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Abstract

end of the fourth week.

Background: Evidence has suggested that human adipose-derived stem cells (hADSCs) and low-level laser has
neuroprotective effects on spinal cord injury (SCI). Therefore, the combined effect of the hADSCs and laser on
neuregeneration and neuropathic pain after SCI was investigated.

Methods: Forty-eight adult male Wistar rats with 200-250 g weight were used. Thirty minutes after compression,
injury with laser was irritated, and 1 week following SCI, about 1 x 10° cells were transplanted into the spinal cord.
Motor function and neuropathic pain were assessed weekly. Molecular and histological studies were done at the

Results: The combined application of hADSCs and laser has significantly improved motor function recovery (p = 0.0001),
hyperalgesia (p < 0.05), and allodynia (p < 0.05). GDNF mRNA expression was significantly increased in hADSCs and
laser+hADSC-treated animals (p < 0.001). Finally, co-administration of hADSCs and laser has enhanced the number of
axons around cavity more than other treatments (p < 0.001).

Conclusions: The results showed that the combination of laser and ADSCs could significantly improve the motor
function and alleviate SCl-induced allodynia and hyperalgesia. Therefore, using a combination of laser and hADSCs in
future experimental and translational clinical studies is suggested.
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Background

Spinal cord injury (SCI) is one of the most common and
complicated clinical problems around the world and
brings about many disabling outcomes such as motor
dysfunction, neuropathic pain, and social problems [1].
Pain due to SCI undoubtedly affects the individual’s
quality of life, and the priority of many SCI patients is
relieving the pain instead of developing the ability to
walk [2, 3]. Chronic pain following SCI is very common,
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and 75-80% of SCI patients experience this pain [4—6].
Based on the classification of the International Association
for the Study of Pain (IASP), SCI pains are divided into
two groups: nociceptive (skeletal, muscular, and visceral
pains) and neuropathic (pains due to injury or dysfunction
of the neural system) [2]. Treatment of neuropathic
pain is different from nociceptive ones. Various classes
of drugs with analgesic characteristic are applied for
treating neuropathic pain [7]. In addition to drug therapy,
non-drug treatments for neuropathic pain such as surgery,
acupuncture, transcutaneous electrical nerve stimulation,
psychotherapy, and physiotherapy exist [2, 8-13]. Low-
level laser therapy is one of the physiotherapy measures
that can be taken for controlling neuropathic pain, and it
has recently received much attention from researchers
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due to its low cost, being non-invasive and not having side
effects [14, 15]. Considering the anti-inflammatory
property of laser [15, 16], during inflammation, laser
results in control of neuropathic pain via balancing
chemical mediators, dilating arteries, increasing cortisol
synthesis [15, 17, 18], and increasing the endorphin
synthesis [19, 20].

Cell therapy is another non-drug measure that is cur-
rently the center of attention for treating neural diseases
[21-23] including neuropathic pain [24, 25]. Clinical use of
mesenchymal stem cells (MSCs) with the aim of treating
various diseases [22, 26—-28] is increasing day by day since
its safety and efficacy have been proven [29, 30]. Adipose
tissue has received more attention from researchers for
extracting stem cells compared to older sources of MSCs
because it is available more easily, is safer, and has richer
stem cell content [31]. Human adipose-derived stem cells
(hADSCs) can be a proper choice for treating neuropathic
pain since they secrete cytokines [32, 33] and improve
nerve healing [34]. Considering the anti-inflammatory and
nerve regenerating properties of laser and hADSCs, the
combination of these two can be considered as an effective
non-drug treatment modality in controlling and treating of
SCI induced neuropathic pain.

It seems that single-therapy do not have a sufficient
effect on the SCI [35]. In recent years, several preclinical
studies used combination of various treatments for SCI
[36—38]. Based on our knowledge, no study has investi-
gated the effect of combination of laser and hADSCs on
the recovery after SCI. Therefore, the aim of the present
study was evaluating the effect of simultaneous prescrip-
tion of laser and hADSCs on neuropathic pain after
induction of SCI model in rats.

Methods

Studied animals

In this study, adult male Wistar rats (n=48) with
200-250g weight, which were obtained from the ex-
perimental studies center of Iran University of Medical
Sciences, were used. The animals were randomly divided
into six equal groups (n =8) (Table 1). All the stages of

Table 1 The study groups

Study groups Explanation

Control Without intervention
Scl SCl+ without intervention
Vehicle SCIH 10 pl PBS (in situ injection)
Laser SCI+ Laser
hADSCs SCl+ 10° hADSCs suspended in

10 ul PBS (in situ injection)
Laser+hADSCs SCl+ laser+10° hADSCs suspended

in 10 ul PBS (in situ injection)

SCl spinal cord injury, hADSCs human adipose-derived stem cells
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this research project were carried out in Iran University
of Medical Sciences (Tehran, Iran) after receiving the
approval of the ethics committee (IRIUMS.REC1395.95-
04-30-27315). Animals were kept in the standard con-
dition of animal house, had access to sufficient water and
food, and were in + 21 °C and 12-h dark/light cycles before
and during the study.

Isolation of hADSCs

Adipose tissue was extracted from the superficial fat
layer of the abdomen during liposuction of individuals
25 to 35years old (after obtaining consent) who had vi-
sited the general surgery room of the Rasoule Akram
Hospital (Tehran, Iran) for undergoing liposuction sur-
gery. According to their medical profile, these indivi-
duals had no history of HBS and HIV Ag. Sampling was
done in sterile conditions and then transferred to the
laboratory in a sterile dish that contained DMEM/Ham s
F-12, FBS 10%, and penicillin/streptomycin (P/S) 5%.
Isolation of stem cells was done based on the protocol
described in detail by Dubois et al. [34]. For this pur-
pose, the fat sample was warmed in a water bath up to
37 °C before extraction stages. After that, all the stages
of extraction were performed under a sterile hood with
sterile material and equipment. Two hundred milligrams
of adipose tissue was placed in a tube containing penicil-
lin/streptomycin (P/S) 1% (prepared with warm PBS)
until blood vessels and connective tissue were isolated,
and finally, the tissue became clear (usually two times
washing). The sample was then transferred to a tube
containing collagenase 0.1% and BSA 1% (prepared with
warm PBS), for tissue digestion. The tube containing the
sample was placed in a water bath for 30 min until the
tissue was completely digested and the solution became
clear. After tissue digestion, the tube containing the
sample was centrifuged for 5 min with a speed of 1200
rpm in room temperature. After discarding the super-
natant, the pellet formed was re-suspended using BSA
1% and centrifuged again. To eliminate red blood cells
(RBCs), the pellet formed was re-suspended using RBC
lysis buffer and was again centrifuged after pipetting.
Finally, after washing with PBS, centrifuging, and dis-
carding the supernatant, the formed pellet was re-
suspended using DMEM/Ham s F-12 culture medium
that contained FBS 10% and penicillin/streptomycin
(P/S) 1% and was then transferred to a flask. Flasks
were kept in an incubator (37°C temperature, 5%
CO2, 98% humidity) until the third passage.

Identifying hADSCs

Identifying hADSCs was done in the third passage using
flow cytometry. CD73, CD90, and CD105 were considered
as positive markers, and CD34 and CD45 as negative
markers. After trypsination, hADSCs were centrifuged for
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5 min in 3000xg, and then for retrieving surface markers,
1 x 10° hADSCs were incubated in DMEM-f12, 10% FBS,
and 1% P/S at 37°C in 5% CO2 for 4 h. In the next phase,
cells were incubated with the conjugated primary antibody
for 30 min. Then, after centrifugation, the cells were
washed with PBS three times and divided into aliquot
parts with 500 pl volume. Flow cytometry was performed
using Cyflow Space flow cytometer (Sysmex-Partec). Anti-
bodies used for flow cytometry were CD29-PE, CD73-PE,
CD34-PE, CD105-FITC, and CD45-FITC as direct anti-
bodies and IgG1-PE and IgG1-FITC as isotype control
(BD Biosciences).

Labeling hADSCs

For detecting hADSCs 4 weeks after implanting, cells
were labeled via Dil. In summary: 1x10° hADSCs
were suspended in 1 ml DMEM-F12 containing 5 pl
Dil (Invitrogen, C-7000, USA) solution (50 pg Dil in
50 ul DMSO) and incubated for 15 min in 37 °C, CO2
5%, humidity 98%, and then for 10 min in 8°C. After
centrifugation (5min at 1200 RPM) and discarding
the supernatant, the cells were re-suspended in PBS
for injection.

Surgery and confirmation of SCI model

After analgesia of the animals via intraperitoneal (IP) in-
jection of ketamine (80 mg/kg) and xylasine (10 mg/kg),
they were put in prone position, and after shaving the
skin in the region of lumbar vertebra and prepping
with betadine, a section was made in the middle line
using a bistoury blade. After pushing subcutaneous fat
and muscles aside and exposing lamina of the
vertebra, laminectomy was performed at the level of
T13-L1 in the spinal cord without injuring dura mater.
Aneurysm clips made by FST Company that provide a
force equal to 20 g/cm2 were used for 90s to induce
spinal cord injury via compression method. The
muscles and skin were sutured with 0.3 suture thread.
Post-surgery care included prescription of ringer so-
lution for prevention of dehydration (3ml, IP, after
surgery), prescription of penicillin G for 4 days after
surgery (8 mg/100 g, IP), and bladder massage twice a
day was done for all the animals. Animals that had a
Basso, Beattie, and Bresnahan (BBB) score higher than
3 3 days after SCI induction were excluded from the
study. To confirm the injury model, an animal was
deeply anesthetized via IP injection of ketamine and
xylosine 1week after induction of SCI, and after car-
diac perfusion with paraformaldehyde 4%, a section of
the spinal cord with 1.5 cm length, including the site
of injury, was removed and placed in sucrose 30%
overnight and molded in cryo protection medium
(OCT). Using cryostat device, 10-pm-thick cross-sections
were prepared for the site of injury.
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The method of 660 nm low-level laser therapy

In the present study, diode CW laser with 660-nm wave-
length and 100-mW power that was received as a gift
from the Heltschl Company (model ME-TL10000-SK)
was used. The laser was fixed on a metal rod to maintain
the same radiant distance throughout the study. Thirty-
minutes after removing the aneurysm clip from the site of
injury, which was marked before, 5 mm higher and 5 mm
lower as well as the mirror of these points on the left and
right of the site of injury were radiated with 660-nm low-
level laser with 5 mm distances (9 points). On each point,
the laser was radiated for 5s (overall 45 s). Laser radiation
with this method continued for 2 weeks.

hADSCs implantation

One week after injury, the animals were anesthetized
with the same method mentioned in the SCI section,
and the spinal cord was opened in the T13-L1 region via
a glass microelectrode that was attached to a Hamilton
syringe; 10° cells in a 10 ul volume were implanted in
the dorsal horn of the spinal cord. The implant was
done using a stereotaxy device. The injection was done
in two places. In each injection, 5 pl of cell volume was
implanted into the spinal cord. The sites of these in-
jections were 0.5 mm higher and lower than the site of
injury in the closest place to the central vein of the spinal
cord with 1 mm depth. Then, the muscles and skin were
sutured and the animals were put back in their cages.

Behavioral assessment

Motor evaluation: motor function was assessed during
4 min using the open-field walking test. Each animal
was allowed to freely move into a region 90cm in
diameter with a wall height of 24 ¢cm for 4 min. The move-
ment of the animal during the 4 min was recorded using a
digital camera. Two independent observers watched the
films and gave the animals scores from 0 (complete par-
alysis) to 21 (normal walking) based on the Basso Beattie
and Bresnahan scale (BBB scale). The mean scores of the
two observers were recorded as the score for each animal.
One week after the injury, the BBB score of the animals
was recorded. Only animals which had a BBB score less
than 3 would be included in the study. BBB score was
recorded for all the animals for 4 weeks [39].

Pain assessment

Mechanical allodynia measurement test

Mechanical allodynia was measured by Von Frey fila-
ments. The animal was placed on a metal mesh plate
and inside a Plexiglas container with 40 x 40 cm dimen-
sions about 60 cm above the ground level. When it got
used to the environment, various Von Frey filaments
(numbers 4.31, 4.56, 4.74, 4.93, and 5.18) were used to
evaluate mechanical allodynia. The filaments were applied
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according to their thickness, and the thinnest was used
first. They were vertically connected to the animal’s paw
sole (up and down method). Filaments were applied with
at least 20-s time intervals for each number and on both
hind paws, then the mechanical pain threshold was calcu-
lated using Dixon software.

Cold allodynia measurement test

Cold allodynia was measured by acetone test. In this
method, the animal was placed on a wired network and
a drop of acetone was splashed on the rat’s left hind paw
using an insulin syringe. This test was done five times
with 2-min intervals. Licking, shaking, or pulling the leg
(2-5 s after application) were considered as positive re-
sponse and were finally shown as a percentage.

Mechanical hyperalgesia measurement test

Mechanical hyperalgesia was measured via Basile
Analgesy Meter (Ugo Basile, Varese, Italy). Mechanical
stimulation was done with a 48-g weight connected to a
lever. The increasing pressure produced was determined
using a ruler connected to the device. When the animal
tried to respond to the applied pressure by pulling its
hind paw, the pressure would stop and the amount of
pressure that led the animal to respond was recorded.
This test was carried out twice on each leg with at least
5-min time intervals, and the mean of the obtained re-
sults was recorded.

Heat hyperalgesia measurement test

Heat hyperalgesia, was measured via plantar test (Ugo
Basile, Varese, Italy). In this test, animals were placed in
a clear container with a glass floor. After 15 min of ac-
commodation, infrared glimmer was radiated to the ani-
mal’s paw. Responding with paw withdrawal would
automatically stop heat radiation from the heat gener-
ated in the device. A 25-s cutoff was considered for pre-
venting injury to the animal’s paw. This test was done
three times in the injured foot with at least 5-min inter-
vals, and the mean of the obtained measures was re-
corded as the response.

Tissue evaluation

Four weeks after cell transplantation and laser therapy,
the animals were deeply anesthetized via ketamine/xylo-
sine. After cardiac perfusion with paraformaldehyde 4%,
the part of the spinal cord that included the site of injury
was removed (1.5 cm in length). After postfix (overnight
paraformaldehyde 4%), the sample was transferred to su-
crose 10%, 20%, and 30% solutions one overnight each,
and then finally, after molding, serial 13-pum-thick cross-
sections were prepared from the samples using a Cryo
section device (histoline) for tissue studies. For tissue
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evaluations, five slides from each animal and five sec-
tions of the slide were selected.

Cavity size and myelination assay

For cavity size and myelin area assay, Luxol Fast Blue
(LFB) staining (stained in 0.1% solvent blue, Sigma, 38,
S3382, USA) was used. In LFB staining, myelin including
phospholipids look blue to green and neurons look pink
to violet. Cavity size for each slide was recorded by Ima-
ge] software, and eventually, the mean cavity size for
each group was measured. According to our previous
studies [40], the cavity size was presented as percent of
the total area of the section using the following formula:

Cavity size (Micrometer)

Percentage of cavity size = x 100

Total area of the section (Micrometer)

Hematoxylin and eosinophil (H&E) assay

H&E staining was performed for assessment of fibroblast
invasion into cavity of the injury site. After staining, digital
images were captured (Olympus, magnification x 40) and
invasion of fibroblast was quantified manually via Image]J
software.

Number of axons around the cavity

For an assessment of the axon position around the cav-
ity, Bielschowsky staining was performed. In this staining
method, silver nitrate (Sigma, 7761-88-8, USA) was used
to identify axons. Therefore, axons are seen in black.
Slides were observed and captured by a light microscope
equipped with a camera (Olympus, magnification x 20),
and axon number and position were quantified manually
by Image] software.

Western blot analysis

Four animals were selected from each group. After care-
fully removing the dura from an injured section of spinal
cord, the spinal cord was homogenized using a buffer
(Universal DNA/RNA/Protein Purification kit, EURX,
Poland), then protein concentrations were determined
by the nanodropper (Thermo Science, USA). Equal
amounts of protein per wells were separated by 12%
SDS-polyacrylamide gel (SDS-PAGE-Bio-Rad, USA) for
1h at a constant voltage (120 V). Then, the bands were
transferred to polyvinylidene-difluoride (PVDF) mem-
branes. The membranes were blocked in PBS containing
0.05% Tween-20 (PBST) and 5% non-fat dry milk for 4 h
at 37°C. Then, the membrane was washed three times
with PBST and then incubated with the rabbit polyclonal
to aquaporin 4 (1/1000, abcam, ab46182, UK), gad65
(1/500, biorbyt, orb10682, UK), GSK3 B (1/300, biorbyt,
orb89070, UK), and p-actin (1/1000, abcam, ab8227,
UK) overnight at 4 °C in blocking buffer. After being
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washed with TBST (3 x 10 min), the membranes were
incubated with goat anti-rabbit horseradish peroxidase-
conjugated IgG (1/2000; abcam, ab6721, UK) for 2h at
room temperature. The protein bands were visualized by
enhanced chemiluminescence (ECL) and exposed against
X-ray film in the darkroom. Densitometry analysis for
proteins was done using the Alpha EaseFC software.

Immunohistochemistry

Prepared sections were washed three times with PBS,
Triton X-100/10%, and subsequently blocked with BSA
1% and normal goat serum for 1h at room temperature.
The primary rabbit polyclonal antibodies GSK3 f (1/200,
biorbyt, 0orb89070, UK), GABAB receptorl (1/1000,
abcam55051, UK), and anti-GABAB receptor 2 (1/1000,
abcam52248, UK) were diluted in blocking solution and
incubated overnight. Secondary antibody was goat anti-
rabbit FITC (1/1000, abcam, ab6717, UK) diluted in
PBS/0.3% BSA incubated for 1h, respectively. Images
were captured from each section (red due to Dil and
green due to secondary antibody) under fluorescent
microscope (magnification x 10). According to our pre-
vious studies [40, 41], the reactive area (fluorescent) was
identified and the area was measured using Image] soft-
ware based on the following formula:

Immunoreactive area

Percentage of immunoreactive area = — x 100
Total area of the section

Quantitative real-time PCR

Total RNA was extracted from injured spinal cord
tissues using Universal DNA/ RNA/Protein Purification
kit (EURx, Poland), then RNA concentrations were
determined using the nanodropper; cDNA was synthe-
sized from isolated RNA via ¢cDNA synthesis kit (EURx,
E0801-02, Poland). Amplification and real-time detec-
tion were performed on an ABI model Stepone (Thermo
fisher scientific,c, USA) using SG qPCR Master mix
(EURx, E0402-01, Poland) and QuantiTect primers
(Cinna Gen, Iran). The improved four-step reaction was
used: 95°C 10 min; 95°C 10s, 60°C 30s, 72°C 30s, and
85°C 155, for 40 cycles; the melting curve analysis was
done with the temperature ranging from 60 to 95°C,
gradually increasing at a speed of 0.5 °C every 10s. Rela-
tive quantitative analysis of the final results was norma-
lized to beta-actin (Table 2).

Statistical analysis

All the data were analyzed by prism 6 and SPSS version
21.0 (SCR:002865) then were presented as the means +
SEM. The differences of BBB and pain, behavioral tests
between the studied groups, were evaluated by two-way
ANOVA. Assessment of differences in histological and
molecular evaluation was done by one-way ANOVA. For
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Table 2 Sequence of primer pairs for real-time PCR

Primer name Sequence 5-3'

IL-6 (forward) GACTGATGTTGTTGACAGCC
IL-6 (reverse) CTGACAGTGCATCATCGCTG
BDNF (forward) GGCTGACACTTTGAGCACG
BDNF (reverse) GCTGTGACCCACTCGCTAA
GDNF (forward) TATGGGATGTCGTGGCTGTC
GDNF (reverse) CGCCGCTTGTTTATCTGGTG
Beta-actin (forward) GGCAAGGTCATCCCAGAGC
Beta-actin (reverse) CATCATACTTGGCAGGTTTCTCC

IL-6 interlukiné, BDNF brain-derived neurotrophic factor, GDNF glial cell line-
derived neurotrophic factor

all analysis, a Bonferroni post hoc test was used to evaluate
between group differences. Probability values (p)<0.05
were measured to represent significant difference.

Results

Mortality

A total of 53 animals was included. During the induction
of SCI, five animals died in the hADSCs (two rats) and
vehicle (three rats) groups. Accordingly, data from 48
animals were included in the final analysis.

Cell culture and flow cytometry assay

At the end of the third passage, hands were sticking to
the floor of the flask and had a flattened and spindle
shape (general morphology of mesenchymal stem cells)
(Fig. 1a). Flow cytometry assay showed that hADSCs
widely express CD29 (92.85%), CD73 (95.25%), and
CD105 (96.02%) and very low express CD34 (7.02%) and
CD45 (8.95) in the third passage (Fig. 1b—d).

Behavioral assessment

Mechanical allodynia

The result showed that SCI caused a reduction in paw
withdrawal threshold (df =20, 168; F = 10.78; p < 0.0001).
Treatments with laser (p <0.0001) and hASDCs (p < 0.001
from week 2) and laser+hADSCs (p <0.0001) improved
paw withdrawal threshold compare to SCI. There is no
significant difference between the laser+hADSC and con-
trol groups from week 2 to week 4 (p > 0.99) (Fig. 2a). The
paw withdrawal threshold was higher in the laser+hADSC
group than the hADSC group in the first (p < 0.0001) and
third (p = 0.03) weeks.

Cold allodynia

Two weeks after SCI induction, percentage of paw with-
drawal responses to cold stimulation by acetone signifi-
cantly increased in SCI and vehicle groups (df = 20, 168;
F=9.12; p<0.0001). Treatments by laser (p<0.001),
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hADSCs (p < 0.001), laser+hADSCs (p < 0.0001) decreased
cold allodynia compared to SCI. The paw withdrawal
response was reached to control group in all treated
animals fourth week after SCI (p > 0.99) (Fig. 2b).

Mechanical hyperalgesia

Paw withdrawal threshold to painful mechanical stimula-
tion significantly improved after laser and laser+hADSC
therapies compared to SCI group (df = 20, 168; F = 11.84;
p<0.0001). Treatment with hADSCs was not able to
improve pain threshold (p >0.99). Pain threshold in all
the treated animals was lower than that in the control
group (p <0.01) (Fig. 2c). The paw withdrawal threshold
was higher in the laser+hADSC than in the hADSC
group after 2 weeks of SCI (p < 0.0001).

Thermal hyperalgesia

Results showed that SCI led to a significant decrease in
paw withdrawal threshold due to heat stimulation during
4 weeks (df = 20, 168; F = 6.75; p < 0.0001). hADSC trans-
plantation improved thermal hyperalgesia in the second
(p=0.03) and fourth (p=0.04) weeks compared to the
SCI group. Treatment with laser (p =0.001 for the third
week and p<0.0001 for the fourth week) and laser+
hADSCs (p = 0.004 for the third week and p < 0.0001 for
the fourth week) improved paw withdrawal threshold to
noxious heat stimulation compered to SCI animals. Pain
threshold of laser-treated and laser+hADSC-treated ani-
mals had not significant difference compered to control
group (p>0.99) (Fig. 2d). Laser+hADSC-treated animals
exhibited higher pain threshold compared to hADSCs
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group in the second (p <0.0001), third (p =0.0003), and
fourth weeks (p = 0.002) after SCL

Motor function recovery

After SCI, motor function was significantly reduced in
all groups compared to the control rats (df =20, 168;
F=9231; p<0.0001). During the 4-week follow-up,
some degree of motor function recovery was observed in
the laser (p<0.001), hADSC (p<0.001), and laser+-
hADSC (p < 0.001) groups, but it did not reach the level
of the control group (p <0.0001). In the first week fol-
lowing SCI, a significant improvement was observed in
the laser and laser+hADSC groups compared to SCI
(p <0.001). In the second to fourth weeks, BBB scores of
all treated animals were higher than those in the SCI
group (p <0.0001) (Fig. 2e). The effect of laser+hADSCs
on motor function recovery was higher than hADSCs in
the fourth week (p = 0.0001).

Glycogen synthase kinase-3p (GSK3p) in the spinal cord

GSK3p expressions significantly increased after SCI
induction compared to the control animals (df =5, 12;
F =28, 39; n=3; p<0.001). Laser irradiation (p = 0.0002),
transplantation of hADSCs (p =0.01), and laser+hADSCs
(p =0.004) reduced the expression of GSK3p (Fig. 3).

Interleukin-6 (IL-6) gene expression

Analysis of IL-6 gene expression showed, 4 weeks
after spinal cord injury, there was no difference in
IL-6 gene expression compared to control animals
(df =5, 12; F=16.77; p>0.05, n=3). Treatment with
laser and hADSCs decreased its expression compared
to the SCI and control (p<0.001). Laser+hADSCs
decreased IL-6 gene expression compared to SCI
(»p<0.01) while, it remained at the control level
(Fig. 4a).
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Fig. 3 Localization (a—h, immunohistochemistry) and quantification (i and j, Western blotting) of glycogen synthase kinase-3 (GSK 33)
expression in experimental groups 4 weeks after spinal cord injury (SCI), the spinal cord longitudinal section (x 20). Control (a); SCI (b); vehicle (c);
laser (d); human adipose-derived stem cells (hADSCs; cells labeled by Dil, red) (e); hADSCs (anti-anti GSK 3B conjugated whit FITC, green) (f);
laser+hADSCs (red) (g); Laser+hADSCs (green) (h); Western blot of GSK3{3 expression (i). Data are expressed as mean + SEM. *p < 0.05, **p < 0.01,
#%p < 0,001 versus SCI groups. *p < 0,05, #p < 0.01, *p < 0.001 versus control group. T'p < 0.01 vs combination group

Brain-derived neurotrophic factor (BDNF) mRNA expression
Real-time PCR analysis of the spinal cord showed that
mRNA level of BDNF decreased after induction of injury
(df=5, 12; F=9.34; p<0.001). Administration of laser
decreased gene expression level of BDNF compared to SCI
(p <0.001). Transplantation of hADSCs did not change
BDNF transcription compared to SCI and control. In
hADSC-treated animals, BDNF mRNA expression was
significantly higher than in the laser group (p=0.047).
However, the BDNF mRNA expression of the laser group
had no significant difference with laser+hADSCs group
(p =0.50) (Fig. 4b).

Glial cell line-derived neurotrophic factor (GDNF) mRNA
expression

Real-time PCR analysis of spinal cord showed that mRNA
level of GDNF in SCI (p=0.27) and vehicle (p =0.48)
groups were not different with that of control group.
Administration of laser did not cause changes in the
expression level (p >0.99). However, transplantation of
hADSCs significantly increased GDNF transcription.

In hADSC- (p<0.001) and laser+hADSC- (p <0.001)
treated animals, GDNF mRNA expression was signifi-
cantly higher than in other groups (df =5, 12; F = 69.36;
p <0.001) (Fig. 4c).

Aquaporin 4 (AQP4) expression

Induction of SCI increased AQP4 expression compared
to control (df=5, 15; F =77.87; n=3; p<0.001). Treat-
ments with laser, hADSCs, and laser+hADSCs signifi-
cantly decreased AQP4 expression after SCI (p < 0.001)
(Fig. 44, f).

Glutamic acid decarboxylase 65 (GAD65) expression
Induction of SCI resulted in significant reduction of
GADG65 expression compared to the control after 4
weeks follow-up (df=5, 12; F=52.57; p<0.001).
Treatment with laser, hADSCs, and laser+hADSCs
significantly (p < 0.001) increased GAD65 expression after
SCI (p <0.001). There is no significant difference between
laser and laser+hADSC groups in GADG65 expression level
(p>0.99) (Fig. 4e, f).
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Gamma-aminobutyric acid (GABA) B receptors 1 and 2
The qualitative assessment showed that SCI result in re-
duction of GABA receptors (1 and 2) expression in the
spinal cord. Treatment by laser and hADSCs increased
their expression. The most expression belonged to the
laser+hADSC group (Fig. 5).

Cavity size

Four weeks after SCI, a large cavity was observed in
the injured spinal cord (mean cavity size: 23.4 +2.7%
for SCI group and mean cavity size: 24.14 + 2.2% for

vehicle groups) (df=5, 47; F=24.4; p<0.001). The
cavity size of the laser group (mean cavity size:
15.54+2.1%) was not significantly different from
that of the SCI group (p=0.09). However, the size
of the cavity was significantly smaller in the hADSC
group (mean cavity size: 10.16 +2.06%; p <0.001)
and the laser+hADSC group (mean cavity size:
6.27 £ 1.15%, p <0.001) compared to that in the SCI
group. There is a significant difference between the
cavity size in the laser and laser+hADSC groups
(p=0.02) (Fig. 6).
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Fig. 5 Localization of gamma-aminobutyric acid-B (GABAg) type 1 (a-h) and 2 (i-p) by immunohistochemistry 4 weeks after spinal cord injury
(SCI), spinal cord transverse section (x 10). Control (a); SCI (b); vehicle (c); laser (d); hADSCs (cells labeled by Dil, red) (e); hADSCs (anti-anti-GABAg-1
conjugated whit FITC, green) (f); laser+hADSCs (red) (g); laser+hADSCs (green) (h), Control (i); SCI (j); vehicle (k); laser (I); hADSCs (red) (m); hADSCs
(anti-anti-GABAg-2 conjugated whit FITC, green) (n); laser+hADSCs (red) (0); laser+hADSCs (green) (p)

Number of axons around the cavity

Bielschowsky’s staining revealed that few axons exist
around the cavity in the SCI and vehicle groups (df =5,
66; F =154.3, p <0.001) (Fig. 7a—c). Treatment with laser
(p<0.0001) and hADSCs (p<0.0001) increased the
number of axons around the cavity compared to SCI
animals. Co-administration of laser and hADSCs en-
hanced the number of axons around cavity more than
other treatments (p < 0.001) (Fig. 7).

Discussion

The results showed that the combination of laser+hADSCs
could significantly improve the motor function recovery
and alleviate SCI-induced allodynia and hyperalgesia com-
pared to hADSC-treated animals. Co-administration of
laser and hADSCs has significantly increased the BDNE,
GDNE, and GABA receptors’ expression. In addition,

application of laser+hADSCs has significantly increased the
number of axons around the cavity and decreased the
cavity size after SCI compared to individual treatments.

GABAergic pathway is the most important mechanism
of pain control in the spinal cord [42, 43]. Various studies
have shown that increasing the expression of GABA
receptors after SCI alleviate neuropathic pain [43, 44]. In
the present study, the co-administration of laser+hADSCs,
increased the GABA receptor expression. The qualitative
assessment showed that the expression of GABA re-
ceptors in the laser+hADSC group is higher than that of
the individual treatments. hADSCs and laser increase the
expression of GABA receptors. It seems that we observed
the cumulative effect of hACSCs and laser in increasing
the GABA receptors expression.

GSK3p as an apoptotic factor in central nervous system
(CNS) inhibits axonal regeneration via increasing the
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Cavity Size percentage

group, ***p < 0.001 vs. SCI group and vehicle; °p < 0.05 vs laser

Fig. 6 Assessment of cavity size and myelinated area by Luxol Fast Blue (LFB) staining 4 weeks after spinal cord injury (SCI), spinal cord transverse
section (x 10). The assessment showed that the largest cavity was observed in the SCI group, while smaller cavities were observed in the
combination-treated animals. In addition, the most myelinated area was detected in these animals. Control (a); SCI (b); vehicle (c); laser (d);
hADSCs (e); laser+hADSCs group (f); quantitative assay of cavity size (g). Data are expressed as mean + SEM. ##p <001,

#p <0001, vs control

expression of chondroitin sulfate proteoglycan, inducing
demyelination and promoting cavity formation [45-48].
On the other hand, it leads to neuropathic pain by
changing pro- and anti-inflammatory cytokines [49-51].
In our study, GSK3p expression was increased after SCI,
which can be an explanation for increased neuro-
pathic pain. Considering the anti-apoptotic and anti-
inflammatory characteristics of hADSCs and laser, it
was expected to decrease in GSK3p level in the animals
treated with stem cells and laser compared to SCI. How-
ever, the expression of GSK3p in hADSC-treated animals
(hADSCs and combination groups) was still high.
This inconsistency (improvement in neuropathic pain
and axonal regeneration despite an increase in GSK3p
level) indicates the presence of other mechanisms in
this regard.

There is considerable immunodepression after SCI [52].
Therefore, the level of IL-6 in the SCI group did not
significantly change compared to control animals. In the
animals treated with laser, hADSCs, and combination
therapy, the IL-6 level had a significant decrease com-
pared to those treated with SCI, which can be due to
the anti-inflammatory characteristic of laser and hADSCs
[53, 54]. Studies showed that decreased IL-6 after SCI alle-
viate the neuropathic pain [55]. In our study, hADSCs and
laser caused a significant decrease in the IL-6 level. There-
fore, a possible mechanism for anti-nociceptive effect
of hADSCs and laser could be related to decrease in
IL-6 level. The positive effect of hADSCs and laser
on axonal regeneration has been reported in previous
studies [22, 56]. It seems that the protective effects of
hADSCs and laser on axonal regeneration are not
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related to the IL-6 pathway, because our treatments
decreased IL-6 levels.

The mRNA expression of BDNF in the hADSC and
laser+hADSC groups did not have a significant diffe-
rence with SCI and control groups. Therefore, the
neuroregenerative and anti-nociceptive effects of hADSCs
appear to have no relationship with BDNF and are prob-
ably related to other mechanisms such as the GDNF path-
way. However, the level of BDNF in the laser-treated
group significantly decreased. In previous studies, it has
been proven that increased levels of BDNF are associated
with central sensitization and development of neuropathic
pain [57]. Therefore, the antonociceptive effect of laser
may be due to the decrease of BDNF level.

Transplantation of various cells after SCI has led to
increase in GDNF mRNA expression [58-60]. GDNF

increases survival of motor and sensory neurons, im-
proves motor function, induces neurogenesis and axonal
growth, enhances myelination, and alleviates pain (anal-
gesia effect) [35, 58-62]. In our study also, hADSCs
significantly increased GDNF expression. However, laser
could not increase GDNF expression compared to SCI
and this can be an explanation for observing no decrease
in cavity size after laser therapy.

Studies have shown that there is a direct correlation
between increase in AQP4 expression and neural death,
expansion of edema in the spinal cord, and motor dys-
function following SCI [63-65]. In addition, AQP4 is the
confirmation factor for neuroinflammation [66]. There is
a shared mechanism between the production of IL-6 and
AQP4, and an increase in IL-6 leads to an increase in
AQP4 expression and expands inflammation [67]. The
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studies showed the upregulation of AQP4 could also
lead to neuropathic pain [68-71]. In the present study,
AQP4 expression is significantly increased in SCI group.
Application of laser and hADSCs decreases the expres-
sion of AQP4 compared to the SCI group. This finding
may be another explanation for protective effect of laser
and hADSCs on SCL

Dorsal root ganglion is intimately associated with neuro-
pathic pain. Therefore, molecular and histological changes
in dorsal root ganglion after SCI may provide additional
data on exact mechanism of alleviating the effect of laser
and hADSCs in SCI. However, the main aim of the
present study was to assess the molecular changes in
the lesion site. Finally, we suggest the assessing of
histological and molecular dorsal root gonglion changes
for further studies.

Conclusion

The results showed that the combination of laser+hADSCs
could significantly improve the motor function recovery
and alleviate SCI-induced allodynia and hyperalgesia com-
pared to hADSC-treated animals. Therefore, it is suggested
that using a combination of laser and hADSCs in future
experimental and translational clinical studies could be
a promising strategy for alleviating the pain after spinal
cord injury.
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