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Bone marrow mesenchymal stem cells (BMSCs), which were first discovered in bone marrow, are capable of
differentiating into osteoblasts, chondrocytes, fat cells, and even myoblasts, and are considered multipotent cells. As a
result of their potential for multipotential differentiation, self-renewal, immune regulation, and other effects, BMSCs have
become an important source of seed cells for gene therapy, tissue engineering, cell replacement therapy, and
regenerative medicine. MicroRNA (miRNA) is a highly conserved type of endogenous non-protein-encoding RNA of
about 19-25 nucleotides in length, whose transcription process is independent of other genes. Generally, miRNA plays
roles in regulating cell proliferation, differentiation, apoptosis, and development by binding to the 3" untranslated region
of target mMRNAs, whereby they can degrade or induce translational silencing. Although miRNAs play a regulatory role in
various metabolic processes, they are not translated into proteins. Several studies have shown that miRNAs play an
important role in the osteogenic differentiation of BMSCs. Herein, we describe in-depth studies of roles for miRNAs during
the osteogenic differentiation of BMSCs, as they provide new theoretical and experimental rationales for bone tissue
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Background
Bone marrow mesenchymal stem cells (BMSCs), which
were first discovered in bone marrow by Friedenstein et al.
[1], can differentiate into aggregates similar to small-area
bone or cartilage. After years of research, it was found that
these cells can differentiate into osteoblasts, chondrocytes,
adipocytes, and even myoblasts; thus, they are considered
multi-potential cells. Indeed, as a result of their potential
for multi-directional differentiation, self-renewal, immune
regulation, and other effects, BMSCs have become an
important source of seed cells in gene therapy, tissue
engineering, cell replacement therapy, and regenerative
medicine.

MicroRNA (miRNA), a highly conserved type of en-
dogenous non-protein-encoding RNA about 19-25 nu-
cleotides (nt) in length [2], can degrade or induce
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translational silence by binding to the 3’-untranslated
region (3'-UTR) of target mRNAs, thus affecting cell
proliferation, differentiation, apoptosis, and ontogeny
[3]. Transcription of miRNAs involves a highly con-
served process that occurs independently of other genes.
Notably, although miRNAs have been implicated in
many metabolic processes, they are not translated into
proteins [4]. Several studies have shown that miRNAs
play an important role in the osteogenic differentiation
of BMSCs. We describe in-depth studies of roles for
miRNAs during osteogenic differentiation of BMSCs, as
they provide new theoretical and experimental bases for
bone tissue engineering and clinical treatment.

Generation and biological function of miRNAs

In 1993, Lee et al. [5] first discovered the presence of
small RNAs in Caenorhabditis elegans and observed that
they controlled biological processes such as the regula-
tion of gene expression [6—8]. Around the same time,
Wightman et al. reported the existence of small RNAs
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such as lin-4 [9]. Reinhart et al. found another small
RNA with post-transcriptional regulation in the C. ele-
gans: let-7 [10]. With deeper research, more than 1000
miRNAs have since been discovered, each of which reg-
ulates multiple mRNAs and is involved in the regulation
of biological processes [11].

The production of miRNAs is a very complex biological
process that includes two parts, nuclear synthesis and
cytoplasmic synthesis, and requires the participation of a
variety of enzymes. First, the gene encoding the miRNA is
transcribed into a pri-miRNA with special hairpin struc-
tures (AAAAA and 7MGpppG) by RNA polymerase II
within the nucleus. Next, pri-miRNAs are microcleaved
by the nuclease Drosha (ribonuclease III) and processed
into miRNA precursors of 70-80nt with a stem ring
structure, ie., pre-miRNAs. Exportin-5, a cytoplasmic
transporter, transports pre-miRNAs from the nucleus into
the cytoplasm with the assistance of Ran-GTP, and then
the pre-miRNA is cleaved by ribonuclease III (Dicerase)
into a duplex structure comprising an miRNA and
miRNA* of about 19-23 nt. A miRNA* is the non-miRNA
strand of a miRNA duplex generated by a Dicer-like en-
zyme from the miRNA stem-loop precursor; typically,
miRNA*s are degraded. miRNAs form mature miRNAs by
binding to argonaute proteins. Subsequently, the guide
strand miRNA participates in miRNA transcription, while
the passenger strand miRNA is degraded [12]. There are
two manners by which mature miRNAs can form an
RNA-induced silencing complex (RISC): (1) when the
miRNA and target gene are fully complementary, the
miRNA degrades the target gene; or (2) when the miRNA
and target gene are not fully complementary, the combin-
ation of miRNA and 3"UTR inhibits translation of the tar-
get gene [13]. miRNAs are involved in several
physiological processes, such as development, prolifera-
tion, differentiation, and apoptosis of normal cells, as well
as in the maintenance of cellular pluripotency [7, 14].

miRNAs in osteogenic differentiation of BMSCs

Osteoblasts, which are involved in bone formation, are
differentiated in vivo from BMSCs. Many studies have
shown that miRNAs play an important role in osteo-
genic differentiation of BMSCs, as abnormal miRNA ex-
pression had important influences on their osteogenic
differentiation [15, 16]. Oskowitz et al. [17] found that
after knocking out the mouse endonuclease Dicer, its
BMSC:s lost osteogenic differentiation. Dicer is an essen-
tial endonuclease for miRNA synthesis, indicating that
miRNAs are closely related to bone formation and
development [18]. Twenty-two differentially expressed
miRNAs were identified in bone marrow mesenchymal
stem cells (BMSCs) from patients with steroid-induced
femoral head necrosis, 17 were upregulated and five
were downregulated. During osteogenic differentiation
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of BMSCs, hsa-mir-601, hsa-mir-452-3p, hsa-mir-647,
hsa-mir-516b-5p, and hsa-mir-127-5p were significantly
downregulated, while hsa-mir-122-3p was significantly
upregulated, suggesting that different miRNAs promoted
or inhibited osteogenic differentiation [19]. miRNAs and
their identified target genes in the osteogenic differenti-
ation of BMSCs are summarized in Fig. 1.

Anti-osteogenic differentiation miRNAs

Tang et al. observed a time-dependent decrease in miR-124
expression during osteogenic differentiation of BMSCs,
while alkaline phosphatase (ALP) activity and expression of
osteocalcin (OCN), osterix (Sp7), and runt-related tran-
scription factor 2 (Runx2) were significantly increased.
miR-124 overexpression inhibited osteogenic differentiation
of BMSCs, and Sp7 was found to be a direct target [20].
miR-23a was significantly downregulated during osteogenic
differentiation of BMSCs on the surface of titanium nano-
structures, and its overexpression inhibited osteogenic dif-
ferentiation of BMSCs; it was revealed that CXC
chemokine ligand-12 (CXCL12) was a direct target of miR-
23a [21]. miR-23a-5p, another inhibitor, was also signifi-
cantly downregulated during the osteogenic differentiation
of BMSCs; however, upregulation of miR-23a-5p inhibited
osteogenic differentiation of hBMSCs by directly targeting
mitogen-activated protein kinase 13 (MAPK13) [22]. Simi-
larly, miR-23a was found to be significantly downregulated
during osteogenic differentiation of hBMSCs, and its over-
expression directly targeted low-density lipoprotein
receptor-associated protein 5 (LRP5) to inhibit osteogenic
differentiation of hBMSCs [23]. Tian et al. found that over-
expressed miR-23a bound to the 3'UTR of Runx2, which
reduced its expression level and inhibited osteogenic differ-
entiation of BMSCs. Notably, CXCL13 was found to at-
tenuate the interaction between miRNA-23a and Runx2-3’
UTR to promote osteogenic differentiation of BMSCs; thus,
it can be used as a novel factor to promote osteogenic dif-
ferentiation of BMSCs [24]. Deng et al. observed that miR-
23b overexpression significantly reduced Runx2 expression
levels during osteogenesis by directly binding to the 3’
UTR of Runx2 and participating in tumor necrosis
factor-a-mediated osteogenic induction of BMSCs.
Moreover, injection of Ad-Runx2 attenuated bone loss
caused by miR-23b, thus providing a new direction for
the treatment of osteoporosis [25].

Several studies have shown that miR-214 is signifi-
cantly downregulated during osteogenic induction. First,
overexpressed miR-214 was shown to bind to the 3'UTR
of bone morphogenetic protein 2 (BMP2) to inhibit its
expression; whereas, KCNQ1OT1 upregulated BMP2 ex-
pression by inhibiting miR-214 to promote osteogenic
differentiation of BMSCs [26]. Subsequently, Guo et al.
found that overexpression of miR-214 reduced ALP ac-
tivity and gene expression of OCN, type I collagen (Col



Wang et al. Stem Cell Research & Therapy (2019) 10:197

Page 3 of 8

OSTEOBLAST Undifferentiated BMSC OSTEOBLAST
E = — : \
miRNA Target miRNA Target
P =
miR-124 o miR-27a PPARy, GREMI
miR-23a CXCL12,LRPS, Runx2 3'UTR
miR-23a-5p  MAPK13 miR-21 P-Akt, HIF-la
miR-23b Runx2 3'UTR miR-217 DKKI1
iR.D MP2 3' 3F. - 2 o3
miR-214 BMP2 3'UTR, FGF, p-INK, p-p38 miR.26a Runx?, OC, GSK3 B
miR-214-5p  COL4Al
miR-144-3p  Smad4 miR-148a IGF1
miR-383 Satb2 miR-200b Cx43, VEGF-A
iR-96 Osterix
o St miR-335-5p DKKI
miR-183-5p Hmox1
miR-217 Runx 2 3'UTR miR-92a Smad6 3“UTR
miR-133a-3p MEG3 miR-9 Runx2. ERK
miR-10 Runx 2 3'UTR i ~ .
o miR-199b-5p GSK3p
miR-503-5p  Runx2. ALP
miR-205 SATB2. Runx2
miR-141
i SVCT2 3'UTR
miR-200a
miR-204 Runx2 3'UTR
miR-138 ALP. RUNX2
miR-338-3p  Runx2, Fgfr2
miR-31 Satb2
miR-138 FAK, ERK1/2, RUNX2
miR-27a Sp7
Fig. 1 Roles for different miRNAs in osteogenic differentiation of undifferentiated bone marrow mesenchymal stem cells (BMSC)

I), and osteopontin (OPN), thus inhibiting osteoblast dif-
ferentiation of BMSCs. miR-214 overexpression was also
shown to inhibit protein expression of fibroblast growth
factor (FGF), phosphorylated c-Jun N-terminal kinase
(p-JNK), and phosphorylated p38 mitogen-activated pro-
tein kinase (p-p38) in BMSCs, indicating that miR-214
inhibits osteogenic differentiation of BMSCs by inhibiting
JNK and p38 pathways [27]. A later study showed that
miR-214-5p inhibited expression of ALP, OCN, Runx2,
and collagen alpha-1 (I) chain (COL1A1) in BMSCs dur-
ing osteogenic differentiation, as well as transforming
growth factor-beta (TGF-B), phosphorylated Smad2 (p-
Smad2), and collagen IV alpha-1 chain (COL4A1) proteins
in BMSCs. Collectively, these results demonstrated that
miR-214-5p may attenuate the osteogenic differentiation
of BMSCs by regulating COL4A1 [28]. Moreover, the
regulation of TGF-B/Smad2/COL4Al signaling to
promote osteogenic differentiation of BMSCs is of great
significance for the development of new treatments for
postmenopausal osteoporosis.

Lu et al. reported that miR-144-3p inhibits osteogenic dif-
ferentiation of BMSCs by reducing Smad4 expression [29].
Recent studies found that miR-383 inhibits osteogenic dif-
ferentiation of rat BMSCs by targeting AT-rich sequence-
binding protein 2 (Satb2) [30]. Osterix, a zinc finger-
containing transcription factor that plays an important role

in osteogenic differentiation and bone formation [31], is
also a downstream factor of Runx2, which is a necessary
transcription factor for osteogenic differentiation, matrix
production, and mineralization during bone formation
[32]. Liu et al. observed that miR-96 is significantly upreg-
ulated in the serum of elderly patients with osteoporosis,
and its overexpression reduced osteogenic differentiation
of BMSCs by targeting osterix. Thus, inhibiting miRNA-
96 expression can increase osteogenic differentiation of
BMSCs, making miR-96 a potential diagnostic marker or
therapeutic target for age-related bone loss [33]. Studies
have shown that miR-183-5p reduces proliferation and
osteogenic differentiation of BMSCs by targeting heme
oxygenase-1 (Hmox1), which accelerates aging [34]. Zhu
et al. found that miR-217 targeting of the 3'UTR of Runx2
inhibited osteogenic differentiation of BMSCs through
extracellular signal-regulated kinase (ERK) and p38 signal-
ing pathways [35]. Upregulation of miR-133a-3p was
observed in individuals with postmenopausal osteoporosis,
in whom inhibition of miR-133a-3p was subsequently
shown to promote osteogenic differentiation of BMSCs
and improve symptoms [36]. miR-10 was also shown to
inhibit osteogenic differentiation of BMSCs by targeting
Runx2 and ERK pathways [37]. Liu et al. found that miR-
503-5p overexpression reduced protein expression levels
of Runx2 and ALP and inhibited osteogenic differentiation



Wang et al. Stem Cell Research & Therapy (2019) 10:197

of BMSCs [38]. A summary of how these pathways are in-
volved in the transition of BMSCs into osteocyte cells in
shown in Fig. 2.

Hu et al. found that miR-205 binds to Satb2 and Runx2
via ERK and p38 MAPK signaling pathways, whereby it
inhibits osteogenic differentiation of BMSCs [39]. Vitamin
C is an essential nutrient for bone marrow stromal cell
differentiation, collagen synthesis, and bone formation
[40-45]. Notably, vitamin C is highly water soluble, but
cannot enter the cell by simply diffusing through the lipid
bilayer of the plasma membrane; instead, its transport
must be mediated by a specific transporter. In BMSCs,
vitamin C is transported into cells via sodium-dependent
vitamin C transporter 2 (SVCT2) [46]. miR-141 and miR-
200a inhibit SVCT2 expression by targeting its 3'UTR,
thereby reducing osteogenic differentiation of BMSCs
[47]. Zhao et al. showed that overexpressed miR-204
directly bound to the 3'UTR of Runx2, which promoted
adipogenic differentiation and inhibited osteogenic differ-
entiation; in contrast, downregulation of miR-204
increased osteogenesis and weakened the adipogenicity of
BMSCs [48]. miR-138 was shown to inhibit osteogenic dif-
ferentiation of BMSCs by targeting ALP and RUNX2.
Moreover, delivery of anti-miR-138 to rats significantly en-
hanced the osteogenic capacity of BMSCs, indicating po-
tentially important clinical significance of anti-miRNA-
138 for repair and regeneration of bone defects [49]. Liu
et al. showed that overexpression of miR-338-3p can in-
hibit the expression of osterix by directly targeting Runx2
and Fgfr2, thereby reducing osteoblast differentiation of
BMSCs [50]. Deng et al. showed that overexpression of
miR-31 could inhibit osteogenic differentiation of BMSCs,
while downregulation of miR-31 significantly increased
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gene and protein expression levels of osteogenic-specific
genes in vitro. In addition, injection of anti-miR-31 into
rats enhanced the osteogenic differentiation potential and
bone-regenerative ability of BMSCs [51]. A subsequent
study confirmed that overexpression of miR-31 reduced
Satb2 protein expression levels, which attenuated osteo-
genic differentiation of BMSCs, while downregulation of
miR-31 promoted their osteogenic differentiation [52]. In
addition, overexpression of miR-138 targets FAK, ERK1/2,
and RUNX2 to inhibit osteogenic differentiation of BM
SCs [53], which was confirmed in a second study that
showed downregulation of miR-138 promotes mechanical
tension-induced osteogenesis of hBMSCs [54]. Gong et al.
found that overexpression of miR-27a significantly inhibited
expression of Sp7, a target gene of miR-27a, and attenuated
Satb2-induced osteogenic differentiation of BMSCs [55].
However, a later study found that upregulated miR-27a dir-
ectly targets peroxisome proliferator-activated receptor
gamma (PPARy) and gremlin 1 (GREM1), which inhibited
lipogenesis and promoted osteogenic differentiation of
BMSCs [56]. These results indicate that miR-27a can either
promote or inhibit osteogenic differentiation of BMSCs by
affecting different targets. miRNAs with anti-osteogenic
differentiation effects are summarized in Table 1.

Pro-osteogenic differentiation miRNAs

Although many miRNAs inhibit osteogenic differenti-
ation of BMSCs, exciting results from recent research
have revealed miRNAs that promote osteogenic differen-
tiation of BMSCs, including miR-21, miR-217, miR-26a,
miR-148a, miR-200b, miR-335-5p, miR-92a, miR-9, and
miR-199b-5p.

WNT

Fig. 2 Schematic representation of signaling pathways involved from bone mesenchymal stem cell to osteocyte cell
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Table 1 Anti-osteogenic differentiation miRNAs

mMiRNAs Target gene/target protein Expression level References
miR-124 Sp7 1 [20]
miR-23a CXCL12, LRP5, Runx2 3'UTR 1 [21, 23, 24]
miR-23a-5p MAPK13 ) [22]
miR-23b Runx2 3'UTR il [25]
miR-214 BMP2 3'UTR, FGF, p-JNK, p-p38 1 126, 27]
miR-214-5p COL4A1 1 [28]
miR-144-3p Smad4 1 [29]
miR-383 Satb?2 1 [30]
miR-96 Osterix 1 [33]
miR-183-5p Hmox 1 1 [34]
miR-217 Runx 2 3'UTR 1 [35]
miR-133a-3p MEG3 il [36]
miR-10 Runx 2 3'UTR 1 [37]
miR-503-5p Runx2, ALP i [38]
miR-205 SATB2, Runx2 1 [39]
miR-141, miR-200a SVCT2 3'UTR T [47]
miR-204 Runx2 3'UTR il [48]
miR-138 ALP, RUNX2 ) [49]
miR-338-3p Runx2, Fgfr2 I [50]
miR-31 Satb2 1 [52]
miR-138 FAK, ERK1/2, RUNX2 1 [53]
miR-27a Sp7 1 [55]

Yang et al. showed that miR-21 promoted migration and
osteogenic differentiation of BMSCs in vitro, as well as
their osteogenic capacity, by increasing p-Akt and activat-
ing HIF-la. Moreover, this study confirmed that the
BMSC/B-tricalcium phosphate (B-TCP) complex modified
by miRNA-21 had a significant osteogenic effect in repair-
ing critical size defects [57]. Another study found that
miR-21 was downregulated in bone tissue and serum of
patients with osteoporosis. Expression of mineralized nod-
ules and osteogenic genes was significantly increased in
SD rats transfected with miR-21 analogues, indicating that
miR-21 could promote osteogenic differentiation of
BMSCs and, thus, providing a theoretical basis for the
development of anti-osteoporosis drugs [58]. Dickkopf-1
(DKK1) is a 29-kDa glycoprotein that plays an important
role in maintaining bone metabolism and homeostasis.
Abnormal expression of DKKI1 is associated with a variety
of bone-related diseases, while its inhibition promotes
osteoblast differentiation and bone healing [59, 60]. Dai et
al. showed that miR-217 promotes nuclear translocation
of B-catenin by targeting DKK1, which increases the ex-
pression of RUNX2 and COL1A1 to significantly promote
proliferation and osteogenic differentiation of BMSCs
[61]. This study provides a new approach to the treatment
of steroid-associated osteonecrosis.

Repair of bone defects continues to be a major chal-
lenge for clinicians because it is difficult to restore bone
function and regenerate bone loss. Implantation of
BMSCs transfected with miR-26a and f-tricalcium phos-
phate biomaterials into the defect area of a mouse skull
defect model increased bone regeneration and new bone
volume, as well as gene and protein expression levels of
Runx2 and OCN [62]. Studies have shown that miR-26a
targets glycogen synthase kinase three beta (GSK3p) to
activate Wnt signaling and promote osteogenic differen-
tiation of BMSCs [63]. Liu et al. found that low expres-
sion of miR-148a induces osteogenic differentiation of
rat BMSCs by targeting insulin-like growth factor 1
(IGF1), and promotes fracture healing [64]. Subse-
quently, it was observed that rat BMSCs and human
umbilical vein endothelial cells (HUVECS) are function-
ally connected by connexin 43 (Cx43), and miR-200b
can be transferred from BMSCs to HUVECs via Cx43 to
regulate osteogenesis and angiogenesis. Moreover, low
expression of miR-200b inhibited VEGF-A expression,
promoted osteogenic differentiation of BMSCs, and
facilitated bone regeneration [65]. Zhang et al. found
that overexpression of miR-335-5p induced osteogenic
differentiation and bone formation of mouse BMSCs by
targeting DKK1, and the resulting modified BMSCs have
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potential clinical therapeutic value for craniofacial bone
regeneration [66]. Another study confirmed that a miR-
335-5p lipidoid-miRNA preparation (LMF-335) success-
fully delivered miR-335-5p into cells and promoted in
vitro osteogenesis and in vivo skull bone healing, indi-
cating that lipid-like miRNA delivery can be used to in-
duce osteogenic differentiation of and bone regeneration
by BMSCs [67]. Yan et al. reported that miR-92a tar-
geted the 3'-UTR of Smad6 to inhibit Smad6-mediated
Runx2 degradation and promote osteogenic differenti-
ation of BMSCs [68]. A later study reported upregulation
of miR-9 during osteogenic differentiation of BMSCs, as
well as enhancement of their osteogenic capacity by its
overexpression, and promotion of osteogenic differenti-
ation through actions on Runx2 and ERK pathways [37].
Similarly, Zhao et al. showed that miR-199b-5p was sig-
nificantly upregulated during osteogenesis, while its
overexpression promoted osteoblast differentiation
BMSCs through the GSK3p/p-catenin signaling pathway
[69]. miRNAs with pro-osteogenic effects are summa-
rized in Table 2.

Conclusion

Bone marrow mesenchymal stem cells (BMSCs) are an
important source of osteogenic seed cells in tissue en-
gineering, and have good prospects for applications in
the field of bone defect repair and regeneration. miRNAs
play a key role in osteogenic differentiation of BMSCs,
but their specific mechanisms of action are not fully
understood. Indeed, as different miRNAs promote or in-
hibit osteogenic differentiation of BMSCs by affecting
different targets, further study of the functional specifi-
city of miRNA target genes and interactions between
miRNAs is of great significance to elucidate their mech-
anisms of action. Gene therapy targeting miRNA target
genes will benefit patients as research progresses. More-
over, with continuous development of biomedicine, mo-
lecular mechanisms underlying osteoblastic
differentiation of BMSCs will be increasingly clarified,

Table 2 Pro-osteogenic differentiation miRNAs

miRNAs Target gene/target protein  Expression level References
miR-27a PPARY, GREM1 il [56]
miR-21 P-Akt, HIF-1a i [57]
miR-217 DKK1 1 [61]
miR-26a Runx2, OC, GSK3p3 1 (62, 63]
miR-148a IGF1 ! [64]
miR-200b Cx43, VEGF-A ! [65]
miR-335-5p  DKK1 T [66]
miR-92a Smadé 3-UTR 1 [68]
miR-9 Runx2, ERK ) [37]
miR-199b-5p  GSK3B T [69]
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thus providing new theoretical and experimental ratio-
nales for bone tissue engineering and clinical treatment.
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