CORRECTION Open Access

Correction to: miR199a-3p regulates P53 by targeting CABLES1 in mouse cardiac c-kit+cells to promote proliferation and inhibit apoptosis through a negative feedback loop

Jingjin Liu^{1,2}, Yongshun Wang¹, Jinjin Cui¹, Meng Sun^{1,2}, Zhongyue Pu^{1,2}, Chao Wang^{1,2}, Wenjuan Du^{1,2}, Xinxin Liu^{1,2}, Jian Wu¹, Jingbo Hou¹, Shuo Zhang¹ and Bo Yu^{1,2*}

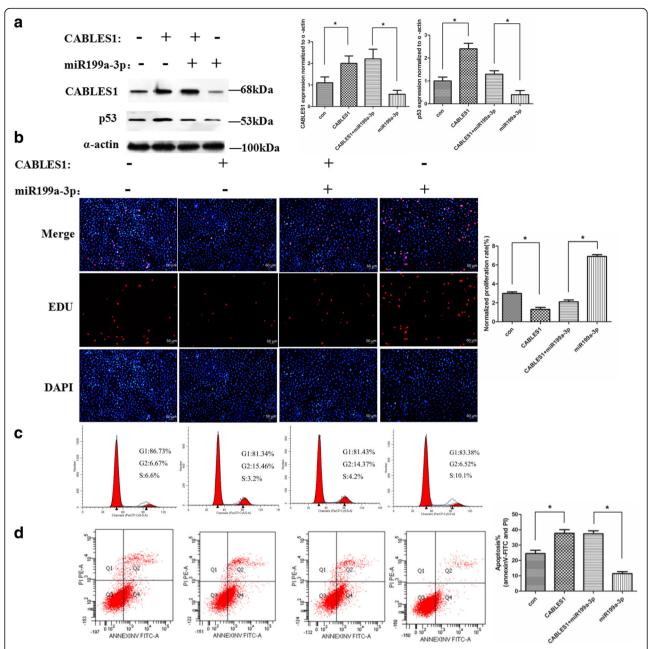
Correction to: Stem Cell Res Ther (2017) 8:127 https://doi.org/10.1186/s13287-017-0515-4

After publication of our article [1] we became aware that there were errors in Fig. 5b and Fig. 6c, namely that the immunofluorescence of EDU-positive cells of the CABLES1 transfection group in Fig. 5b (panel 2) and the cell cycle distribution of the combination group (treatment with the antimiR199a-3p and shRNA-CABLES1) in Fig. 6c (panel 3) were incorrectly presented. These errors do not affect the discussion or conclusions in the article. The correct versions of Figs. 5 and 6 are shown below. We apologize to the journal and to readers for this error.

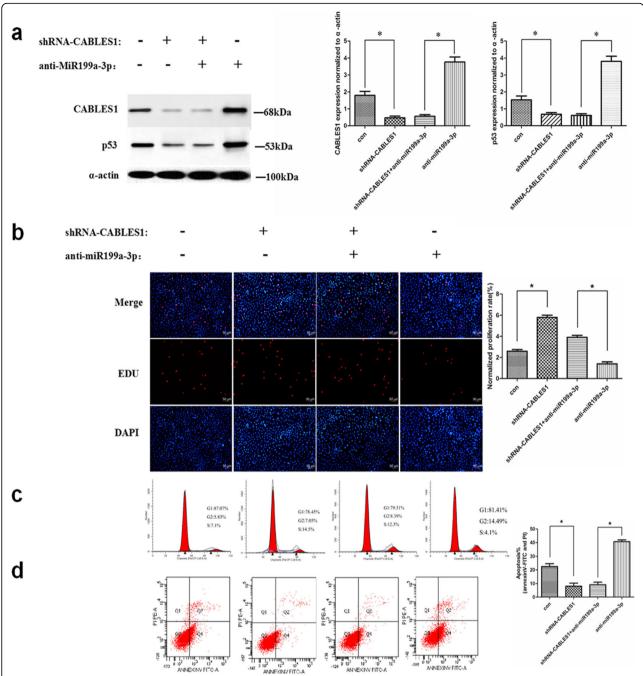
Received: 28 November 2019 Accepted: 28 November 2019 Published online: 20 December 2019

Reference

 Liu J, Wang Y, Cui J, Sun M, Pu Z, Wang C, Du W, Liu X, Wu J, Hou J, Zhang S, Yu B. miR199a-3p regulates P53 by targeting CABLES1 in mouse cardiac c-kit⁺ cells to promote proliferation and inhibit apoptosis through a negative feedback loop. Stem Cell Res Ther. 2017;8:127. https://doi.org/10. 1186/s13287-017-0515-4.


The original article can be found online at https://doi.org/10.1186/s13287-017-0515-4

²Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, Heilongjiang Province, China



^{*} Correspondence: yubodr@163.com

¹Cardiology Department, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China

Fig. 5 miR199a-3p regulates cell proliferation and apoptosis through targeting CABLES1. **a** Western blot analysis of proteins from cardiac c-kit+ cells transfected with the miR199a-3p and CABLES1 lentiviral vectors (*p < 0.05). The protein profiles were normalized to α-actin. **b** The cells were stained with EdU and DAPI (*p < 0.05). **c** Cell cycle distribution of cardiac c-kit+ cells after transfection with the miR199a-3p and CABLES1 lentiviral vectors. **d** Representative annexin V/PI flow cytometry analysis of cardiac c-kit+ cells and analysis of annexin V+/PI+ cardiac c-kit+ cells by flow cytometry. *CABLES1* Cdk5 and Abl enzyme substrate 1, *Con* control, *PI* propidium iodide (*p < 0.05)

Fig. 6 miR199a-3p regulates cell proliferation and apoptosis through targeting CABLES1. **a** Western blot analysis of proteins from cardiac c-kit+ cells transfected with the anti-miR199a-3p and shRNA-CABLES1 lentiviral vectors (*p < 0.05). **b** The cells were stained with EdU and DAPI (*p < 0.05). **c** Cell cycle distribution of cardiac c-kit+ cells after transfection with the anti-miR199a-3p and shRNA-CABLES1 lentiviral vectors. **d** Representative annexin V/PI flow cytometry analysis of cardiac c-kit+ cells and analysis of annexin V+/PI+ cardiac c-kit+ cells by flow cytometry (*p < 0.05). *CABLES1* Cdk5 and AbI enzyme substrate 1, *Con* control, *PI* propidium iodide