Fig. 3a). Both wound healing assay
and transwell assay demonstrated that MCF7 cells
treated with adipocyte exosomes have a higher migra-
tion rate than control cells as manifested by more
numbers of migrated cells (Fig. 3b) and faster scratch
wound seal (Fig. 3c). Next, we assessed whether phys-
ically removing exosomes from MSC-differentiated
adipocyte-conditioned media would affect the condi-
tioned medium’s ability to increase cell proliferation
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and migration. As expected, compared with the con-
trol, MCF7 cultured with the exosome-depleted
adipocyte-conditioned medium have slightly lower
proliferation (Fig. 3d) and migration capacity at 24 h
(Fig. 3e, f).

MSC-differentiated adipocyte exosomes reduce breast
cancer cell apoptosis

Another hallmark of cancer cells is their ability to thrive
despite serum starvation (SS) and chemotherapeutic
drug treatment. To characterize the possible effects of
adipocyte exosomes on this hallmark, we added
MSC-differentiated adipocyte exosomes into culture
media of breast cancer cells treated with SS or chemo-
therapeutic drug 5FU. As showed by Annexin V/PI
staining, upon treatment with SS for 48 h, early apop-
totic cells (Annexin V+/PI-) and late apoptotic cells
(Annexin V+/PI+) were significantly reduced in the
presence of adipocyte exosomes (Fig. 4a). Similarly, adi-
pocyte exosomes also reduced early apoptotic cells in
MCEF?7 treated with the chemotherapeutic drug 5FU
(60 uM) (Fig. 4b). Additionally, to mimic an SS condi-
tion, we cultured MCF7 in the adipocyte-conditioned
medium  (without serum) and exosome-depleted
adipocyte-conditioned medium (without serum) for 48 h
and found more apoptotic cells when exosomes were de-
pleted (Fig. 4c). Similarly, in the presence of the
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chemotherapeutic drug 5FU, exosome depletion leads to
more apoptotic cells (Fig. 4d). Collectively, these results
suggest that adipocyte exosomes are an important par-
ticipant in regulating breast cancer cell proliferation,
migration, and apoptosis.

MSC-differentiated adipocyte exosomes contribute to
breast cancer growth in vivo

To explore the contribution of adipocyte exosomes in
vivo, we carried out mouse xenograft experiments by
subcutaneously injecting breast cancer cells MCF7
mixed with Matrigel alone or with human
MSC-differentiated adipocytes previously treated with or
without GW4869, an inhibitor of exosome biogenesis/re-
lease. The presence of MSC-differentiated adipocytes
showed a trend of increased tumor growth over the
35-day follow-up period while blockade of exosome
generation with GW4869 seemed to reduce
tumor-promoting effects of MSC-differentiated adipo-
cytes (Fig. 5a—d). We determined the rate of cell
proliferation by IHC staining of the tumor sections with
the anti-Ki67 and found that the number of
Ki67-positive cells was increased in the presence of
MSC-differentiated adipocytes compared to the MCF7
alone group, but the increased trend was abolished when
exosome generation was blocked (Fig. 5e). Similarly, the
number of blood vessels was increased in the presence
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of adipocytes but reduced when exosome generation was
blocked (Fig. 5f). Thus, these results indicate that adipo-
cyte exosomes could contribute to tumorigenesis of
breast cancer cells in vivo.

Transcriptome analysis of breast cancer cells treated with
MSC-differentiated adipocyte exosomes

We next evaluated the transcriptomic alterations induced
by adipocyte exosomes and identified activated signaling
pathways in MCF7. Adipocyte exosomes could convert
MCEF?7 into a transcriptional active state as demonstrated
by more upregulated genes (Fig. 6a). Unsupervised clus-
tering identified upregulation of gene signatures related to
cell proliferation, programmed cell death, migration, and
angiogenesis in adipocyte exosome-treated MCF7

(Fig. 6b—e). qRT-PCR analysis confirmed the increased ex-
pression of selected genes from the abovementioned gene
signatures (Fig. 6g—j). Interestingly, KEGG analysis identi-
fied at least 20 signaling pathways with known functions
in tumor development (Fig. 6f).

MSC-differentiated adipocyte exosomes activated the
Hippo signaling pathway in breast cancer cells

Among them, we chose PI3K-Akt, MAPK, Hippo, and
JAK-STAT for further analysis. Western blot confirmed
the phosphorylation of JAK, JNK, ERK, and P38 as well
as the dephosphorylation of YAP (Fig. 7a). The corre-
sponding pathway inhibitors altered such a phosphoryl-
ation status (Fig. 7b—e) and attenuated the tumor
growth-promoting effect of adipocyte exosomes, with
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of cancer phenotype-associated genes in adipocyte exosome-treated

Hippo inhibition exhibiting the most significant effect
(Fig. 7f). Specifically, Fig. 4h demonstrates the increased
phosphorylation of YAP upstream kinase MST1. Fig-
ure 7g, i shows the transportation of YAP/TAZ (two key
transcription factors of the Hippo signaling pathway)
into the nucleus where they activate transcription of the
downstream genes such as CTGF, ANKDRI, and
CYR61(Fig. 7j). Collectively, these results showed that
adipocyte exosomes activated the Hippo signaling path-
way in the MCF7 cells.

Discussion

Numerous studies have demonstrated that the tumor
microenvironment could cooperate to modulate ma-
lignant behaviors of tumors cells [5, 28, 29]. In breast

cancer, the cellular components of tumor microenvi-
ronments include resident fibroblasts, adipocytes, a
number of recruited immune cells, and newly formed
blood vessels with their associated cells [30]. Dynamic
and reciprocal communication between tumor cells
and surrounding compartments has been intensively
investigated. However, in this context, very little at-
tention has been given to adipocytes, although they
represent the most prominent cell type in breast
tumor microenvironment. Traditionally, adipocytes are
thought to function as energy storage cells. Now, ac-
cumulating evidence suggests that they could also
serve as endocrine cells by secreting adipokines [31].
Here, we chose MSC-differentiated adipocytes as a
cellular model to study interactions between
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adipocytes and breast cancer cells. The adipocytes are
differentiated by culturing human MSCs under adipo-
genic conditions and are fully characterized by
morphology, staining, and marker gene expression.
We found the tumor-promoting effects of
MSC-differentiated adipocytes were reduced when
adipocyte exosomes were depleted.

In recent years, much interest has been devoted to
exosomes, which function as carriers of bioactive pro-
teins, lipids, and nuclear acids and are increasingly
regarded as crucial players in cell-cell communica-
tions [32, 33]. In the present study, we characterized
exosomes secreted by in vitro differentiated human

adipocytes. The uptake of these exosomes by breast
cancer cells MCF7 was observed by immunofluores-
cence staining, confirming direct interaction between
adipocyte exosomes and cancer cells. Adipocyte exo-
some treatment brings about sustained changes in the
proliferation and anti-apoptosis of breast cancer
cells. To our knowledge, this is the first reported
about the effects of MSC-differentiated adipocyte
exosomes on breast cancer cells. Previous studies
have explored the role of adipocyte exosomes in in-
flammation and insulin resistance. For example, adi-
pocyte exosomes could differentiate monocytes into
macrophages characteristic of human adipose tissue



Wang et al. Stem Cell Research & Therapy (2019) 10:117

macrophages (ATM), defined by release of both pro-
and anti-inflammatory cytokines [34]. Wang et al.
found adipocyte exosomes could aggravate athero-
sclerosis by increasing vasa vasorum angiogenesis in
diabetic ApoE-/- mice [15] while adipocyte exo-
somes induce insulin resistance in skeletal muscle
[16]. Adipocyte exosomes have also been reported to
promote the growth of hepatocellular carcinoma by
targeting deubiquitination-related USP7 [35] and
promote melanoma aggressiveness through fatty acid
oxidation [36]. Here, our study added a new function
of adipocyte exosomes in breast cancer regulation.
Currently, it remains largely unknown how adipo-
cytes influence breast tumor cell behavior or
whether any of the paracrine factors secreted by adi-
pocytes cause changes in the phenotypic behavior of
the malignant cells. Our results provide new insights
into exosomes which are emerging as a novel way of
cell-cell communication.

Hippo signaling is one of the major pathways con-
trolling tumorigenesis. Key components of the Hippo
pathway regulate breast tumor growth, metastasis,
and drug resistance [37]. Here, we found adipocyte
exosomes could activate two key downstream effector
proteins of Hippo, the YAP and TAZ, as demon-
strated by Fig. 7.

Taken together, we found that in vitro
hAD-MSC-differentiated adipocytes could secrete
exosomes which are actively taken up by breast can-
cer cell line MCF7 and subsequently promote breast
cancer cell MCF7 proliferation and migration as well
as protect MCF7 from serum derivation or chemo-
therapeutic drug-induced apoptosis in vitro. In the
in vivo mouse xenograft model, depletion of exo-
somes reduced tumor-promoting effects of adipo-
cytes which implies the contribution of adipocyte
exosomes in the tumor microenvironment. Further-
more, we found the Hippo signaling pathway was
partially responsible for the tumor-promoting effects
of adipocyte exosomes. Our data suggest that adipo-
cyte exosomes could act as an additional mechanism
contributing to breast tumor microenvironment and
may offer a novel therapeutic modality to target
breast cancer growth. However, our study has a limi-
tation. The in vivo mouse xenograft experiment was
performed using adipocytes treated with GW4869
while our in vitro studies were done with pure exo-
somes. More studies are needed to further explore
the in vivo role of adipocyte exosomes.

Conclusions

Collectively, our data indicated that (i) adipocyte exo-
somes could be actively incorporated into breast cancer
cells and significantly = changed transcriptome,
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particularly genes associated with tumor development,
(ii) depletion of exosomes from adipocyte reduced
tumor-promoting effects of adipocytes, and (iii) the
Hippo signaling pathway was activated in adipocyte exo-
somes which treated breast cancer cells. Our results pro-
vided new insights into the role of adipocyte exosomes
in the breast tumor microenvironment.
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