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Abstract

Background: The use of mesenchymal stem cells (MSCs) is being extensively studied in clinical trials in the setting
of various diseases including diabetes, stroke, and progressive multiple sclerosis. The unique immunomodulatory
properties of MSCs also point them as a possible therapeutic tool during sepsis and septic shock, a devastating
syndrome associated with 30-35% mortality. However, MSCs are not equal regarding their activity, depending on
their tissue origin. Here, we aimed at comparing the in vivo properties of MSCs according to their tissue source
(bone marrow (BM) versus Wharton's jelly (WJ)) in a murine cecal ligation and puncture (CLP) model of sepsis that
mimics a human peritonitis. We hypothesized that MSC properties may vary depending on their tissue source in
the setting of sepsis.

Methods: CLP, adult, male, C57BL/6 mice were randomized in 3 groups receiving respectively 0.25 x 10° BM-MSCs,
0.25 % 10° WJ-MSCs, or 150 uL phosphate-buffered saline (PBS) intravenously 24 h after the CLP procedure.

Results: We observed that both types of MSCs regulated leukocyte trafficking and reduced organ dysfunction, while
only WJ-MSCs were able to improve bacterial clearance and survival.

Conclusion: This study highlights the importance to determine the most appropriate source of MSCs for a given

therapeutic indication and suggests a better profile for WJ-MSCs during sepsis.
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Background

Mesenchymal stem cell (MSC) administration is being
extensively studied in clinical trials in the setting of many
different disorders such as graft versus host disease,
cardiomyopathy, diabetes, stroke, bronchopulmonary
dysplasia, progressive multiple sclerosis, or osteoarthritis.
Indeed, MSCs are an attractive therapeutic candidate for
several reasons: these cells display immunomodulatory,
anti-inflammatory, antibacterial, and differentiation pro-
perties [1]. Their isolation and expansion are both easy
and fast as compare to other stem cells like embryonic
stem cells. They are devoid of MHC class II antigens and
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express only low levels of MHC class I antigens, allowing
their use in an allogeneic setting due to their low im-
munogenicity [2]. Finally, several clinical trials reported
no adverse events after MSC infusion, describing those
cells as safe for clinical use [3].

Since their discovery in the bone marrow (BM) by
Friedenstein’s team in 1976, MSCs have been found in the
skeletal muscle, adipose tissue [4], dental pulp, trabecular
bone synovial membrane, lungs [5], heart [6], synovial
membrane, trabecular bone, periosteum [7, 8], and men-
strual blood [9], as well as in different birth tissues, inclu-
ding the amniotic fluid and membrane [10], placenta [11],
umbilical cord blood [12], and Wharton’s jelly (W7J) [13].

The International Society for Cellular Therapies
defined MSCs as (i) CD34"°¢ CD45"°® HLADR"*® CD90"
CD73" CD105" cells with (ii) plastic adherence (iii) and
ability to differentiate into osteocytes, adipocytes, and
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chondrocytes. However, despite this consensual definition,
MSCs remain a very heterogeneous cell population and
large variations in their properties, partly related to their
tissue source, have been described [14]. For example,
Alcayaga et al. demonstrated a superior frequency of
menstrual stem cell fibroblast colony-forming units as
compared to bone marrow stem cells (BM-MSCs) [15].
Paneppucci et al. described better osteogenic differen-
tiation when MSCs were derived from BM as compared
to WJ [16]. Li et al. found that MSCs from birth tissues
have stronger immunomodulatory properties than BM-
derived cells [17]. Accordingly, it is essential to determine
the most suitable source of MSCs to get the best-expected
effect depending on the therapeutic indication considered.

Sepsis, defined as life-threatening organ dysfunction
caused by a deregulated host response to infection, is a
leading cause of admission to intensive care units and is
associated with high mortality rates [18, 19]. Unfortu-
nately, due to its complex physiopathology, there is still
no specific treatment for this syndrome. Mei et al. [20]
were the first to suggest that MSCs improve survival and
decrease organ failure in a mouse model of endotoxemia,
and subsequent studies showed that MSCs can increase
bacterial clearance [21], modulate cytokine production
[22-25], and improve renal, pulmonary, liver, cardiac, and
muscular functions [21, 26-29]. Although promising,
these studies used MSCs derived from adult tissues (BM
and adipose tissue) exhibiting many drawbacks with
regard to their potential for clinical applications: the
number of adult MSC donors is limited, and adult MSCs
remain difficult to produce. By contrast, fetal tissues, and
particularly the umbilical cord, are much easier to obtain
and MSCs are present in large numbers in these tissues
and can be expanded [30].

Therefore, in this study, we compared the in vivo pro-
perties of MSCs according to their tissue source: BM
versus W], which is an attractive source due to its abun-
dance, during a cecal ligation and puncture model of
sepsis that mimics a human peritonitis with immune
deregulation, organ injury bacterial invasion [31]. We
hypothesized that MSC properties may vary depending on
their tissue source in the setting of sepsis.

Methods

MSC preparation

Umbilical cords were collected at Nancy Maternity
Hospital from new mothers who had signed an informed
consent form in compliance with the French national
legislation regarding human sample collection, manipula-
tion, and personal data protection. Umbilical cord removal
was performed in parallel in a context of hematopoietic
stem cell allograft. Briefly, after the removal of umbilical
cord vessels, W] was cut into small pieces and plated in a
six-well plate with complete medium (minimal essential
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medium alpha («aMEM; Lonza, Walkersville, MD, USA)
supplemented with 10% fetal bovine serum (FBS), 2 mM
glutamine, 100 IU/mL penicillin, 100 ug/mL streptomycin,
and 2.5 ug/mL amphotericin B). After 7 days, pieces were
removed and culture continued until passage 3.

Bone marrow-MSCs were isolated from a sample of
healthy human BM collected in a hematopoietic stem cell
allograft context, after donors and patients’ informed
consent in compliance with national legislation regarding
human sample collection, manipulation, and personal data
protection. Nuclear cells were seeded at 50000/cm? in a
complete medium. After 2 days, cultures were washed to
eliminate non-adherent cells, the medium replaced, and
cultures continued until passage 1.

MSC cultures were carried out at 37°C in hypoxic
conditions (5% of O, and 5% of CO,).

All donors met the criteria for HSC allogeneic trans-
plant: for example, no medical history against donation,
negative serology for less than 1 month, and age lower
than 50 years. To minimize the impact of donor variabi-
lities, we used 6 donors from each MSC source.

At the end of culture, MSCs were washed with HBSS
(Hanks balanced salt solution) and detached by trypsini-
zation. One million MSCs were labeled with anti-CD90,
CD73, CD44, CD105, CD34, CD45, CD11b, CD19, and
HLA-DR mAbs (Stemflow hMSC Analysis kit, Becton
Dickinson, Franklin Lakes, USA) for characterization;
the remaining cells were frozen and stored in vapor
phase nitrogen. For their use in our experimental sepsis
model, MSCs were administered immediately after thawing
to reflect the clinical setting.

Functional characterization of MSC

As a control of MSC characteristics, osteogenic differen-
tiation was induced by seeding MSCs at a density of
3100 cells/cm* and by culturing them for 28 days in an
osteogenic induction medium (Lonza, USA). After 28
days, the samples were fixed in 4% paraformaldehyde
and then embedded in paraffin before being stained with
alizarin red. To induce adipocyte differentiation, 21,000
MSCs/cm® were seeded onto a 24-well plate. When
100% confluence was reached, 3cycles of induction/
maintenance were performed. One cycle of induction/
maintenance consisted in 3 day-culture in induction
medium (Lonza, USA), followed by 1 to 3 days of culture
in maintenance medium (Lonza). After 3 cycles of in-
duction/maintenance, the cells were cultured for 7 days
in complete maintenance medium (Lonza, USA) before
being stained with oil red.

Cecal ligation and puncture polymicrobial sepsis model

Experiments were performed in compliance with the
National Institute of Health guidelines on the use of
laboratory animals and evaluated by our Institutional



Laroye et al. Stem Cell Research & Therapy (2019) 10:192

Animal Care and Use Committee (CELMEA-CE2A-66).
Cecal ligation and puncture (CLP) was performed, as
previously described [32]. Eight- to 10-week-old male
C57BL/6 mice were anesthetized by isoflurane inhalation
(4% isoflurane for induction; 1.5% isoflurane for main-
tenance). After laparotomy, the distal end of the cecum
was ligated, a single perforation was performed with an
18-gauge needle, and a small amount of stool was taken
out. The cecum was then replaced into the peritoneal
cavity, and the abdominal incision was sutured in two
layers with 4.0 nylon suture. Five hundred microliters of
0.9% NaCl was administered sub-cutaneously for fluid
resuscitation. Mice were then immediately randomized
in three groups: BM-MSC, WJ-MSC, and phosphate-
buffered saline (PBS) by a person who did not perform
surgery. Twenty-four hours after CLP procedure, 2.5 x 10°
MSCs in 150 pl of PBS or 150 ul PBS alone were slowly
administered into the retro-orbital sinus under sevo-
flurane anesthesia.

Inflammation studies

Forty-eight hours or 7 days after CLP procedure, animals
were sacrificed by pentobarbital i.p. injection and blood
and organs were harvested. Blood count was determined
by a hemocytometer, and plasma concentrations of IL1j3,
IL-6, IL-10, IFNy, and TNFa were measured by multi-
plex immunoassays (Bio-Plex Pro Mouse Thl cytokine,
Biorad, France) according to the manufacturer’s re-
commendations. The same protocol was carried out on
healthy mice (HO).

Leukocyte trafficking was analyzed by flow cytometry
as previously described [33]. The spleen and liver were
crushed in HBSS and filtered on a 70-um nylon filter.
The bone marrow was extracted from the femur, after
the bone has been clipped, by rapidly injecting 1 ml of
PBS into the medullary cavity. The lungs were cut into
fine pieces and incubated in a cocktail of collagenase I
and DNase I at 37°C for 45 min before being crushed
and filtered. After washing, a cell count was performed
by a hemocytometer with Trypan blue staining (BioRad).
Cell suspensions were labeled with a combination of
anti-CD4-PerCP, CD25-PE, CD11b-Vioblue, Ly6C-FITC,
Ly6G-PE, FoxP3-APC, and CD45-PerCP mAbs (Miltenyi,
France) after permeabilization according to the manufac-
turer’s recommendations. Data were acquired on a Gallios
FACS analyzer (Beckman Coulter). The same protocol
was carried out on healthy mice (HO).

Bacterial count

The blood and spleen were obtained 48 h after the
CLP procedure. The blood and crushed spleen were
plated in serial log dilutions on blood agar plates.
After plating, tryptic soy agar plates were incubated
at 37 °C aerobically for 24 h and anaerobically for 48 h
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and colony-forming units (CFUs) were counted. Results
are expressed as CFUs per milliliter of blood or per gram
of spleen.

Analysis of organ injuries

Organ dysfunction was determined by measurement of
biochemical indicators of organ functions in plasma
samples and by histology scores. Plasma concentrations
of urea and creatinine (indicators of renal dysfunction),
alanine aminotransferase (ALT) and alkaline phosphat-
ase (ALKP) (indicators of liver dysfunction), and amylase
and glycemia (indicators of pancreatic dysfunction) were
analyzed by an automate (VetTest GHP, Idexx, Saint-
Denis, France) after the animals’ sacrifice 2 or 7 days
after the CLP procedure.

Forty-eight hours after CLP, the lungs, liver, kidneys,
and spleen were fixed in 4% paraformaldehyde during
24h at 4°C, dehydrated through a series of ethanol
concentrations, cleared with toluene, embedded in
paraffin wax, and cut into 5-mm-thick sections with a
Leica micro-tome (RM2135, Leica, France). For histo-
logical examination, each specimen was stained with
hematoxylin-erythrosin-saffron, mounted on glass slides,
and visualized on an optical microscope (DMD 108,
Leica, France).

Histology scores were performed by an experienced
pathologist blinded to the treatment administered. The
scoring system was adapted from [34, 35] and ranged
from 0 to 9 for the lungs, 0 to 5 for the kidneys, 0 to 4
for the liver, and O to 3 for the spleen.

Survival study

The same previously described CLP procedure was
performed for the survival study. All mice received
every 12h 50 pg/g of imipenem (Braun, France) sub-
cutaneously for the survival study in accordance with
Alcayaga-Miranda’s work which described a cumu-
lative effect of MSCs and antibiotics [15]. Animals
were followed up to 7 days.

Statistics

The normal distributions of the data were tested
(Kolmogorov-Smirnov test), and data are presented as
means + SD. Between-group differences were tested for
significance by two-way ANOVA with Bonferroni correc-
tion or Kruskal-Wallis test when appropriate. Analyses
were performed using GraphPad Prism software.

Results

All the MSCs used in this study presented the
typical MSC phenotype CD14"°®-CD34"°¢-HLA-
DR"%-CD11b"*®-CD19"*¢-CD73"-CD90"-CD105"-CD44",
differentiation capacities into osteocytes and adipocytes,
and an adherence to plastic in accordance with the
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standards described by the International Society for
Cellular Therapy.

MSCs impact leukocyte trafficking

Sepsis induced an early neutrophilia and a progressive
monocytosis and lymphocytosis (Fig. 1). MSCs showed
no effect on these disturbances, except for a reduced
late (day 7) monocytosis with BM-MSCs. However, no
significant difference was found between WJ-MSC and
BM-MSC. Of note, sepsis was also associated with
deep and rapid thrombocytopenia, on which MSCs
had no effect.

We next investigated leukocyte trafficking in various
organs (Fig. 2). Following CLP, neutrophils progressively
populated the liver, spleen, lungs, and BM. This was
partially prevented by MSCs regardless of their origin
(Fig. 2a). Monocytes were also recruited by the lungs
and the liver, though to a less extent in MSC-treated
animals (Fig. 2b). In mouse, monocytes are classically
categorized as “pro-inflammatory” Ly6C"8" and “anti-in-
flammatory” Ly6C'®". Mobilization of Ly6C™&" mono-
cytes to the lung was reduced in mice receiving MSCs
regardless of their origin while Ly6C'" was largely
unaffected except in the liver (Fig. 2¢, d). Likewise, we
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observed a significant reduction of Ly6C"&" monocytes
in BM in the WJ-MSC group in comparison to the PBS
group. However, no significant difference was found be-
tween WJ-MSC and BM-MSC. Regarding Treg-cells,
known to favor resolution of inflammation, WJ-MSC-
treated mice displayed higher numbers in their lungs,
liver, and BM, than BM-MSC-treated mice though with
no significant differences as compared to control ani-
mals (Fig. 2e). Altogether, these data show that MSCs
are able to impact leukocyte trafficking, towards a more
“anti-inflammatory” profile conferred after treatment by
WJ-derived cells.

MSCs do not dampen systemic inflammation but reduce
organ injury

As expected, sepsis induced an acute increase in both in-
flammatory (TNFa, IL1P, IL-6) and anti-inflammatory
(IL-10) plasma cytokine concentrations (Fig. 3). Sur-
prisingly, we observed no effect of MSCs on cytokine
levels. Moderate kidney and liver dysfunctions develop
after CLP (Fig. 4a). These early disturbances were partly
prevented by MSCs regardless of their source. Histology
studies of the lungs, spleens, kidneys, and livers revealed
no significant differences between groups (Fig. 4b).
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MSCs improve bacterial clearance

We observed an important reduction of blood and
spleen bacterial load as compared to controls after the
administration of WJ-MSCs (Fig. 5). Although the trend
was similar for BM-MSCs, it did not reach significance.
Of note, 100% of control animals were bacteremic com-
pared to 71% and 75% in the WJ- and BM-MSC groups
respectively (Fig. 5b).

MSCs improve survival

Finally, we investigated the effects of MSCs on survival
(Fig. 6). In the control group (antibiotics and fluid
resuscitation), lethality reached 36% at day 7, but only
13% and 17% in the WJ- and BM-MSC-treated ani-
mals respectively. Significance was only obtained for
the WJ-MSC group (Wilcoxon test, p =0.04). No
significant difference was found between WJ]-MSC
and BM-MSC groups.

Discussion

Although the use of MSCs as a therapeutic tool has ge-
nerated a great enthusiasm, important questions remain
especially regarding their optimal tissue source that may

depend on the target disorder. Sepsis is one of the diseases
under scrutiny for MSC administration. This syndrome
being a vital emergency, allogenic MSC banks will be
necessary and the optimal MSC source must be deter-
mined. We aimed here to address whether in vivo MSC
properties during sepsis could change according to their
adult or fetal origin.

Indeed, we observed slightly different effects of MSCs
depending on their tissue source. First, WJ-MSCs seem
to be more potent than BM-MSCs to modulate leukocyte
trafficking, conferring a more “anti-inflammatory” en-
vironment in organs with a lower neutrophil infiltra-
tion. Previous in vitro studies suggested that MSCs
extracted from birth tissues have more immunomo-
dulatory capacities than cells derived from adult
tissues. Mareschi et al. studied the proliferative ca-
pacity of regulatory T cells during co-culture of
mononuclear cells and MSCs from the birth tissue or
bone marrow [36] and noted an increase in Treg cell
proliferation with MSCs from birth tissue. Similarly,
Barcia et al. observed that WJ-MSCs seemed to be
less immunogenic and more immunosuppressive than

BM-MSCs [37].
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Fig. 4 Effects of MSCs on organ dysfunction. Plasma concentrations of blood urea, creatinine, ALT, ALKP, amylase, and glycemia were measured

at baseline and 2 or 7 days after CLP procedure (n =3-7 per group) (a). The lungs, livers, kidneys, and spleens were harvested 48 h after CLP, and
a pathologist blinded to the treatment group performed histology scoring (n =4 per group) (b). Group comparisons were analyzed by two-way

ANOVA with Bonferroni correction. *p < 0.05 WJ-MSC versus PBS; °p < 0.05 BM-MSC versus PBS; *°p < 0.01 BM-MSC versus PBS

Although we demonstrated an important impact of
MSCs on cellular traffic, no effects were noted on plasma
cytokine concentrations. Our results contrast with previous
findings demonstrating the MSC ability to increase anti-
inflammatory cytokines and decrease pro-inflammatory
cytokines [22—24, 38]. But it is crucial to underline the fact
that we here administered MSCs as a treatment and not as
a prophylactic agent: most if not all previous studies on
MSCs and sepsis used cells at the same time (or even
before) or just after the onset of sepsis. Here, we chose to
give cells only 24 h after surgery (and thus analyzed cyto-
kines at 48 h), to better mimic what could happen in the
clinical setting. Therefore, our time window could have
precluded from observing an MSC effect on cytokines, as
their concentration peak at 24 h as observed in the Liu et
al. study [39]. However, in a previous work in pigs, we also
were unable to demonstrate an impact of an early WJ-
MSC administration on plasma cytokines [29]. In a re-
cent clinical trial investigating the effect of adipose

tissue-derived MSCs after an intravenous injection of
lipopolysaccharide (LPS) into healthy subjects, these
cells did not decrease TNFa or IL6 release and only the
higher MSC dose (4 x 10%/kg) increased plasma level of
IL10 [40]. It is also important to note that in these
studies MSCs have been cryopreserved. The impact of
freezing is unclear [41-44], and therefore, an effect on
MSC anti-inflammatory properties cannot be excluded.

The antibacterial properties of MSCs seem also affected
by their origin. Indeed, even if no significant difference
was found between WJ-MSC and BM-MSC, we observed
a significant decrease in bacterial clearance only with
WJ-MSCs in comparison to the PBS group. Differences
in terms of antimicrobial peptide secretion have been
previously described. For example, Alcayaga et al. showed
that BM-MSCs secrete LL-37, hepcidin, and 3 defensins,
whereas MSCs derived from the menstrual liquid secrete
only hepcidin, and MSCs from the umbilical cord produce
only B defensins [45]. Obviously, in vitro experiments
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Fig. 6 WJ-MSCs improve survival. Kaplan-Meier estimate of survival

after CLP (n = 18-48 per group). Survival curves were compared using
the log-rank test. Group comparisons were analyzed by Wilcoxon test
*p < 0.05 WJ-MSCs versus PBS

cannot reflect the complex environment of sepsis and
therefore the behavior of in vivo MSCs. Moreover, anti-
bacterial properties of MSCs are not just the consequence
of antimicrobial peptide production as they can also
increase neutrophil and monocyte phagocytic index
[46, 47], a mechanism complex to reproduce in vitro.

Although the better profile of MSCs regarding their
immunomodulatory and antibacterial properties should
have been translated into a dampening of organ dysfunc-
tion, this was oddly not observed. An explanation could
stem from the fact that our model was not severe enough
to drive severe organ failure, as suggested by modest
biochemistry and histologic disorders in the sacrificed
mice 2 days after the CLP procedure.

Finally, only WJ]-MSCs were able to improve survival in
comparison to the PBS group, though it is important to
note that no difference was observed between WJ-MSC
and BM-MSC groups.

In summary, we observed very slight differences between
MSC capacities depending on tissue source such as their
impact on regulatory T cells but none justifying the use of
a source over the other in terms of potency. Currently,
three phase 1 clinical trials have reported the safety of
using MSCs during septic shock: two using MSCs derived
from adult tissues (bone marrow and adipose tissue) and
the third using MSCs from the umbilical cord [40, 48, 49].
These studies demonstrate that intravenous infusion of
allogeneic MSCs in a septic context was safe. None adverse
effect was observed even at high doses, regardless of their
origin. However, to treat a syndrome with a high preva-
lence such as sepsis, the accessibility to the source of MSC
is essential and the number of adult MSC donors is limited.
In this context, W] is a more advantageous tissue source of
MSCs: donations of the umbilical cord are devoid of risk
and abundant, the amount of MSCs in an umbilical cord is
important, and their expansion is fast and quite easy.

This study presents some limitations. First, we used
MSCs at different passages. BM-MSCs were cryopre-
served at passage 1 while WJ-MSC at passage 3. Indeed,
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the BM-MSC senescence is earlier than the WJ-MSC
senescence [50]. Although unlikely, whether this could
have negatively impacted WJ-MSC properties is un-
known. Second, we could have taken into account dif-
ferences in terms of BM and WJ donor characteristics
which have been found to influence MSC functions
such as age, gender, weight, smoking status, diabetes,
or obstetric factors [51-56]. Third, we tested a single
dose of MSCs. However, even if the efficiency of higher
amounts of cells is unknown, the dose of 0.25 x 10°
cells per animal corresponds to a high dose in humans
(around 10 x 10° cells/kg).

Conclusion

We here showed that the effects of MSC administration
in an in vivo model of murine sepsis marginally depend
on their source, with an at least as potent profile
conferred by WJ-MSCs.
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