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Abstract

Background: Orthopaedic diseases are one of the major targets for regenerative medicine. In this context, Wharton’s
jelly (WJ) is an alternative source to bone marrow (BM) for allogeneic transplantation since its isolation does not require
an invasive procedure for cell collection and does not raise major ethical concerns. However, the osteogenic capacity
of human WJ-derived multipotent mesenchymal stromal cells (MSC) remains unclear.

Methods: Here, we compared the baseline osteogenic potential of MSC from WJ and BM cell sources by cytological
staining, quantitative real-time PCR and proteomic analysis, and assessed chemical and biological strategies for priming
undifferentiated WJ-MSC. Concretely, different inhibitors/activators of the TGFβ1-BMP2 signalling pathway as well as
the secretome of differentiating BM-MSC were tested.

Results: Cytochemical staining as well as gene expression and proteomic analysis revealed that osteogenic commitment
was poor in WJ-MSC. However, stimulation of the BMP2 pathway with BMP2 plus tanshinone IIA and the addition of
extracellular vesicles or protein-enriched preparations from differentiating BM-MSC enhanced WJ-MSC osteogenesis.
Furthermore, greater outcome was obtained with the use of conditioned media from differentiating BM-MSC.

Conclusions: Altogether, our results point to the use of master banks of WJ-MSC as a valuable alternative to BM-MSC for
orthopaedic conditions.
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Background
The development of new treatments for bone-related
diseases resulting from trauma or pathophysiological age-,
sex- or infection-associated bone resorption has become a
priority in the field of regenerative medicine [1–4]. In this
context, autologous cell-based therapy has been presented
as a promising approach to promote bone regeneration in
both pre-clinical and clinical settings [5–8]. However, their
clinical translation needs the delivery of safe and efficacious
products, which can be largely hampered by age and co-
morbidities of the cell donor [9–13]. In contrast, allogeneic

off-the-shelf cell products derived from healthy and
immune-compatible donors are very attractive since they
are immediately available and provide a high number of
cells [14, 15].
Multipotent mesenchymal stromal cells (MSC) consti-

tute a heterogeneous population of non-haematopoietic
multipotent cells which can be isolated from a variety of
human body sources [3, 16, 17]. In particular, MSC have
a fibroblast-like appearance, plastic adherence, the ability
to differentiate into tissues of mesodermal lineages (adi-
pocytes, chondrocytes and osteocytes) and a specific cell
surface expression pattern, according to the minimal cri-
teria established by the International Society for Cell and
Gene Therapy (ISCT) [18]. Of note, a couple of MSC-
based products have already received marketing approval

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: rcabrera@bst.cat; jvives@bst.cat
1Cell Therapy Service, Blood and Tissue Bank (BST), Barcelona, Catalonia,
Spain
Full list of author information is available at the end of the article

Cabrera-Pérez et al. Stem Cell Research & Therapy          (2019) 10:356 
https://doi.org/10.1186/s13287-019-1450-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-019-1450-3&domain=pdf
http://orcid.org/0000-0001-9719-5235
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:rcabrera@bst.cat
mailto:jvives@bst.cat


[19], whereas most developments are still in clinical
evaluation, including MSC-based tissue engineering
products (EudraCT Nos. 2010-024041-78, 2010-023998-
18, 2010-023999-12 and 2013-005025-23) under devel-
opment in our laboratory [20].
Bone marrow (BM) has become the most used source of

MSC in the orthopaedic field because of its intrinsic osteo-
genic differentiation potential, but alternative sources are
garnering attraction. These include Wharton’s jelly (WJ),
which is the connective tissue surrounding the human um-
bilical cord and is advantageous for cell collection since its
isolation is not painful, does not require invasive procedures
and does not raise major ethical concerns [21]. Accordingly,
we reported the feasibility of expanding clinical-grade WJ-
MSC from samples typically discarded from public cord
blood banking programmes [22]. Moreover, in contrast to
adult BM-MSC, WJ-MSC are expected to be more primi-
tive, proliferative and immunosuppressive cells, particularly
for the lack of HLA-DR antigens [23–26]. Nevertheless, the
osteogenic capacity of WJ-MSC remains under scrutiny.
Osteogenic differentiation of mesenchymal precursors

and bone regeneration are extremely complex processes
regulated by the interaction of different signalling pathways
including TGFβ/BMP, MAPK, Wnt, Hedgehog, Notch and
AKT/mTOR [27]. Among them, the TGFβ/BMP pathway
plays the major role in the regulation of osteoblast lineage-
specific differentiation, bone induction, maintenance and
repair and constitutes a promising target for the treatment
of bone diseases [28–30]. Up to date, about 60 TGFβ family
proteins have been identified so far, being TGFβ1 and
BMP2 ligands the most widely investigated due to their
positive role in bone formation in vivo [31, 32]. However,
while BMP proteins have been demonstrated to induce the
expression of MSC differentiation factors (such as DLX5
and RUNX2) [33, 34], several in vitro studies have described
a negative impact of TGFβ1 on the terminal differentiation
of osteoblast precursors [34–36].
Despite several reports investigating the osteogenic cap-

abilities of BM- and WJ-MSC have been published to date,
it is still difficult to integrate existing data due to heterogen-
eity in MSC isolation and culture procedures. In the
present study, we aimed to provide homogeneous and com-
parative data regarding the ability of BM- and WJ-MSC to
differentiate towards the osteogenic lineage by means of
cytological staining and molecular and proteomic analysis.
Moreover, we evaluated a variety of strategies based on the
modulation of the TGFβ/BMP pathway and the use of the
BM-MSC secretome to enhance osteogenesis in WJ-MSC
and emulate BM-MSC osteogenic commitment.

Methods
Cell culture
BM-MSC (n = 3) and WJ-MSC (n = 3) (passage 3–5)
were isolated according to ‘Good Manufacturing Practice

for Advanced Therapy Medicinal Products’ (GMP for
ATMPs, European Commission Guidelines of 2017.11.22)
and further expanded in Dulbecco’s modified Eagle’s
medium (DMEM) (31885-023; Gibco) containing 2mM
glutamine and supplemented with 10% human serum B
(hSerB)—‘expansion medium’ [37, 38]. All cell cultures
were maintained at 37 °C and 5% CO2 in humidified incu-
bators, and media were changed every 3–4 days. Cell num-
ber and viability were determined by the haemocytometer-
based trypan blue dye exclusion assay.

Phenotype assessment
Immunophenotypic characterisation of MSC was per-
formed using the following antibodies: mouse anti-human
CD45-fluorescein isothiocyanate (CD45-FITC) (Clone
HI30; 555482; BD Pharmingen), anti-human CD105-
phycoerythrin (CD105-PE) (Clone 43A4E1; 130-117-696;
Miltenyi Biotec), anti-human HLA-DR-FITC (Clone L243;
347363; BD Biosciences), anti-human CD90-PE (Clone
F15-42-1-5; IM1840U; Beckman Coulter), anti-human
CD31-FITC (Clone WM59; 555445; BD Pharmingen) and
anti-human CD73-PE (Clone AD2; 550257; BD Pharmin-
gen). Cells were stained for 15min at room temperature
(RT), washed and re-suspended in phosphate-buffered sa-
line (PBS) (14190-094; Gibco) as described elsewhere [38].
Acquisition and data analysis were performed using a
FACSCalibur cytometer and the CellQuest Pro software
(Becton Dickinson), respectively.

Osteogenic differentiation assays
BM-MSC and WJ-MSC (passage 3–5) were seeded until
70–80% confluence (104 and 2 × 104 cells/cm2, respect-
ively). ‘Differentiation media’ composed of the StemPro
osteogenesis differentiation kit (A1007201; Gibco) sup-
plemented with 100 units/mL of penicillin and 100 μg/
mL streptomycin (Penicillin-Streptomycin; P4458;
Sigma-Aldrich) was used for the osteogenic induction
in vitro. Alkaline phosphatase (ALP) (B5655; Sigma-
Aldrich) and alizarin red (AR) (2003999; Merck Milli-
pore) staining were finally carried out to assess cell
differentiation.

Gene expression assays
Total RNA was purified from cell cultures using the
RNeasy Plus Mini Kit (74134; Qiagen) according to the
manufacturer’s instructions, quantified using NanoDrop
Lite (Thermo Scientific), and electrophoresed in 1%
agarose gels to confirm integrity and purity. cDNA
synthesis was then performed by reverse-transcription
PCR (RT-PCR) using the High-Capacity cDNA Reverse
Transcription Kit (4368814; Thermo Fisher Scientific)
according to the manufacturer’s instructions. cDNA was
finally amplified by quantitative real-time PCR (qRT-
PCR) using the TaqMan gene expression assays listed in
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Table 1. In all cases, target gene expression was referred
to GAPDH expression by using the 2−ΔCt method.

Inhibition/activation of TGFβ/BMP2 signalling pathways
WJ-MSC (passage 4) were seeded at a cell density of 2 ×
104 cells/cm2. Inhibition of the TGFβ signalling pathway
was carried out by addition of galunisertib (LY2157299)
(sc-391123; Santa Cruz Biotechnology) to the osteogenic
differentiation media at a final concentration of 10 μM.
For BMP2 pathway stimulation, human recombinant
BMP2 (SRP6155; Sigma-Aldrich) and/or tanshinone IIA
(sc-200932; Santa Cruz Biotechnology) were added to a
final concentration of 100 ng/mL and 5 μM, respectively.
All compounds were added immediately after every
media change after 1 week of in vitro osteogenic
induction with differentiation media.

Extracellular vesicle isolation and characterisation
To avoid sample contamination with exogenous extracel-
lular vesicles (EVs), cells were cultured in EV-depleted
media. For EV depletion, 2× differentiation media was
ultra-centrifuged at 100,000 × g for ≥16 h and diluted with
StemPro Basal Media (A10069-01; Gibco) to 1× working
concentration.
Supernatants derived from undifferentiated BM-MSC

and WJ-MSC (passage 3–5) or from BM-MSC under
osteogenic differentiation (passage 3–5) were collected
at weeks 0, 1, 2 and 3, and were sequentially centrifuged
at 400 × g for 5 min and at 2000 × g for 10 min to ex-
clude cells and cell debris. Conditioned medium (CM)
was then concentrated by 100-kDa ultrafiltration using
Amicon Ultra (UFC910024; Millipore) at 2000 × g for 35
min, obtaining typically 250 μL of concentrated CM
(CCM). EVs were isolated by size exclusion chromatog-
raphy (SEC) as previously reported [39]. Protein elution
was checked by reading absorbance at 280 nm using
NanoDrop (Thermo Scientific).
The presence of EVs in the SEC fractions was determined

according to the presence of tetraspanins by bead-based
flow cytometry [39]. Briefly, EVs were coupled to 4-μm

aldehyde/sulphate-latex microspheres (A37304; Invitrogen)
for 15min at RT and blocked in BCB buffer (PBS supple-
mented with 0.1% BSA (A4503) and 0.01% NaN3 (S8032);
Sigma-Aldrich) on overnight rotation. EV-coated beads
were spun down at 2000 × g for 10min, washed with BCB
buffer and re-suspended in PBS. EV-coated beads were la-
belled with the primary antibodies anti-CD9 (Clone VJ1/
20) and anti-CD63 (Clone TEA3/18) (kindly provided by
M. Yáñez-Mó (CBM-SO, IIS-IP, UAM, Madrid, Spain) and
F. Sánchez-Madrid (Hospital Universitario de la Princesa,
IIS-IP, UAM, CNIC, Madrid, Spain)) or the IgG isotype
control (a637355; Abcam) and secondary antibody FITC-
conjugated Goat F(ab′)2 Anti-Mouse IgG (1032-02;
Bionova). EV-coupled beads were washed after each step
with BCB buffer and centrifuged at 2000 × g for 10min.
Data was acquired in a FACSLyric flow cytometer (BD) and
analysed by FlowJo v.X software (Tree Star).
SEC-EV-containing fractions were examined for EV size

and morphology by cryo-electron microscopy (cryo-EM).
Vitrified specimens were prepared by placing 3 μL of a sam-
ple on a Quantifoil® 1.2/1.3 TEM grid, blotted to a thin film
and plunged into liquid ethane-N2(l) in the Leica EM CPC
cryoworkstation (Leica). The grids were transferred to a
626 Gatan cryoholder and maintained at −179 °C. Samples
were analysed with a Jeol JEM-2011 transmission electron
microscope (Jeol) operating at an accelerating voltage of
200 kV. Images were recorded on a Gatan UltraScan 2000
cooled charge-coupled device (CCD) camera with the
DigitalMicrograph software package (Gatan).

Proteomic analysis
The protein content of EV-enriched fractions was analysed
by liquid chromatography followed by mass spectrometry
(LC-MS/MS) on Orbitrap XL (Thermo Fisher) for three in-
dependent undifferentiated cultures for each MSC type.
Data was searched against the Swiss-Prot human database
(downloaded in August 2016), using the search algorithm
Mascot v2.5.1. Only peptides showing a false discovery rate
(FDR) lower than 5% were retained. Proteins identified with
at least two unique peptides and found in all three samples
were considered for further analysis.
The obtained proteomic profile for our samples was com-

pared with previous studies compiled in EV-specific data-
bases EVpedia [40], ExoCarta [41] and Vesiclepedia [42].

Data analysis
Statistical analysis was performed with the GraphPad
Prism 6 software (GraphPad Software, Inc.). Descriptive
data were expressed as mean ± standard deviation (SD).
Multiple t tests were used for investigating differences
between BM- and WJ-MSC at different time points
along the osteogenic differentiation. Statistical signifi-
cance was set at *p < 0.05 and **p < 0.01.

Table 1 TaqMan gene expression assay ID

Gene Assay ID

MSX2 Hs00741177_m1

DLX5 Hs01573641_mH

RUNX2 Hs01047973_m1

SP7 Hs05049492_s1

ALPL Hs01029144_m1

TFGβ1 Hs00998133_m1

BGLAP Hs01587814_g1

COL1A2 Hs01028970_m1

GAPDH Hs02786624_g1
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Results
WJ-MSC exhibit delayed osteogenic induction compared
with BM-MSC
BM-MSC and WJ-MSC were highly positive for CD73,
CD90 and CD105 and negative for CD31, CD45 and
HLA-DR expression according to the ISCT criteria
(Additional file 1).
The osteogenic differentiation of BM-MSC and WJ-

MSC cultures were assessed by alkaline phosphatase
(ALP) and alizarin red (AR) staining. All BM-MSC and
WJ-MSC cell lines showed osteogenic potential in vitro
after osteogenic induction with specific differentiation
media. However, a delay in osteogenesis was observed in
WJ-MSC compared to BM-MSC. In particular, as shown
in Fig. 1a, most of the cells in BM-MSC cultures
displayed a marked baseline activity of the osteogenic
marker ALP. In contrast, in WJ-MSC cultures, only few
cells exhibited ALP activity even at week 5. Regarding
the results obtained for AR staining, calcium depositions
were clearly visible in BM-MSC cultures at week 3.
However, 5 weeks were required in order to obtain simi-
lar results in WJ-MSC (Fig. 1b).

BM-MSC show increased expression of osteogenic
markers compared to WJ-MSC
We further analysed the delayed osteogenesis in WJ-MSC
cultures. For that purpose, we comparatively assessed the
time-course expression of key osteogenic genes implicated
in MSC differentiation. Interestingly, we found some sig-
nificant differences along both BM- and WJ-MSC osteo-
genic differentiation. Regarding osteogenic transcription
factors (Fig. 2a), BM-MSC showed a progressive increase
in DLX5, RUNX2 and SP7 expression. In contrast, in WJ-
MSC, DLX5 expression was gradually decreased and SP7
levels exhibited an increment from week 2 to 5. Additional
differences were observed in MSX2. Remarkably, a steady
increase of MSX2 expression was observed up to week 5
in WJ-MSC, whereas no changes in MSX2 expression
were detected in BM-MSC.
Moreover, the expression patterns of main early and

late osteogenic markers were comparatively assessed
(Fig. 2b). In this sense, the early marker ALPL reached
its maximum expression level during the first week in
BM-MSC. However, in WJ-MSC, ALPL expression was
reduced at this time compared to week 0 and started to

Fig. 1 Differences in timing for osteogenic differentiation in BM-MSC and WJ-MSC cultures. Alkaline phosphatase (a) and alizarin red (b) staining
at indicated times. N = 3 for both MSC types. Scale bars: 100 μm
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Fig. 2 Gene expression profiles of the main markers involved in osteogenic differentiation. Expression levels of osteogenic transcription factors (a)
and early/late osteogenic markers (b). Bars represent mean ± SD. *p < 0.05 and **p < 0.01 (multiple t tests). N = 3 for each MSC type
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increase again from the third week. The expression patterns
of late osteogenic markers TGFβ1 and BGLAP were also
different. In BM-MSC, TGFβ1 achieved the highest expres-
sion level at week 2 and BGLAP expression increased pro-
gressively. On the contrary, no changes were observed for
these genes in WJ-MSC. In regard to COL1A2, similar
expression patterns were obtained for both cell types,
although expression in BM-MSC was twofold higher than
that in WJ-MSC. Remarkably, the expression of RUNX2,
DLX5, ALPL, TGFβ1, BGLAP and COL1A2 was promoted
in BM-MSC even when they were in an undifferentiated
stage. Taken together, these findings indicate a higher
osteogenic differentiation commitment in BM-MSC.

Promotion of BMP2 signalling primes osteogenic
differentiation of WJ-MSC
Subsequently, the role of TGFβ1 and BMP2 signalling
pathways in the promotion of osteogenic differentiation
of WJ-MSC was investigated. To prevent TGFβ activa-
tion, differentiation media was supplemented from week
1 to 3 with galunisertib. On the other hand, in order to
stimulate osteogenic differentiation through the BMP2
signalling pathway, human recombinant BMP2 and/or
the BMP activator tanshinone IIA were also added to
the differentiation media (Fig. 3a).

As shown in Fig. 3b, the inhibition of TGFβ1 signalling
had no effect on WJ-MSC osteogenesis. Similarly, negative
results in AR staining experiments were seen when BMP2
and tanshinone IIA were present alone or in combination
with galunisertib. In contrast, when BMP2 and tanshinone
IIA were added together, calcium depositions were clearly
visible in WJ-MSC cultures after 3-week induction, emu-
lating the behaviour of BM-MSC under standard osteo-
genic inducing conditions. This suggests the promotion of
WJ-MSC osteogenic differentiation following stimulation
of BMP2 signalling.

BM-MSC-conditioned media strongly enhances WJ-MSC
osteogenic differentiation
The results obtained after the characterisation of the gene
expression profiles of some of the main osteogenic markers
explained, in part, the superior osteogenic potential pre-
sented by BM-MSC. However, with the aim of deepening
in the elucidation of the increased osteogenic capacity
shown by BM-MSC, the proteomic content associated with
the isolated extracellular vesicles (EVs) from the super-
natant of undifferentiated BM-MSC and WJ-MSC cultures
was analysed. Proteomic analysis by LC-MS/MS allowed
the identification of several EV markers, such as annexin
A2, A5 and A6, glyceraldehyde-3-phosphate dehydrogen-
ase and CD5L. As depicted in Fig. 4, 99 proteins were

Fig. 3 Modulation of the TGFβ/BMP signalling pathway to stimulate WJ-MSC osteogenic differentiation. a Scheme of the experimental design.
From day 0 to week 1, cells were cultured in osteogenic differentiation media, which was supplemented from week 1 to 3 with galunisertib,
BMP2 and/or tanshinone IIA. b Representative AR staining results obtained in passage 4 WJ-MSC after 2 weeks of culture in osteogenic media
supplemented with galunisertib 10 μM, BMP2 100 ng/mL and tanshinone IIa 5 μM in different combinations. Scale bars: 100 μm
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found in common between both types of cells. However,
five osteogenic markers (namely COL6A1, COL6A2, PCO
LCE, COL12A1 and COL6A3) were differentially overrep-
resented in BM-derived EVs compared to WJ-MSC EVs.
This finding could contribute to the explanation of the
higher osteogenic commitment observed in BM-MSC and
suggested the possibility of using the BM-MSC secretome
to prime osteogenesis in WJ-MSC.
To test the feasibility of this approach, conditioned

media (CM) from BM-MSC cultures were obtained
weekly up to week 3 of the osteogenic differentiation and
processed by size exclusion chromatography to separate
and purify fractions enriched in EVs or soluble proteins
(Additional file 2). Once isolated, the EV or protein frac-
tions were added to WJ-MSC differentiating cultures.
Monitoring of the osteogenic differentiation was per-

formed by AR staining. Negative results were obtained
in all cases after 2 weeks of media supplementation with
either EVs or protein fractions (data not shown). How-
ever, after 3 weeks, calcium depositions were observed in
all the WJ-MSC cultures supplemented with BM-
secreted EVs and protein fractions purified from BM-
MSC differentiating cultures at weeks 1, 2 and 3, while
the secretome from undifferentiated BM-MSC (week 0)
did not (Fig. 5a). Although both EVs and protein frac-
tions positively stimulate WJ-MSC osteogenesis, the ef-
fect produced by the soluble protein fraction resulted in
a greater outcome than that produced by EVs collected
at the same differentiation stage. Based on this observa-
tion, the full CM collected from BM-MSC cultures after
1 week of in vitro osteogenic induction was also tested

(Fig. 5b). As shown in Fig. 5b, the addition of CM from
differentiating BM-MSC to WJ-MSC cultures resulted in
higher osteogenesis than the addition of purified EVs or
protein fractions separately. Furthermore, the fact that
calcium depositions were clearly identified from the very
first week indicated a powerful synergistic positive effect
between EV and proteins secreted by BM-MSC in the
progression along the osteogenic linage differentiation.

Discussion
The use of allogeneic MSC is promising for the treatment
of bone-related conditions. In this context, some studies
have suggested that master cell banks of WJ-MSC may
offer advantages over the use of BM-MSC [20, 22]. How-
ever, to guarantee the success of WJ-MSC in situations
where bone repair or bone regeneration is required, it is
essential to demonstrate that osteogenic commitment is
equally driven in both BM- and WJ-MSC.
In the present study, we have extensively characterised

the osteogenic differentiation process of BM- and WJ-MSC
in order to provide homogeneous data because, despite
there are many reports in the field describing osteogenic
properties of both cell lines, data sets are often incomplete
and non-comparable due to heterogeneity in isolation and
culture procedures.
In concordance with previous observations reported

by other authors in the field [43, 44], our findings evi-
denced that WJ-MSC are less prone to differentiate into
bone cells than BM-MSC. We thus aimed to compara-
tively analyse the molecular machinery associated with
osteogenic differentiation in BM- and WJ-MSC since we

Fig. 4 Osteogenic markers found in undifferentiated BM-MSC- and WJ-MSC-secreted EVs. Number of proteins found in extracellular vesicles (EVs)
isolated by size exclusion chromatography (n = 3 different cell lines for BM-MSC and WJ-MSC). The osteogenic markers differentially
overrepresented in BM-MSC EV samples are indicated. Results were obtained by LC-MS/MS, two peptides restricted, FDR<5%
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found a marked delay in the osteogenic progression of
WJ-MSC compared to BM-MSC. Results obtained by
qRT-PCR confirmed that BM-MSC exhibit an osteo-
genic gene profile more similar to that of osteoblast and
evidenced that MSX2, a TGFβ1-induced factor reported
to promote cell proliferation and supress osteogenic
differentiation by inhibiting DLX5-driven effects [36,
45–48], was overexpressed in WJ-MSC. This suggests
that the balance between MSX2 and DLX5 expression

could be critical in MSC, resulting in either a proliferat-
ing or differentiating outcome.
Trying to revert the scenario found in WJ-MSC, we then

attempted to modulate TGFβ- and BMP-mediated signal-
ling pathways by adding specific activators or inhibitors in
order to repress MSX2 and/or to stimulate DLX5 expres-
sion. To this end, we used different combinations of chem-
ical factors including (i) galunisertib, a receptor antagonist
that specifically targets and binds TGFβRI [49]; (ii) BMP2,
which has been reported to induce osteoblast differenti-
ation by promoting DLX5 expression [33, 50] and (iii)
tanshinone IIA, a phytochemical compound reported to
enhance BMP signalling stimulation [51]. Neither the use
of each molecule separately nor the combination of a
repressing and activating agent resulted in an osteogenic
output in WJ-MSC. However, agreeing with the results
published by Heo and collaborators in umbilical cord blood
MSC [52], the addition of tanshinone IIA to BMP2-
induced cultures significantly increased calcium depositions
in WJ-MSC after 3 weeks, thus matching WJ-MSC osteo-
genic behaviour to that of their BM-MSC counterparts.
Although systemic infusion of MSC has been shown to

increase bone growth and repair in clinical trials [53–55],
administered cells engraft poorly. In this line, previous
in vivo studies carried out by our group in which ovine
eGFP+ BM-MSC were infused in an ovine model of osteo-
necrosis of the femoral head demonstrated the presence of
non-stained eGFP osteocytes in newly formed bone matrix,
suggesting that contribution of MSC lies also in paracrine
signalling that activate and recruit host osteoblasts to the
bone repair areas [56]. Increasing evidence have shown
that nanosized, membrane-encapsulated EVs are one of
the most active MSCs’ secreted factors [25]. Indeed, EVs
can serve as powerful tools for cell-free therapy due to pre-
cise multifunctional molecular cargoes [57, 58]. However,
significant differences have been described in the content
of EV purified from MSC cultures of different origins. In
terms of miRNA profiles, BM-MSC-derived EVs have been
described to present a miRNA cargo that is tightly related
to MSC differentiation [59]. Furthermore, different profiles
of miRNAs have also been reported depending on the dif-
ferentiation stage of the secretory cell [60]. Here, we stud-
ied the differences in the protein content of EVs obtained
from undifferentiated BM- and WJ-MSC. As a result,
COL6A1, COL6A2, PCOLCE, COL12A1 and COL6A3
osteogenic markers were differentially overrepresented in
BM-derived EVs compared to WJ-MSC EVs. Interestingly,
COL6 and COL12 interactions have been reported to con-
trol and promote bone formation in early phases due to
their role in the establishment of matrix bridges between
adjacent cells when pre-osteoblasts establish cell-cell com-
munication [61]. These observations prompted us to evalu-
ate the effect of BM-MSC-derived EVs in the osteogenic
differentiation of WJ-MSC. Additionally, the impact of the

Fig. 5 Effect of BM-MSC-derived products on osteogenic
commitment of WJ-MSC. a Representative images of AR staining in
passage 4 WJ-MSC after 3 weeks of culture with ODM alone (top) or
supplemented with either EV or protein fractions collected from
undifferentiated BM-MSC (week 0) or BM-MSC cultures at week 1, 2
or 3 of osteogenic differentiation (bottom). b Representative images
of AR staining in passage 4 WJ-MSC after 1, 2 or 3 weeks of culture
with CM obtained from differentiating BM-MSC cultures at week 1.
CM conditioned media, EV extracellular vesicles, ODM osteogenic
differentiation media, SN supernatant. In all cases, scale bars: 100 μm
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soluble protein fractions (eluted in the latter size exclusion
chromatography (SEC) fractions) purified from BM-CM
was also determined.
Both EV-rich and soluble protein fractions from differ-

entiating BM-MSC cultures promote bone differen-
tiation in WJ-MSC. On the contrary, the secretome of
undifferentiated BM-MSC does not have an osteogenic
effect. This fact matches the differences reported in the
miRNA content of MSC-EVs depending on differenti-
ation stages and explains, in part, the little differences
found in the protein content of undifferentiated BM-
MSC and WJ-MSC EVs. Remarkably, the use of unpro-
cessed CM obtained from differentiating BM-MSC has a
greater impact on osteogenic induction and produces
not only an exacerbation on the mineralisation of the
culture but also a shortening in the differentiation time.
This suggests that EV- and protein-rich fractions from
differentiating BM-MSC act by different and synergistic
pathways, thus pointing out that BM-MSC and WJ-MSC
therapeutic efficacy could be equivalent when adminis-
tered within the bone microenvironment, where BM-
MSC are present, and mitigating the need to overstimu-
late WJ-MSC osteogenesis ex vivo. This is particularly
relevant due to the implications of WJ-MSC osteogenic
priming in manufacturing development and clinical ap-
plications which include (i) prolonged cell cultures for
ex vivo stimulation; (ii) difficulties of cell trypsinisation
once the differentiation process is started; (iii) higher
costs associated with the increment in time for cell cul-
ture and the use of additional GMP grade products; and
(iv) possible clinical complications surrounding the use
of priming compounds. Furthermore, the effect associ-
ated with the use of CM could be enhanced in vivo due
to the immune response produced under pathophysio-
logical conditions, which positively contributes to bone
regeneration.

Conclusions
Despite their multipotentiality, the intrinsic molecular
signature of WJ-MSC described here highly counteracts
their osteogenic differentiation and thus their future ap-
plication in cell-based therapies against orthopaedic con-
ditions. However, our findings demonstrate that secreted
factors in the CM from differentiating BM-MSC cultures
greatly enhance WJ-MSC osteogenesis and suggest that
intra-bony environment could be enough to guarantee
WJ-MSC-promoted bone regeneration. This fact avoids
the need either to overstimulate WJ-MSC osteogenesis
ex vivo or to use genetically modified WJ-MSC. There-
fore, although further research is required in order to
evaluate the therapeutic benefit of WJ-MSC in the con-
text of orthopaedic diseases, the use of GMP-grade
master cell banks of WJ-MSC may be a valuable alternative
to those of BM-MSC.
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