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Abstract

The skin has important barrier, sensory, and immune functions, contributing to the health and integrity of the
organism. Extensive skin injuries that threaten the entire organism require immediate and effective treatment.
Wound healing is a natural response, but in severe conditions, such as burns and diabetes, this process is
insufficient to achieve effective treatment. Epidermal stem cells (EPSCs) are a multipotent cell type and are
committed to the formation and differentiation of the functional epidermis. As the contributions of EPSCs in
wound healing and tissue regeneration have been increasingly attracting the attention of researchers, a rising
number of therapies based on EPSCs are currently under development. In this paper, we review the characteristics
of EPSCs and the mechanisms underlying their functions during wound healing. Applications of EPSCs are also

discussed to determine the potential and feasibility of using EPSCs clinically in wound healing.
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Introduction

As the largest organ and first barrier in the body, the skin
has multiple important functions, such as preventing
pathogens and dehydration, regulating body temperature,
and supplying sensation. The skin is also an active
immune organ, hosting cellular elements of the innate
and adaptive immune systems [1]. Skin wound healing is a
highly organized process that leads to the restoration of
tissue integrity and functions. Aberrations of wound heal-
ing consume substantial resources and often require long-
term medical management [2]. Serious and widespread
skin damage, such as burn injury, threatens the entire
organism and impairs the capacity for skin regeneration.
Moreover, with the increased prevalence of such diseases
as diabetes, vascular disease, and obesity, chronic wounds
are becoming a major global issue with limited treatment
strategies, unsatisfactory therapeutic effects, and signi-
ficant medical costs [3].
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The skin exhibits tremendous regenerative potential
because different types of stem cells (SCs) are located in
the skin and its appendages; these SCs maintain skin
homeostasis and regulate skin damage under physiological
conditions. Among these SCs, epidermal stem cells
(EPSCs) are of particular interest because they are
numerous and accessible. In addition, EPSCs are easy
to obtain without potential ethical and political issues
compared to embryonic stem cells, which are similar
to adipose-derived stem cells, a cell type that has been
widely used in regenerative medicine and clinical studies
[4]. EPSCs have been studied for possible regenerative
approaches since the 1970s to overcome the limitations of
conventional therapeutic strategies. Several approaches
based on EPSCs have been demonstrated that can pro-
mote wound healing or replace irreversibly lost skin, and
some of them have advanced into clinical applications [5].

In this review, we aim primarily to outline the popula-
tions of EPSCs and their characteristics. In the following
sections, we present the important roles of EPSCs during
wound healing and discuss the associated mechanisms
that regulate their activities. We finally focus on the
relevance of EPSCs in the context of wound healing and
epithelial damage in other organs and discuss the poten-
tial clinical applications of these cells.
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Populations of EPSCs

The epidermis is composed of the interfollicular epidermis
(IFE) to the infundibulum and contains appendages inclu-
ding hair follicles (HFs), sebaceous glands (SGs), and sweat
glands [6]. Each compartment has its own specialized SCs
capable of maintaining tissue growth independently [7, 8].
The specific microenvironment in which EPSCs reside is
named a niche, which is composed of various cell types
and is important for modulating SC activity by cell contact,
extracellular matrix (ECM) components, and growth
factors [9, 10]. Three distinct EPSC niches, including the
basal layer of the epidermis, the bulge region of the HF
(distinct region in mice but not in humans), and the base
of the SG shaft, were identified in the skin [10-12].

The EPSCs that are located in different niches have their
own markers and functions (Fig. 1). IFESCs are located in
the basal layer of the IFE and give rise to suprabasal,
differentiated cells. IFESCs express high levels of 1 and
a6 integrins, Leu-rich repeats and immunoglobulin-like
domains (LRIG)1, and melanoma-associated chondroitin
sulfate proteoglycan [13—15]. These cells can also be
traced using K14-CreER or Inv-CreER mouse strains
induced at low dose [16, 17]. IFESCs not only replenish
the basal layer but also give rise to nonproliferative, tran-
scriptionally active spinous and granular layers and, finally,
the outer layers of terminally differentiated stratum
corneum [13, 18]. HFSCs reside in the permanent noncy-
clic follicle portion named the bulge [19] and possess
specific bulge markers, such as CD34 [19], keratin (KRT)
15/19 [20, 21], leucine-rich-repeat-containing G protein-
coupled receptor (LGR)5 [22], SRY-box (SOX)9 [23], and
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transcription factor (TCF)3 [24]. HFSCs, the first identi-
fied EPSCs based on their slow cycling properties [25, 26],
are reported to have higher clonogenicity and give rise to
IFE, HE, and SG lineages upon transplantation [19, 27].
However, in marked contrast to transplantation experi-
ments, lineage tracing studies have shown that HFSCs
only contribute to HF regeneration and do not sustain the
IFE, SG, or infundibulum [23, 24]. In addition to IFESCs
and HFSCs, some other EPSC populations are located in
different skin appendages. For example, infundibulum SCs
expressing LRIG1 are located in the upper part of the
isthmus [28, 29]. SG duct SCs are located at the entrance
of the gland and express GATA-binding protein (GATA)6
[29]. Basal cells, including isthmus and SG SCs, are
located at the junction between the HFs and the gland;
express LRIG1, LGR6, and PR/SET domain (PRDM)1;
and give rise to the entire SG and isthmus [30]. All of the
pools of EPSCs contribute to epidermal homeostasis and
wound healing.

Characteristics of EPSCs

EPSC plasticity

Individual EPSC populations exhibit considerable differen-
tiation potential, which is defined as plasticity [31]. When
IFESCs and HFSCs are recruited to the IFE after injury,
they progressively lose their initial identities and differen-
tiate into the IFE fate [32]. Studies have indicated that
long-lived IFESCs are recruited to the wound area and
promote re-epithelialization after injury, while short-lived
involucrin+ IFESCs also migrate to wound sites. Most
involucrin+-derived progeny terminally differentiate
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within a month [13], suggesting that lineage reversion is
not sustained for an extended period. The transient nature
of lineage reversion observed in IFE contrasts with find-
ings made in the esophagus, where progenitors change
their mode of proliferation in repairing incisional wounds
[33]. Apart from IFESCs, HESCs also exhibit plasticity in
response to damage. SCs in the bulge and infundibulum
migrate upward, proliferate, and participate in the epider-
mal repair process [34]. The migrating HFSCs progres-
sively lose their initial identities and adopt an IFE
differentiation program. However, these cells do not
persist for extended periods within IFE [34].

Differentiated suprabasal epidermal cells can revert
back to SCs upon wounding [35, 36]. A population of
GATAG6-positive cells that reside in the isthmus give rise
to the sebaceous duct in the steady-state condition.
During wound healing, these cells are mobilized, migrate
to the injured IFE, and revert from a differentiated fate
to a basal SC fate and acquire SC properties [29]. The
phenomenon of dedifferentiation has also been observed
in HFs. After depilation or targeted ablation to induce
the loss of bulge HFSCs, differentiated hair germ cells,
infundibulum, or SG cells can repopulate the SC niche
and establish functional HFSCs [37, 38].

EPSC self-renewal, dynamics, proliferation, and migration
SCs can produce differentiated cells, but they also pro-
pagate to maintain a constant pool of SCs by dividing
symmetrically or asymmetrically [39]. During embryo
development, most basal cell divisions are symmetric
(an SC gives rise to two identical daughter cells, exhi-
biting either a differentiated or a somewhat differentiated
phenotype) and parallel to the axis of the basal membrane,
enabling the growth of the embryo surface and ensuring
that the epithelium remains as a single layer. In contrast,
during stratification of the epithelium, which occurs in
homeostasis in adulthood, ~70% of divisions are asym-
metric (a daughter cell, on losing contact with integrins
and growth factor secreted by the basal membrane, under-
goes differentiation, and the second daughter cell, on
remaining in contact with the basal membrane, maintains
the characteristics of the SC) [40], thereby allowing de-
velopment of suprabasal cells and establishment of the
epidermis [17, 41]. However, during wound healing, cell
numbers need to increase to compensate for the injured
and lost cells. Excess renewal over differentiation can be
achieved by enhancing symmetric renewal or decreasing
the proportion of cells that undergo differentiation [42].
Increased keratinocyte proliferation can be observed
during wound healing [43]. However, cell proliferation
can only be detected in a proliferative zone (0.5-1.5 mm
away from the edge), not at the wound edge, where cells
located in basal and suprabasal layers migrate as a cellu-
lar sheet [44, 45]. Cells that are closer to the leading
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edge have the greatest migration speed, and the speed
decreases thereafter. Both proliferation and migration
co-occur at a distance of 0.5 mm from the wound edge,
where basal cells are elongated toward the wound and
orient their division in this direction [45]. At present, it
is still unknown whether cell proliferation is essential for
migration. Studies using mouse tail skin have suggested
that inhibition of cell proliferation prevents wound c-
losure and cell compression at the leading edge [44].
However, cells became more elongated upon inhibition
of proliferation, suggesting an important compensatory
phenomenon [45]. Therefore, cell migration at the lead-
ing edge comes first, and the displacement of the cell
gives rise to the oriented division of the cells following
behind. Enhanced proliferation can generate a surplus of
migrating cells that later push the leading edge toward
the wound center [16]. Additionally, keratinocytes that
acquire migratory phenotypes inhibit characteristics of
epithelial-to-mesenchymal transition (EMT), such as
decreased expression of cell adhesion molecules, en-
hanced motility, and increased expression of EMT
markers [46, 47], which are essential to wound healing.

Role of EPSCs in cutaneous wound healing

Events in normal cutaneous wound healing

Skin wound healing is imperative to restore skin defects
and to regain lost integrity, tensile strength, and barrier
function [48]. Wound healing is a multifaceted and highly
regulated process that endows various cell types with
essential functions; this process is commonly divided into
four successive but overlapping phases [49, 50].

Hemostasis

Upon injury, platelets are exposed to the ECM proteins,
leading to instant coagulation and fibrin clot formation,
which functions as a provisional wound matrix. In
addition, platelets also activate the following inflamma-
tion phase through secreting growth factors [51]. In
addition, the proteins that fill the blood clot, such as
thrombospondin, vitronectin, and fibronectin, facilitate
the migration of wound-healing-related cells, including
keratinocytes, blood cells, and endothelial cells [52].

Inflammation

Neutrophils, the first cells that arrive at the wound site,
clear debris and bacteria, secrete cytokines [e.g., inter-
leukin (IL)-1a, IL-1B, and tumor necrosis factor (TNF)-
a)] to attract and activate other cells, and amplify the
inflammatory cascade [53—55]. Macrophages then migrate
to the wound, clean up pathogens, and promote keratino-
cyte migration and ECM synthesis by secreting cytokines
and growth factors, such as transforming growth factor
(TGF)-a, TGE-B, fibroblast growth factors (FGFs), and
platelet-derived growth factor (PDGF) [49].
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Proliferation

The subsequent proliferative phase is characterized by
granulation tissue formation, which replaces the original
coagulation and fibrin clot and provides a wound bed for
re-epithelialization. In this stage, bidirectional interactions
between keratinocytes and fibroblasts are essential, and a
paracrine signaling loop exists between them, which
promotes keratinocyte proliferation and the fibroblast
secretion of cytokines and growth factors important in
wound healing [50, 56].

Tissue remodeling

In the last phase of wound healing, fibroblasts differenti-
ate into myofibroblasts stimulated by TGF-B1 and other
growth factors, promoting wound contraction and
resulting in a reduction in the size of the wound area
[57]. The granulation tissue degrades, which makes the
mature wound tissue avascular and acellular, which is
also known as scar formation [52].

Function of EPSCs in cutaneous wound healing

Robust activation of EPSCs and efficient recruitment of
their progeny toward an epidermal lineage are critical
for re-epithelialization [58], a stage that is also called the
re-establishment of an intact keratinocyte layer during
wound healing [52].

Under homeostatic conditions, the major epidermal
compartments are rejuvenated by differentiation of their
own SCs. IFE and SGs undergo constant self-renewal,
whereas HFs undergo cycles of phases, including resting,
growth, and involution. Each discrete SC niche behaves
unipotently, replenishing its own compartment [14, 19,
59]. However, during wound healing, SCs have acquired
the ability to repair neighboring compartments, and
these compartments are capable of repopulating one
another [60]. The manner in which SCs respond to
injury varies drastically, depending not only on the
specific niches where these reside but also on how close
they are to the wound [61].

During wound healing, EPSCs are activated and
recruited from different skin regions when spatial con-
finement and lineage restriction of resident skin SCs are
transiently lost, allowing them to contribute to multiple
EPSCs [13]. When HFSCs migrate toward the epidermis,
they lose their specific markers and adopt a phenotype
similar to that of IFESCs. However, once in the epidermis,
these cells are short-lived and disappear soon after
the damaged tissue is repaired [13]. Studies have
shown that HFSCs temporarily contribute to wound
re-epithelialization soon after damage but disappear
several weeks later, suggesting that HFSCs serve as a
transient bandage that allows other SCs from the IFE and
upper isthmus/infundibulum to maintain long-term repair
[62]. The role of HFSCs was further defined by other
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researchers, who indicated a delay in the early stage of re-
epithelialization when incisional wounds were created in
HF-deficient mice, presumably through recruitment of
IFESCs and indicating their capability for tissue regener-
ation [63]. In addition, glabrous skin, such as the ventral
part of the paw, heals properly with slower kinetics than
human skin does, suggesting that HFSCs are dispensable
for wound healing [64]. These studies suggest that the
injury-induced vacant niches activate a broad range of
SCs to assume characteristics that differ from their
homeostatic roles.

Regeneration of SGs and sweat glands

The SGs are an important structure in the epidermis,
which is closely associated with the hair follicle, and they
constitute what is known as the pilosebaceous unit.
Lineage tracing reveals that different follicle stem cell
populations located above the bulge, including LGR6+
cells, KRT15+ cells, and junctional zone stem cells, may
give rise to the entire SGs structures [65]. This popu-
lation is also multipotent and can replace HF and IF
epidermis [65]. Other studies indicate that cells expres-
sing Blimpl can give rise to terminally differentiated
sebocytes though transient amplifying progenitors [30].
Unlike LGR6/KRT15+ cells, Blimpl+ cells do not con-
tribute progeny toward HF or IF epidermis. As a tran-
scriptional repressor, Blimp1 inhibits the transcription of
c-Myc, limiting the input of proliferative progenitors
toward the gland from the multipotent stem cell popula-
tions of the isthmus and bulge [66, 67]. The negative
control role of Blimpl on gland growth was confirmed
upon epithelial Blimpl suppression, which resulted in
SG hypertrophy and an oily hair coat phenotype [30].
Unlike the hair follicle and SGs, the sweat glands are
relatively quiescent, and few studies have investigated
their regenerative potential until recently [21]. Sweat
glands are a secretory type of ectodermal appendage and
consist of the secretory glandular portion and the duct
connected to the skin surface. Transgenic lineage tracing
studies suggest the existence of basal myoepithelial and
suprabasal luminal progenitor cell populations, which
comprise the glandular portion of the sweat gland and
can regenerate their own lineage [21]. Glandular cells do
not contribute progeny toward the duct which, in turn,
is maintained by its own basal unipotent progenitors.
The ductal cells but not the glandular cells become acti-
vated upon skin injury and contribute to restoring ductal
openings [21]. Ductal cells not only regenerate the duct
itself but also regenerate glabrous epidermis surrounding
the sweat gland opening. A study using 3D reconstruc-
tion technology showed that ductal progenitors contri-
bute to the regeneration of human IFE, at least
matching that from hair follicles [68]. In this respect,
ductal progenitors share characteristics with hair follicle
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isthmus stem cells, which can generate permanent epi-
dermal progeny upon skin injury [69].

Mechanism to regulate EPSC function during
cutaneous wound healing

Signaling pathway

The behavior of EPSCs is directed at multiple levels in
response to activating and inhibiting signals. Signaling
pathways, such as the Wnt/B-catenin, Sonic hedgehog,
Notch, and TGF-B/BMP pathways, as well as Nanog,
MAPK, and c-Myc, are involved in the regulation of cell
function [70]. In the mediation of self-renewal and dif-
ferentiation of EPSCs, Wnt signaling is either [-catenin
dependent (B-catenin interacts with other transcription
pathways, including Sox family members and forkhead
box O) or B-catenin independent [71] (Fig. 2). The ca-
nonical Wnt pathway functions by inhibiting glycogen
synthase kinase 3, leading to accumulation of unpho-
sphorylated catenin, which then acts as a nuclear cofac-
tor for the lymphoid enhancer binding factor 1/TCF
family of DNA-binding proteins [72]. Wnt can promote
the accumulation of key microtubule-binding proteins
that stabilize microtubules at the wound edge in an ac-
tive state to promote wound repair [73]. The small
GTPase and actin regulator Rac family small GTPase 1
also participate in the solidification of the cytoskeleton
in cell migration and wound healing [45].

Our research group has also studied the signaling path-
ways that regulate the function of EPSCs during wound
healing. By using gain-of-function technology, we found
that activation or inhibition of Wnt and Notch signaling
can affect proliferation of EPSCs, differentiation and mi-
gration of keratinocytes, and HF regeneration by targeting
MYC proto-oncogene, bHLH transcription factor (c-Myc),
and Hes1, which ultimately lead to enhanced or delayed
wound healing. We also found that the interaction
between the Wnt and Notch pathways might play a vital
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role in the regulation of wound healing, and jagged1l may
be the key mediator in this crosstalk (Fig. 3) [74].

In addition to multiple signaling pathways that affect
EPSCs, factors that trigger coordinated SC fate switching
toward epidermal lineage at the onset of wound healing
have also been discovered. LIM homeobox (LHX2), Lim-
homeodomain transcription factor, which is expressed in
bulge SCs and secondary hair germ progenitors, plays a key
role in directing follicular SCs toward re-epithelialization
[75]. Persistent LHX2 signaling activation in EPSCs is
necessary for epidermal fate switching, a process that
involves upregulation of SOX9 and TCF4, which func-
tion as positive mediators of wound re-epithelialization
[76]. Studies from our research group have demonstrated
that caveolin-1 plays a critical role in the regulation of
EPSC proliferation. Overexpression of caveolin-1 in EPSCs
promotes re-epithelialization in wounds, enhances cellu-
larity, and increases vasculature and wound scores, indi-
cating that modification of such genes as caveolin-1 may
be an effective approach for promoting EPSC-based
therapy in wound healing [77].

Role of EPSC biomarkers

Integrins

Integrins are transmembrane adhesion proteins that are
involved in ECM assembly, apoptosis, TGF- signaling,
and cytoskeleton organization during wound healing [78].
B1-Integrins are necessary for re-epithelialization because
B1-integrin null mice show decreased migration and ex-
cessive hyperproliferation of EPSCs [78]. In addition,
B3-integrins were also found to increase cell differen-
tiation by knockdown of miR-378a [79]. Inappropriate
ECM composition and mechanics are involved in the
pathology of non-healing wounds. Integrins a6p4 and
a5B1 cluster at the leading edge of the epidermal cells,
where they polarize cell shape and cytoskeletal move-
ments that are needed for cell migration and fibronec-
tin assembly [44].
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Fig. 2 Schematic of the canonical Wnt signaling pathway. In the absence of Wnt signaling (left), 3-catenin binds to axin, APC, and GSK3-3 and
becomes phosphorylated and targeted for degradation. 3-Catenin also exists in a cadherin-bound form and regulates cell-cell adhesion. In the
presence of Wnt signaling (right), B-catenin is uncoupled from the degradation complex and translocates to the nucleus, where it binds transcription
factors, thereby activating target genes
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Cadherins and catenins

Cadherins are Ca**-dependent transmembrane glycopro-
teins that are connected to cytoplasmic 3-catenin coupled
to a-catenin molecules, and the cadherin—catenin—actin
complexes ensure mechanical adhesion of epithelial cells
[80]. During wound repair, E-cadherin expression is
reduced and alters cell adhesion, promoting cell migra-
tion. However, overexpression of E-cadherin makes cells
become more tightly packed, thereby preventing cell mi-
gration and consequently re-epithelialization [81]. While
cadherins are important in the formation of extracellular
connections, catenin proteins form a bridge between
transmembrane cadherin and intracellular actin filaments.
[-Catenin is a key mediator of the Wnt signaling pathway,
which can activate HFSC activity and promote regene-
ration of HF during re-epithelialization [55]. Conversely, it
was found that -catenin and c-myc activation inhibits the
migration and differentiation of epidermal cells, leading to
the development of chronic wounds [82].

Keratins and p63

As an intermediate filament, keratin is important in
the durability of the cytoskeleton in epidermal cells.
The expression of keratin isotypes 6, 16, and 17 is
increased, and the expression of keratin isotypes 1
and 10 is reduced, around epidermal wound sites;
these isotypes are essential for wound healing [83].
p63 can regulate the differentiation and proliferation
of EPSCs and is involved in wound healing [84].
Phosphorylated p63 levels in the wound area are in-
creased, indicating that EPSCs have differentiated into

various progenitors, accompanied by re-epithelialization
of the skin tissue [84].

Epigenetic regulation

DNA methylation

During wound healing, DNA methylation occurs specifi-
cally in regulatory regions of developmental genes. It has
been shown that DNA methyltransferase (DNMT)1 is
expressed in the HFs and the basal layer of the epidermis,
and its expression rapidly decreases on differentiation
[85]. Ablation of DNMT1 from mouse epidermis results
in sebaceous hyperplasia, thickened epidermis, and up-
regulation of some differentiation markers [86]. Animals
lacking DNMTT1 in the epidermis display premature and
progressive alopecia during aging as a result of reduced
proliferation and increased apoptosis in the HFSCs [86].
Concordantly, depletion of ubiquitin-like with PHD and
ring finger (UHRF)1, a protein that is expressed in un-
differentiated basal cells and aids DNMT1 in hemimethy-
lated DNA, also leads to upregulation of differentiation
genes and decreased proliferation [72]. The activity of
DNMT1/UHRF1 in EPSCs is essential to maintain the
balance between preventing excessive differentiation and
allowing SC proliferation by repressing genes that block
cell-cycle progression [87].

Chromatin modification

The differential outcomes of EPSCs during wound healing
are regulated by epigenetic mechanisms. Histone deacety-
lases (HDACs) and histone methyltransferases (HMTs) are
important in epidermal and hair follicular development.
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The absence of specific HMTs, such as enhancer of zeste 1
(Ezhl1) and enhancer of zeste 2 (Ezh2), blocks hair follicular
morphogenesis and delays wound healing [88]. Epigenetics
influences wound healing in all four phases by regulating
the repair machinery at transcriptional and posttrans-
lational levels [89]. The epigenetic events that influence
early healing stages are decreased global methylation
through reduction of histone H3 lysine 27 (H3K27) tri-
methylation, downregulation of the polycomb group,
and upregulation of histone demethylases [90]. Decreased
H3K27 trimethylation enhances the inflammatory process
by promoting IL-12 expression, which can be observed in
chronic wounds, such as diabetic wounds [91]. During
chronic wound healing, increased sirtuin levels and
decreased class I HDAC levels enhance the expression of
a-tubulin associated with increased H3K9 levels [92]. The
epigenetic combinations enhance the proliferation and
differentiation of epidermal cells, fostering wound re-
pair that is NO dependent [93]. Alternatively, increases
in histone acetyltransferases, such as P300/CBP-asso-
ciated factor, promote wound healing through processes
independent of NO [93].

miRNAs

miRNAs are small, noncoding RNAs that regulate gene
expression posttranscriptionally, which play key roles in
epidermal development and skin SC maintenance [94, 95].
miR-203 plays a significant role in skin morphogenesis
and EPSC differentiation and inhibits “stemness” by in-
hibiting the expression of p63 [96]. Our research group
has found that pre-miR-203 treatment increases EPSC dif-
ferentiation to myofibroblasts, as indicated by decreased
K15 expression and increased myofibroblast biomarkers.
This phenomenon is reversed by overexpression of the
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hes family bHLH transcription factor (Hesl) in EPSCs. In
addition, skin incision increases the expression of miR-
203, and local treatment with miR-203 inhibitor acce-
lerates wound healing and reduces scar formation by
increasing Hesl expression [97]. The importance of
miR-125b in the regulation of EPSCs has also been
demonstrated [98]. miR-125b expression is increased in
the “stem” state but reduced in early skin SC progeny.
Overexpression of miR-125b inhibits EPSC proliferation,
while knockdown induces proliferation and delays dif-
ferentiation via fibroblast growth factor receptor 2 regu-
lation. In addition, miR-184 has been shown to induce
Notch activation and epidermal differentiation. miR-184
regulates the transition of EPSCs from proliferation to
early differentiation, while misexpression or mutation in
miR-184 results in impaired skin homeostasis [99].

Applications of EPSCs

Serious damage that exceeds the regenerative capacity of
the skin threatens the entire organism and requires effect-
ive treatment methods. Treatment of wounds must be
long-lasting, requires specific medical skills, and consti-
tutes a major challenge. EPSCs are considered a conve-
nient target for use in wound management because their
advantages include accessibility, simple isolation, and skin
regenerative capacity. The cells have been of interest for
wound healing since the 1970s. A number of therapeutic
strategies have already been developed, and some of them
have advanced into the clinical arena (Fig. 4) [100].

Application of EPSCs in wound management
Cells isolated from skin biopsies are propagated and
cultivated on biomaterials, which are called cultured

Clinical use . .Clmical studies

Animal studies
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Yang X., et al.
(2007}

Fig. 4 Potential uses of EPCs in the treatment of skin wounds and regeneration of other epithelia in the body
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epidermal autografts (CEAs). CEAs are derived from
unpurified epidermal cell cultures that are thought to con-
tain EPSCs, which were first used in wound treatment in
1981 and have been available commercially since 1988.
Enrichment with EPSCs within CEA has been used to
treat serious wounds [101, 102]. Compared with conven-
tional skin autografts, CEAs do not require a second skin
injury, which itself can be prone to such complications as
pain, infection, delayed healing, and scar formation [103].
Thus, the scalp is an ideal skin source, as it contains abun-
dant HFs, which can lead to better epithelialization. A
commercially available autologous product generated
from HFSCs, known as EpiDex®, has been applied clinic-
ally since 2004, which is ideally suited for chronic wounds
exhibiting granulation but not for re-epithelialization.
Long-term clinical trials have reported that EpiDex can
induce complete wound healing within a 9-month surveil-
lance period [104]. Studies have shown that when EPSCs
are cultivated in fibrinogen-derived fibrin glue, wounds
that are treated with this system heal with minimal con-
traction and maintain excellent tissue flexibility. There-
fore, this approach is feasible for wounds under intensive
or complex mechanical stresses, such as the fingers, toes,
and eyelids [105]. In addition, EPSCs cultured in the
fibrinogen matrix can form a stable cell layer, which is
easy to operate during transplantation and displays ad-
hesion to the wound surface. The combination of EPSCs
with allografts is also possible, as the top silicon layer of
alloderm can be removed and replaced by a CEA [102].
Another approach is the preparation of suspensions of
autologous EPSCs, which can be directly sprayed onto the
wounds [103]. These cells are suitable for superficial
wounds of small to moderate size, and they can signifi-
cantly improve wound healing and reduce scar formation.
However, this procedure is not ideally suited for large or
deep wounds. Additionally, subcutaneous injection of allo-
geneic EPSCs has also been used by our research group,
which can shorten the wound healing period [106].

Aside from the traditional approach of administering
living SCs directly to wounds, which has been reported
to have many limitations, including low cell survival,
high cell attrition rate, difficulties in tissue targeting, and
additional tissue damage, new trends have emerged in
recent years [107]. Since SCs have strong paracrine
capacities and secrete many factors into the medium,
such as cytokines, chemokines, growth factors, and other
bioactive proteins that are well-known as enhancing
factors in wound healing, application of the conditioned
(culture) medium (CM) from SCs has been confirmed to
facilitate tissue regeneration process [108]. In addition,
the extracellular vesicles (EVs), such as exosomes, can
be isolated from cultured supernatants of many SC types
and exhibit promise as novel therapies against delayed
wound healing [109]. Studies have shown that SC-
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derived exosomes can promote cell migration, angiogen-
esis, proliferation, and re-epithelialization by activating
some signaling pathways, such as STAT3, AKT, ERK, and
the Wnt/B-catenin pathway, resulting in the upregulated
expression of many growth factors [110]. Furthermore, in
vivo studies have also demonstrated that exosomes
derived from SCs not only can accelerate wound closure
and angiogenesis but are also essential for skin rejuven-
ation and show potential applications in the field of skin
regeneration and cosmetics [111].

Use of EPSCs in skin wound repair

Burn wounds

In extensive burns, less skin is available for split-skin
grafts, and skin substitutes are used. Commercial skin
substitutes consist of a matrix component used with or
without cells. The impermanent nature and simplistic
matrix architecture that lacks appropriate mechanical
properties are limitations of skin substitutes [112, 113].
Meanwhile, the failure of CEA engraftment is associated
with low EPSC content. Thus, transplants of skin substi-
tutes and CEAs can be improved by enrichment of
EPSCs, which can form an ideal self-renewing epidermis
and maintain the capacity to respond to local signaling
in a spatiotemporal fashion [114, 115]. In addition, a
culture of EPSCs on a bed of fibroblasts embedded with
a plasma matrix has been used, which enables re-
storation of both the epidermal and dermal compartment
[116]. Furthermore, two recent animal studies have
pointed to a possible alternative to the method used tra-
ditionally. Activation of EPSCs from the HF bulge in mice
with third-degree burns induced with human a-defensin-5
derived from the intestine accelerated wound healing and
importantly induced hair regeneration [117]. Similarly,
transplantation of LGR6-positive EPSCs isolated by
fluorescence-activated cell sorting and administered
by injection into the wound significantly promoted
re-epithelization, hair growth, and angiogenesis [118].
The clinical performance of EPSCs may be improved by
the use of carrier substrates that mimic the mechanical
properties of the niches, providing a normal physiological
environment that can optimize the regenerative function
of EPSCs.

Chronic wounds

The number of patients with chronic wounds, even non-
healing wounds, has increased with the increased preva-
lence of diabetes, obesity, and vascular disease and an
aging population. The commonly used therapeutic stra-
tegies are similar to those for burns, such as skin sub-
stitutes and CEAs. However, due to the complicated
pathogenesis of chronic wounds, many skin substitutes
and grafts have been demonstrated to be useless [119].
Excessive inflammation and dysregulation of matrix
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metalloproteinases prevent normal ECM remodeling and
wound healing. In addition, chronic wounds also lead to
compromised local EPSC populations that become
depleted through frequent cycling and an inability to
regenerate the epidermis because of a hostile micro-
environment [120]. However, this negative cycle may be
broken when chronic wounds are transplanted with
CEAs enriched with EPSCs on an ECM-compatible
substrate, which can simultaneously overcome the defi-
ciency of EPSCs and provide ECM components to
stabilize the wound site [5]. In addition, a functional
epidermis has also been regenerated on previously in-
fected non-healing skin ulceration by a discrete number of
gene-corrected EPCs [121].

Other epithelial regeneration

The production of replacement tissue or organs and
biologically compatible constructs is highly warranted
because of the shortage of donor organs. Autologous
EPSCs exhibit plasticity, which can differentiate into all
three embryonic germ layers when injected into mouse
blastocysts [122]. In addition, EPSCs also express cornea-
specific cytokeratin when cocultured with corneal cells or
eye-specific stromal ECM [123]. Therefore, EPSCs are
considered an ideal source for the replacement of dam-
aged epithelia.

Urethral regeneration

Skin grafts have become an alternative method for ureth-
ral regeneration because they are adaptable in an environ-
ment of urine exposure. However, the hair will grow in
the urethral lumen in later years after transplantation
[123]. Cultured urethral epithelium from the bladder is
another approach, but it is an invasive procedure and
causes additional injury. Thus, employing CEAs enriched
with EPSCs has been considered an ideal approach for the
restoration of a functional urethra, which not only
provides epithelial cells that do not grow hair but can also
be harvested easily without secondary damage [124].

Limbal stem cell deficiency (LSCD)

LSCD is caused by damage or loss of limbal SCs and
often leads to blindness. There are many similarities
between corneal and skin epithelia, such as a typical
stratified epithelial morphology and expression of SC
marker p63 [125]. An animal study has indicated that
skin EPSCs can partially or even fully restore a clear
cornea, and the reconstructed corneal epithelium
expresses the eye-specific markers KRT3, KRT12, and
paired box (PAX)6 but does not express skin-specific
KRT10 [123]. In addition, CEAs with prior genetic
modification, such as PAX6, can re-establish a clear
cornea, even after repeated corneal scraping [126].
The above research suggests that the plasticity and
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regenerative capacity of EPSCs enable regeneration of
epithelium in other organs.

Stable vitiligo

Vitiligo is a common skin disease characterized by the loss
of melanocytes. Split-skin grafting is a common thera-
peutic approach that often results in a pitted skin surface
and does not always improve pigmentation. CEA com-
bined with or without melanocytes has been used in
clinical trials. When CEA and a physiologically relevant
number of melanocytes are transplanted, they integrate
well with existing skin, color matching is good, and wound
healing occurs without scarring [127]. In addition, re-
pigmentation of achromatic lesions is achieved in 50-90%
of cases after the application of CEA without melanocytes
followed by exposure to sunlight [128].

Gene therapy of epidermolysis bullosa

Epidermolysis bullosa is a severe skin disease caused by
genetic mutations, such as laminin 5 or collagen 7 deficit
[129]. Gene therapy consists of extracting EPSCs from
patients with genetic abnormalities, correcting the muta-
tion in vitro by gene transfer, and transplanting the cells
back into the patient’s skin [130]. Clinical studies have
shown that functional laminin-5 can be detected in
patients, together with a normal adherent epidermis in the
transplanted areas [131], suggesting that gene therapy
using EPSCs is a promising therapeutic strategy in
genetic diseases.

Strategies to improve biological potential of EPSCs

The traditional mode of cell delivery to wounds, including
topical EPSC applications, direct injections, and systemic
delivery into circulation, has many limitations, such as low
survival, high attrition rate, additional tissue damage, and
lack of cell-ECM attachment [132]. Thus, the bioscaffold-
based stem cell delivery strategy has gained considerable
attention; in this strategy, cells are seeded on a matrix
(such as hydrogel, scaffold, dermal substitute) first, and
the matrix containing stem cells is then applied to the
wound [107]. Polymer-based scaffolds show high bio-
activity, biocompatibility, and biodegradability [133],
which can be fabricated using natural polymers (e.g.,
hyaluronan, chitosan and alginate, collagen, elastin, fibrin,
and silk [134]) and synthetic polymers (e.g., poly(lactic-co-
glycolic) acid, polyanhydrides, polyethylene glycol), or
genetically engineered peptides [135, 136]. Recently, modi-
fications of classical scaffolds, such as addition of natural
proteins (laminin, fibrin, glycosaminoglycan) or silver
nanoparticles to the cellular dressing, have been shown to
further improve wound healing by promoting the bio-
logical activity of stem cells [137, 138]. Recently, cultured
epidermal cell sheets (CES) have been used to treat
patients with skin injuries [139], and studies suggest that
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enrichment for EPSCs within CES may further improve
wound healing, prevent hypertrophic scar formation, and
provide long-term regeneration [140, 141]. In addition, 3D
bioprinting is an emerging technology that can generate
customized composite skin products [142]. By mimicking
skin structures, this method provides microenvironmental
niche architecture for the maintenance and growth of
stem cells [143]. Thus, 3D-printed skin is an ideal scaffold
for EPSCs.

Since EPSCs have the potential to regenerate skin, the
genetic modification of EPSCs represents a novel treat-
ment option. Studies have reported that transduction of
EPCs with the laminin subunit f3 (LAMB3) gene from a
patient suffering from junctional epidermolysis bullosa led
to the successful completion of epidermal regeneration
[121]. Our research group also found that EPSCs modified
with epidermal growth factor (EGF) or Caveolin-1 showed
increased ability to promote re-epithelialization, fibroblast
proliferation, and wound healing [144]. In addition, pre-
treatment of EPSCs with curcumin not only promoted the
proliferative ability of EPSCs but also enhanced the ability
of conditioned medium from curcumin-treated EPSCs to
accelerate wound closure [145].

Another trend in regenerative medicine is to use stem
cell secretomes instead of cells themselves, which resolves
some technical problems, such as tumorigenicity, cell
immunogenicity, and infection transmission. For example,
MSC-derived exosomes positively affect wound healing by
promoting angiogenesis, cell migration, proliferation, and
re-epithelialization process [146]. As products of pluripo-
tent stem cells, EPSC-derived exosomes are highly pro-
mising as a novel therapy against skin injuries.

Conclusions and perspectives

Due to the characteristics of EPSCs, such as large num-
bers, accessibility, and multipotency in the formation and
differentiation of the epidermis, the use of these cells
exhibits promise as an effective tissue repair strategy.
Recent data have demonstrated the feasibility of auto-
logous EPSC therapy in cutaneous repair and regene-
ration. Although there are still many unresolved questions
regarding the experimental and clinical application of
EPSCs, such as complex techniques and high cost, it is
likely that in the future, knowledge of the biology of
EPSCs and safety of the techniques will increase, allowing
a more widespread application of EPSCs in wound healing
and tissue regeneration.
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