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Abstract

Background: Mesenchymal stem cell (MSC) therapy is an important alternative for GVHD treatment, but a
third of patients fail to respond to such therapy. Therefore, strategies to enhance the immunosuppressive
potential of MSCs constitute an active area of investigation. Here, we proposed an innovative priming strategy
based on the plasma obtained from GVHD patients and tested whether this approach could enhance the
immunosuppressive capacity of MSCs.

Methods: We obtained the plasma from healthy as well as acute (aGVHD) and chronic (cGVHD) GVHD
donors. Plasma samples were characterized according to the TNF-α, IFN-γ, IL-10, IL-1β, IL-12p40, and IL-15
cytokine levels. The MSCs primed with such plasmas were investigated according to surface markers,
morphology, proliferation, mRNA expression, and the capacity to control T cell proliferation and Treg
generation.

Results: Interestingly, 57% of aGVHD and 33% of cGVHD plasmas significantly enhanced the
immunosuppressive potential of MSCs. The most suppressive MSCs presented altered morphology, and those
primed with cGHVD displayed a pronounced overexpression of ICAM-1 on their surface. Furthermore, we
observed that the ratio of IFN-γ to IL-10 cytokine levels in the plasma used for MSC priming was significantly
correlated with higher suppressive potential and Treg generation induction by primed MSCs, regardless of the
clinical status of the donor.

Conclusions: This work constitutes an important proof of concept which demonstrates that it is possible to
prime MSCs with biological material and also that the cytokine levels in the plasma may affect the MSC
immunosuppressive potential, serving as the basis for the development of new therapeutic approaches for
the treatment of immune diseases.
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Background
Mesenchymal stem cells (MSCs) are adult multipotent
stem cells that display several properties potentially ap-
plicable to the cell therapy field, including their antibac-
terial, antiapoptotic, proangiogenic, regenerative, and
immunomodulatory capacity [1]. It is well known that
MSCs can interact and modulate the function of virtu-
ally all cells of the immune system, primarily through
contact-dependent mechanisms involving the participa-
tion of the vascular cell adhesion protein 1 (VCAM-1),
intercellular adhesion molecule 1 (ICAM-1), and pro-
grammed death-ligand 1 (PDL-1) [2, 3]. A broad range
of biologically active molecules that are secreted by
MSCs also integrates the immunomodulatory arsenal of
such cells. In this context, the major immunosuppressive
molecules produced by MSCs are HGF, TGF-β [4], IDO
[5], PGE2 [6], IL-6 [7], IL-10 [8], semaphorin-3A, galec-
tin (Gal)-1 [9], Gal-9 [10], and adenosine [11].
As knowledge regarding the immunosuppressive po-

tential of MSCs accumulates, some obstacles still remain
to be overcome, such as the high number of MSCs re-
quired for clinical application and optimizing their
therapeutic effect to ensure a more homogenous clinical
outcome. Considering MSC application for the treat-
ment of graft-versus-host disease (GvHD), several clin-
ical trials have already been executed and consistently
point towards the safety and efficacy of MSC therapy for
GVHD [12–19]. Nevertheless, about a third of patients
fail to respond to treatment, especially adults.
Aiming to tackle such therapeutic limitation, several

researchers have investigated priming (a.k.a licensing)
strategies in order to enhance the immunosuppressive
potential of MSCs, including peptides [20], agonists for
Toll-like receptors [21], and proinflammatory recombin-
ant factors [22], among which IFN-γ is the most inten-
sively investigated molecule so far [23–25]. Still, in the
first clinical investigation of IFN-γ-primed MSCs, data
was disappointing, justifying further studies [26].
Here, we tested an innovative priming strategy by sub-

mitting the MSCs to the plasma from GVHD patients
and investigated whether the inflammatory milieu gener-
ated by GVHD influences the molecular mechanisms of
MSCs to suppress the immune response and how differ-
ent characteristics of the plasma and the primed MSCs
correlate to the immunosuppressive capacity of such
cells.

Methods
Plasma collection and preparation
Peripheral blood was collected from patients previously
treated with bone marrow transplantation that devel-
oped acute GVHD (aGVHD, n = 7) and chronic GVHD
(cGVHD, n = 12) at the Institute of Cardiology of Fed-
eral District and at the University Hospital of the

Medical School of Ribeirão Preto (University of São
Paulo, Brazil). Samples were identified as GA 1-7 and
GC 1-12, respectively. In addition, the plasma from 8
healthy donors was obtained and pooled to serve as the
control samples. In order to obtain a biologic material
composed of soluble factors only without platelet inter-
ference, we depleted the platelet content of plasmas. For
this, samples were first centrifuged at 400g for 10 min,
and the upper portion of the plasma with platelets was
removed. Then, the samples were centrifuged again at
800g for 10 min, and the plasma was collected [27].

Enzyme-linked immunosorbent assay
In order to better characterize the inflammatory profile
of the GVHD samples, we quantified the following fac-
tors: TNF-α, IFN-γ, IL-10, IL-1β, IL-12p40, and IL-15 by
ELISA, following the manufacturer’s instructions
(ImmunoTools). The absorbance of each well was mea-
sured at 450 nm using the automatic microplate reader
DTX 800 Multimode Detector (Beckman Coulter). Sam-
ples were diluted 1:2 with blocking buffer and analyzed
in duplicates.

MSC culture and characterization
The study protocols were approved by the Institutional
Ethics Committee (protocol 64079216.3.0000.0030), and
written informed consent was obtained from all partici-
pants. MSCs were obtained from three healthy donors
following a lipoaspiration procedure. The cells were cul-
tured in alpha-Minimum Essential Medium (α-MEM)
supplemented with 15% fetal bovine serum (FBS—
HyClone, Logan, UT, USA), 2 mM glutamine, and 100
U/mL penicillin/streptomycin (Sigma, St. Louis, MO,
USA), at 37 °C and 5% CO2. The medium was changed
every 2 days, and the cells were split when they reached
80–90% confluence.
MSCs were phenotypically characterized by flow cy-

tometry (FACSVerse, BD Biosciences) using the BD
Stemflow™ hMSC Analysis Kit and HLA-DR-PE anti-
body, following the manufacturer’s instructions (Phar-
mingen, BD Biosciences, Franklin Lakes, NJ, USA). Ten
thousand events were recorded for each sample, and
data was analyzed using the FlowJo software 10.0.7
(Treestar Inc.). MSCs from the 4th to 6th passage were
used for experiments.

MSC priming
MSCs were cultured for 24 h in cell culture media lack-
ing FBS supplemented with 15% plasma from each indi-
vidual GVHD samples or with 15% pooled plasma from
healthy donors. Then, the cells were washed with PBS
for three times before the beginning of the experiments.
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MSC proliferation
The effect of GVHD plasma over MSCs proliferation
was accessed directly by cell count in hemocytometer.
Briefly, 2X103 MSCs were plated in 96 well plates and
primed with GVHD plasma or pooled plasma obtained
from healthy donors (control). At the 3rd and 5th days
post priming, cells were detached by trypsinization and
counted using a hemocytometer to determine the num-
ber of MSCs.

Immunosuppression assay
For the immunosuppression assay, peripheral blood mono-
nuclear cells (PBMCs) were obtained from healthy volun-
teers. Such cells were activated with 10 μg/mL of
phytohaemagglutinin (PHA, Sigma-Aldrich, St. Louis, MO,
USA) and stained with 2.5 μM carboxyfluorescein succini-
midyl ester (CFSE), as previously described [25]. After isola-
tion, PBMCs were co-cultured for 5 days with MSCs
primed with healthy plasmas (control) or with MSCs
primed with GVHD plasmas (10:1 ratio). Then, PBMCs
were recovered and stained with anti-CD3, and the prolifer-
ation of T cells was determined by flow cytometry.

MSC morphology
In order to assess whether GVHD plasma priming would
alter MSC morphology, MSCs primed with healthy
plasmas (control) and MSCs primed with GVHD plasmas
were analyzed according to their morphology following
the priming protocol described before. Cells from 6 differ-
ent areas of the well were photographed. Feret diameter,
cytoplasm, and nucleus area, as well as cell perimeter,
were quantified using the ImageJ software.

Generation of regulatory T cells
MSCs promote the generation and expansion of regula-
tory T cells (Tregs) to control the immune response
[23]. In order to determine if the MSC priming with
GVHD plasma has any influence on this process, primed
cells were cultured with phytohemagglutinin (PHA)-acti-
vated PBMCs for 5 days. Then, PBMCs were recovered
and stained with anti-CD4-FITC, anti-CD25-APC, and
FOXP3-PE, according to the manufacturer’s recommen-
dations (FoxP3 Staining Kit, BD Pharmingen). Fifty
thousand events were recorded for each sample, and
data were analyzed using FlowJo software 10.0.7.

VCAM-1 and ICAM-1 expression
Considering that ICAM-1 (CD54) and VCAM-1
(CD106) have a crucial role in the immunoregulatory
mechanisms of MSCs [2, 3], we investigate the expres-
sion profile of these proteins in primed MSCs. MSCs
primed with healthy plasmas (control) and MSCs primed
with GVHD plasmas were stained with anti-CD54 (con-
jugated with allophycocyanin (APC)), anti-CD106

(conjugated with fluorescein isothiocyanate (FITC)), or
isotype controls (eBioscience, San Diego, CA, USA).
After incubation, CD54 and CD106 expressions were de-
termined by flow cytometry. Ten thousand events were
recorded for each sample, and data were analyzed using
FlowJo software 10.0.7.

Real-time PCR
TGF-β (Hs00998133), IDO (Hs00984148), PDL-1, IL-10
(Hs00961622), COX-2, HGF, and Galectin-1 (Hs00355202)
mRNA expression were analyzed in MSCs primed with
healthy plasmas (control) and MSCs primed with GVHD
plasmas. Basically, after the priming, MSCs were recovered,
and their RNA was obtained using the PureLink RNA Mini
Kit, as indicated by the manufacturer (ThermoFisher,
USA). The RNA amount and quality were determined
using NanoDrop 1000 spectrophotometer (NanoDrop, Wil-
mington, DE, USA). Total RNA was reverse transcribed
using the High Capacity cDNA Reverse Transcription Kit,
and real-time PCR was performed using either TaqMan
probes and GoTaq qPCR Master Mix (Promega, USA) or
SYBR Green Master Mix (Thermo Fisher, USA) combined
with primers specific to each gene. Amplification reactions
were performed in duplicates, and the relative fold value
was obtained by the 2−ΔΔCt method. Data were normal-
ized according to the GAPDH mRNA expression, as well
as to the average Ct of the control MSC group. The primer
sequences were as follows: PDL-1 sense primer sequence,
5′-AAACAATTAGACCTGGCTG-3′; PDL-1 antisense
primer sequence, 5′-TCTTACCACTCAGGACTTG-3′;
COX-2 sense primer sequence, 5′-GAAGTTGGCAGCAA
ATTGAGC-3′; COX-2 antisense primer sequence, 5′-
TTCTCCTGTGAAGGCGATGA-3′; HGF sense primer
sequence, 5′-CATGCTGGCCCTTACCTAGC-3′; and
HGF antisense primer sequence, 5′-GAGGAGAGGA
CCAAGTTCACA-3′.

Statistical analysis
Statistical analyses were performed using the Prism 7
software (GraphPad Software Inc., San Diego, CA, USA).
The statistical significance was calculated using t test
analyses to compare the differences between the two
groups and using ANOVA to compare three or more ex-
perimental groups. Spearman analysis was performed to
explore the correlation among the results of the mea-
sured variables. The results are presented as the mean ±
SD of three independent experiments. The value of p <
0.05 was considered statistically significant.

Results
Clinical characteristics of GVHD patients
Nineteen patients (12 males and 7 females) between 10
and 70 years of age (mean = 35 years) were included in
this study. Their diagnoses included aplastic anemia
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(n = 3), acute lymphoblastic leukemia (n = 5), biphenoty-
pic acute leukemia (n = 2), chronic myeloid (n = 4), acute
myeloid leukemia (n = 4), and myelofibrosis (n = 1). After
bone marrow transplantation, 7 patients developed
aGVHD, and 12 developed cGVHD. More detailed char-
acteristics of the patients are listed in Table 1.

Inflammatory profile of GVHD plasmas
The levels of TNF-α, IFN-γ, IL-10, IL-1β, IL-12p40, and
IL-15 were determined in the aGVHD and cGVHD
plasma samples. The level of such soluble factors was
markedly heterogeneous between the patient samples,
and we did not detect statistically significant differences
between the cGVHD and aGVHD plasmas, except for
IL-10, which was present in higher concentration in the
cGVHD samples (p = 0.03) (Fig. 1).

MSC phenotype was not altered by GVHD plasma
priming
MSCs primed with GVHD plasmas and MSCs primed
with healthy plasmas (control) presented similar immu-
nophenotype, with positive expression of CD44, CD73,
CD90, and CD105 (Fig. 2a, b). And no difference was
detected regarding HLA-DR expression in those cells
(Fig. 2c).

MSC proliferation after priming with GVHD plasma
Priming of MSCs with aGVHD or cGVHD did not
change the proliferative capacity of MSCs after 3 days of
culture. On the 5th day of culture a higher proliferative
capacity was observed in MSCs primed with GA2 (p =
0.006), GA7 (p = 0.0006), GC9 (p =0.0001), GC10 (p =
0.0001), GC11 (p = 0.0001), and GC12 (p=0.03), com-
pared to MSCs which were primed with plasmas ob-
tained from healthy donors (control) (Fig. 3).

MSC priming with specific plasma samples boosted their
immunosuppressive capacity
As expected, MSCs used in this study were able to in-
hibit T cell proliferation (p < 0.0001) (Fig. 4a). More im-
portantly, 57% of the aGVHD and 33% of the cGVHD
plasmas tested to prime MSCs were able to potentialize
the immunosuppressive effect of these cells. The plasma
samples which promoted superior immunosuppressive
capacity of MSCs were GA1 (p = 0.04), GA3 (p = 0.006),
GA6 (p = 0.02), GA7 (p < 0.0001), GC3 (p = 0.009), GC4
(p = 0.003), GC5 (p < 0.0001), GC6 (p = 0.01), and GC7
(p = 0.002) (Fig. 4b, c).
Considering these findings, we prepared two separ-

ate pools, including the aGVHD and cGVHD plasmas,
which were able to enhance the immunosuppressive

Table 1 Clinical characteristics of patients with GvHD

GvHD classification Sample Age Sex Diagnosis SCT source GvHD affected organ/score GvHD prophylaxis

Acute GA1 14 M AA BM Skin I SIRO + MMF

GA2 10 F ALL BM Skin III SIRO + MMF

GA3 44 F AA BM Eyes I/mouth I –

GA4 30 F B-ALL BM Mouth I/liver I SIRO

GA5 19 M ALL BM Skin/liverb Prednisone

GA6 21 M AA/PNH+ BM Skin IV/liver/GIb Prednisone + MMF

GA7 12 M B-ALL BM Skin III CSA

Chronic GC1 26 M BAL/MRD+ BM Mild –

GC2 36 M CML BM Mild –

GC3 52 F AML PBSC – CSA + prednisone

GC4 41 F BAL/MRD+ PBSC Moderate CSA

GC5 50 F CML BM – CSA

GC6 43 M CML PBSC Moderate CSA + prednisone

GC7 12 M ALL BM Mild –

GC8 24 F AML PBSC Mild –

GC9 70 M AML BM Mild CSA

GC10 69 M AML BM Severe CSA

GC11a 61 M Myelofibrosis PBSC Moderate CSA + MMF

GC12 43 M CML PBSC Severe –

M male, F female, AA aplastic anemia, ALL acute lymphoblastic leukemia, AML acute myeloblastic leukemia, BAL biphenotypic acute leukemia, BM bone marrow,
CML chronic myeloid leukemia, CSA cyclosporine, MMF mycophenolate mofetil, MRD minimal residual disease, PBSC peripheral blood stem cells, PNH paroxymal
nocturnal hemoglobinuria, SCT stem cell transplantation, SIRO sirolimus
aOverlap syndrome
bNon-classified
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potential of MSCs. MSCs were primed with such
plasma pools, which were tested at 5, 15, and 25%.
Importantly, we noticed a dose-response pattern, in
which an increased immunosuppressive potential in
MSCs primed with aGVHD pool at 15% (p = 0.01)
and 25% (p = 0.001) was observed when compared to
cells primed with aGVHD at 5%. The same pattern
was observed for the MSCs primed with cGVHD

pool. Compared to cells primed with 5% cGVHD
pool, the cells primed with 15% (p < 0.0001) and 25%
(p < 0.0001) plasma pools presented a higher capacity
to control T cell proliferation (Fig. 4d).
Due to their pronounced efficacy in boosting MSC im-

munomodulatory capacity, GA1, GA3, GA6, GA7, GC3,
GC4, GC5, GC6, and GC7 were selected for further
experiments.

Fig. 2 Immunophenotypic characterization of MSCs. a The expression of CD44, CD73, CD90, and CD105 was analyzed in control (MSCs primed
with pooled plasma from healthy donors), as well in MSCs primed with aGVHD (acute GVHD) and cGVHD (chronic GVHD) by flow cytometry. b
Representative histograms of single MSC samples investigated in each experimental group. c HLA-DR expression in control MSCs, as well as in
MSCs primed with aGVHD (acute GVHD) and cGVHD (chronic GVHD)

Fig. 1 Quantification of immunomodulatory cytokines in aGVHD and cGVHD plasmas. a–f The levels of TNF-α, IFN-γ, IL-10, IL-1β, IL-12p40, and IL-
15 were assessed by ELISA in 7 samples of aGVHD, 12 samples of cGVHD, and also in a plasma pool comprising samples obtained from 8 healthy
donors (represented by the horizontal line). Results are presented as mean concentration ± SD. aGVHD, acute GVHD; cGVHD, chronic GVHD
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Fig. 3 MSC proliferation. a Number of MSCs cultured in the presence of either a pool of plasmas obtained from healthy donors (control) or
individual aGVHD plasma samples GA1-GA7. b Number of MSCs cultured in the presence of control and individual cGVHD (GC1-GC12) plasma
samples. The number of MSCs was determined after 3 and 5 days of cell culture. Results are presented as mean ± SD of three independent
experiments. **p <0.01 and ***p <0.001

Fig. 4 Immunosuppressive potential of MSCs. a Representative CFSE histogram of activated T cell (black histogram) and activated T cell co-
cultured with MSCs (T cell—MSCs, gray histogram). b T cell proliferation after co-culture with control MSCs (primed with pooled plasma from
healthy donors) and MSCs primed with acute GVHD (GA 1-7) and chronic GVHD (GC 1-12) individual plasma samples. c Percentage of aGVHD
and cGVHD plasmas which succeeded or failed to increase the immunosuppressive potential of primed MSCs. d T cell proliferation after co-
culture with 5%, 15%, and 25% of the pool of aGVHD and cGVHD plasmas that enhanced the MSC immunosuppressive function. Results are
presented as mean concentration ± SD of three independent experiments. *p < 0.05, **p < 0.01, and ****p < 0.0001
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Primed MSCs with enhanced immunosuppressive
potential show altered morphology
It has been described that MSCs with the highest im-
munosuppressive potential have specific morphological
features, i.e., a higher ratio of nucleic/cytoplasmic area,
smaller perimeter, and Feret diameter. Those characteris-
tics can be used as a parameter to assess the MSC im-
munosuppressive potential [28, 29]. In order to investigate
whether GVHD plasma priming would alter MSC morph-
ology, MSCs primed with GVHD plasmas and MSCs
primed with healthy plasmas (control) were analyzed im-
mediately after the priming protocol. Corroborating the
data obtained from the immunosuppression assay, the
MSCs primed with GVHD plasmas presented a morpho-
logical pattern indicative of higher immunosuppressive
potential. Despite presenting a similar ratio of nucleic/
cytoplasmic area, the MSCs primed with GVHD plasmas
showed smaller maximum Feret diameter (p < 0.01) and
perimeter (p < 0.05) (Fig. 5a, b). When MSCs primed with
aGVHD and cGVHD samples were analyzed separately, it
was possible to observe that aGVHD samples had even
smaller maximum Feret diameter and perimeter com-
pared to control and cGVHD primed MSCs (Fig. 5c).

Generations of Tregs by MSCs
One of the several mechanisms of MSC immunosup-
pression is the induction of differentiation and expan-
sion of Tregs. Here, we noticed that MSCs primed with
GA1 (p = 0.05), GA6 (p = 0.01), and GC3 (p = 0.005) pro-
moted Treg generation, while those primed with GA3
(p = 0.01) and GC5 (p = 0.01) actually impaired the pro-
duction of such cells (Fig. 6a).

MSCs primed with cGVHD present increased expression
of ICAM-1
We then interrogated whether priming MSCs with
GVHD plasmas exerted any impact over the expression
of VCAM-1 and ICAM-1. We observed that only MSCs
primed with GC5 plasma presented increased expression
of VCAM-1 (p = 0.02), while MSCs primed with GA1
(p = 0.003), GA6 (p = 0.002), GC3 (p = 0.003), and GC7
(p = 0.003) plasmas presented a decreased expression of
such adhesion molecule (Fig. 6b). Regarding ICAM-1 ex-
pression, while GA7 (p = 0.0001) decreased the expres-
sion of this molecule on primed MSCs, GA1 (p < 0.0001)
and GA6 (p < 0.0001) increased this expression. Surpris-
ingly, all cGVHD plasmas tested promoted ICAM-1

Fig. 5 Morphometric evaluation of MSCs. MSCs primed with pooled plasma from healthy donors (control) and primed with GVHD plasmas were
analyzed according to the nucleus and cytoplasmic area ratio, maximum Feret diameter, and perimeter. a 3D graph showing the different
distribution of control and MSCs primed with GVHD plasmas. b Nucleus and cytoplasmic area ratio, maximum Feret diameter, and perimeter
comparisons between the control and MSCs primed with GVHD plasmas. c The nucleus and cytoplasmic area ratio, maximum Feret diameter,
and perimeter analysis of control MSCs, as well as MSCs primed with aGVHD and cGVHD plasmas. d Representative morphology of MSC primed
with pooled plasma from healthy donors (control), aGVHD, and cGVHD plasmas (magnification × 100). Results are presented as means or
means ± SD of three independent experiments. *p < 0.05 and **p < 0.01
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Fig. 6 Generation of Tregs and expression of adhesion molecules on MSC surface. a The percentage of CD4+CD25+FOXP3+ in PBMCs cultured
with control MSCs and MSCs primed with aGVHD plasmas (GA1, GA3, GA6, GA7) and cGVHD (GC3, GC4, GC5, GC6, GC7) was assessed by flow
cytometry. This technique also was used to determine the expression of VCAM-1 (b) and ICAM-1 (c) on control and primed MSCs. d ICAM-1
expression was determined also in MSCs primed with crescent concentrations of a pool of cGVHD plasmas. Results are presented as mean
concentration ± SD of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001

Fig. 7 Gene expression analysis of selected transcripts. a–g TGF-β, IDO, PDL-1, IL-10, COX-2, HGF, and Galectin-1 expression were assessed in MSCs primed
with healthy plasmas (control) and in MSCs primed with the plasmas GA1, GA3, GA6, GA7, GC3, GC4, GC5, GC6, and GC7. h Heat map of specific genes
expressed in control MSCs and primed MSCs. i Hierarchical clustering of gene expression data. *p< 0.05, **p< 0.01, *** p< 0.001, and ****p< 0.0001
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hyperexpression on MSC surface (p < 0.0001) (Fig. 6c).
In order to validate this finding, we promoted MSCs
priming with increasing concentrations of pooled
cGVHD plasmas (5, 10, 15, and 25%), and it was noticed
that such pool induced the hyperexpression of ICAM-1
in a dose-dependent manner (Fig. 6d).

Gene expression of MSCs primed with GVHD plasma
mRNA expression of TGF-β, IDO, PDL-1, IL-10, COX-
2, HGF, and Galectin-1 were assessed in MSCs primed
with healthy plasmas (control) and in MSCs primed with
GVHD plasmas. TGF-β transcriptional levels were in-
creased in MSCs primed with GA6 (p = 0.003), GC3
(p = 0.003), GC6 (p = 0.0001), and GC7 (p = 0.0006). It is
important to note that although no statistical difference
was detected, all other GVHD plasmas tested as a prim-
ing strategy also increased the TGF-β expression by at
least 37%. None of the tested plasmas were able to in-
duce increased expression of IDO and IL-10 in primed
MSCs, compared to the control counterparts. Also, all
GVHD plasmas tested caused a reduction in PDL-1 and
COX-2 expression by MSCs. Only plasma GA3 pro-
moted greater HGF (p < 0.0001) and Galectin-1 (p <
0.0001) expression compared to control samples
(Fig. 7a–g). Despite individual variability among samples,
hierarchical clustering of the transcriptional profile of
primed MSCs revealed a higher similarity among MSCs

primed with cGVHD, compared to those primed with
aGVHD.

Correlation analysis
Since the parameters analyzed presented high variability
between patients, we decided to investigate how plasma
components used for MSC priming might influence the
MSC-related variables. First, we analyzed how different
parameters correlated to the percentage of T cell prolif-
eration (Fig. 8a–c). Interestingly, we observed that rela-
tively high IL-10 levels in the plasma used for MSC
priming were associated with a lower immunosuppres-
sive capacity of primed MSCs (r = 0.50, p = 0.01), regard-
less of the IFN-γ levels in the tested plasmas.
Considered as a discrete variable, IFN-γ was not signifi-
cantly correlated with primed MSC capacity to inhibit T
cell proliferation (r = 0.30, p = 0.10). However, when the
ratio between IFN-γ/IL-10 plasma levels was considered,
a significant correlation was observed; the higher the
IFN-γ/IL-10 ratio, the more effective the primed cells
were to inhibit T cell proliferation (r = − 0.60, p = 0.02).
A similar observation was made when the sum of IFN-γ
and TNF-α content divided by IL-10 levels in the plasma
were analyzed (r = − 0.52, p = 0.01). Finally, we noticed
that both high IFN-γ and also high IFN-γ/IL-10 ratio in
the plasma led to a higher capacity of primed MSCs to
induce Treg generation (r = 0.66, p = 0.02, and r = 0.71,
p = 0.01, respectfully) (Fig. 8a–e).

Fig. 8 Correlation analysis between plasma cytokine levels and primed MSC immunosuppressive behavior. The levels of IL-10 (a), IFN-γ (d), the
ratio of IFN-γ/IL-10 (b, e), and the ratio of (TNF-α+IFN-γ)/IL-10 (c) cytokines in the plasmas used to prime MSCs were significantly associated with
the capacity of primed MSCs to control T cell proliferation (a–c) and to promote Treg generation (d, e), regardless of the GVHD disease type
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Discussion
Recently, several studies have been published demon-
strating that the immunosuppressive functions of MSCs
can be boosted by priming with recombinant inflamma-
tory factors, especially IFN-γ, TNF-α, and IL-17 [22, 23].
With this in mind, in this study, we interrogated
whether the use of the plasma collected from GVHD pa-
tients might be an effective and innovative strategy to
boost MSC immunomodulatory behavior. Importantly,
our data have shown that GVHD-derived plasma can be
used as a biological alternative to enhance the immuno-
suppressive potential of MSCs.
A storm of inflammatory factors has been described to

occur during GVHD, arising primarily from the radiation
and chemotherapy conditioning damage, but also influ-
enced by patient microbiota and activated immune cells
[30]. In order to characterize our GVHD cohort and the
biological products used to prime MSCs, the levels of
IFN-γ, TNF-α, IL-1β, IL-12p40, IL-15, and IL-10 were de-
termined. Higher levels of IL-10 were observed in cGVHD
samples, which constitute a biological marker of this dis-
ease [31, 32]. The concentration of the other factors was
markedly heterogeneous among the GVHD patients,
which may be explained, at least in part, by the different
therapeutic regimens of each patient [33].
Interestingly, despite IFN-γ being considered the cyto-

kine with the highest capacity to potentialize MSC immu-
nomodulatory behavior, its levels were not significantly
correlated with an enhanced capacity of primed MSCs to
inhibit T cell proliferation. Still, IFN-γ levels in the plasma
were significantly correlated with a higher capacity of
primed MSCs to induce Treg generation. IL-10 levels in
the plasmas used to prime MSCs were significantly corre-
lated with a higher capacity of primed MSCs to control T
cell proliferation. The ratio of IFN-γ/IL-10 cytokines in
the plasma presented the highest significance in the cor-
relation with T cell proliferation inhibition by primed
MSCs and also Treg generation. Such observations allow
to hypothesize that, in the presence of a more suppressive
milieu (i.e., incubation with high levels of IL-10), MSCs
are not adequately primed licensed to control the immune
response, while in a more inflammatory milieu, defined
not only by IFN-γ but also by IL-10 cytokine levels, the
primed MSCs potentialize their capacity to inhibit T cell
proliferation and to promote Treg generation. Such data
also allows hypothesizing that IFN-γ and IL-10 cytokine
levels differ between GVHD patients who respond or not
to MSC therapy, which could help explain, at least in part,
the observed outcomes. We propose that such hypotheses
should be tested, in order to confirm whether it would be
possible to boost MSC immunomodulation by priming
MSCs in high IFN-γ/IL-10 environments and also to
screen patients (and therapeutic windows) who would
most probably benefit from MSC therapy.

In the present study, the primed MSCs were also in-
vestigated in order to understand how the priming strat-
egies altered their phenotype. First, both aGVHD and
cGVHD MSC priming were phenotyped and shown to
maintain the classical profile of MSCs. Importantly, none
of these priming strategies investigated induced the ex-
pression of HLA-DR in MSCs, which may represent an
advantage in relation to priming with IFN-γ [34]. Inter-
estingly, the GVHD plasmas were also shown to enhance
the MSC proliferative capacity. More importantly, we
identified that some aGVHD and cGVHD plasmas were
able to strongly enhance the immunomodulatory cap-
acity of MSCs, possibly in a dose-dependent manner, as
shown in the pooled plasma experiments.
Even though Leijs and colleagues were not investigat-

ing MSC priming strategies, they reported that synovial
fluid from arthritis patients enhances IDO expression
and the immunoregulatory capacity of MSCs [35]. In
contrast to their findings, our data revealed that primed
MSCs displaying increased immunosuppressive function
generally presented variable IDO, IL-10, and Galectin-1
mRNA levels when compared to control samples. Never-
theless, we observed an increased expression of TGF-β
transcripts in primed MSCs, which is an important me-
diator of the immunosuppressive role of MSC over both
innate and adaptive immunity cells [4, 36]. Surprisingly,
even though TGF-β participates in the generation of
Tregs by MSCs [37], we did not notice a greater produc-
tion of Tregs by primed MSCs.
The adhesion molecule ICAM-1 is an important medi-

ator of the immunosuppressive function of MSCs. It was
demonstrated that the expression of this adhesion molecule
could be enhanced by the presence of IFN-γ and TNF-α
[38]. Surprisingly, all cGVHD samples that enhanced the
immunosuppressive function of MSCs induced a hyperex-
pression of ICAM-1 on their surface, even though these
plasmas did not show the highest levels of ICAM-1. Inter-
estingly, though, this effect was gradually increased as
MSCs were primed with higher concentrations of cGVHD
plasma. Recently, Tang and colleagues demonstrated that
MSCs overexpressing ICAM-1 prolonged the survival of
mice with GVHD [39]. In accordance with such observa-
tion, MSCs overexpressing ICAM-1 were shown to possess
stronger therapeutic effects than ICAM-1-low MSCs in a
mouse model of inflammatory bowel disease [40].
Besides the altered gene and protein expression in

primed MSCs, we also observed a marked alteration in
cellular morphology. Therefore, we decided to quantify
such data and realized that, as shown by Klinker and
colleagues [28], as well as Marklein and colleagues [29],
MSCs with the highest immunomodulatory capacity are
relatively smaller than their counterparts, presenting a
higher nucleus to the cytoplasmic area, lower perimeter,
and maximum Feret diameter.
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A significant limitation of our study is the fact that the
plasmas were obtained from GVHD patients that pre-
sented different bone marrow diseases and different
GVHD scores and received different therapeutic regi-
mens. Since previous reports indicate that immunosup-
pressants can affect MSC functions [41, 42], we cannot
rule out the possible contribution of these drugs to the
effects observed in our study.

Conclusions
To the best of our knowledge, the present work is the
first to demonstrate the use of a biological product as a
strategy to prime MSCs, in which the patient’s own dis-
ease is explored. Overall, we hope our observations will
pave the way for further validation in preclinical and
clinical models. The obtained results may aid the devel-
opment of new therapeutic approaches for the treatment
of GVHD and other immune diseases.

Abbreviations
GAL-1: Galectin 1; GAL-9: Galectin 9; GVHD: Graft-versus-host disease;
HGF: Hepatocyte growth factor; ICAM-1: Intercellular adhesion molecule 1;
IDO: Indoleamine 2,3-dioxygenase; IL-1β: Interleukin-1 beta; IL-6: Interleukin-6;
IL-10: Interleukin-10; IL-12p40: Interleukin-12; IL-15: Interleukin-15; IFN-
γ: Interferon gamma; MSC: Mesenchymal stem cell; PBMC: Peripheral blood
mononuclear cells; PDL-1: Programmed death-ligand 1; PGE2: Prostaglandin
E2; TGF-β: Transforming growth factor beta; TNF-α: Tumor necrosis factor
alpha; Treg: Regulatory T cell; VCAM-1: Vascular cell adhesion protein 1

Acknowledgements
We are very grateful to all participants in this study. Thank you to the
Institute of Cardiology of Federal District and at the University Hospital of
the Medical School of Ribeirão Preto for their support of the study and their
help with the recruitment.

Authors’ contributions
AESC and LPR contributed to the data collection, study execution, data
analysis, and interpretation. JLS, MRA, GB, and BPS contributed to the data
collection and study execution. FARN, RAP, JLC, and FSA contributed to the
data analysis and interpretation, preparation, and editing of the manuscript.
All authors read and approved the fina manuscript.

Funding
This study was funded by the Fundação de Amparo à Pesquisa do Distrito
Federal (FAPDF), Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES).

Availability of data and materials
The authors confirm that all data underlying the findings are fully available.

Ethics approval and consent to participate
The present study was approved by the Ethical Committee of Health
Sciences Faculty of the University of Brasília (CAAE: 64079216.3.0000.0030).
Written informed consent was obtained from all subjects and parents/legally
authorized representatives of minors included in the study. All patients
consented with the publication of the clinical information presented in this
work.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Laboratório de Farmacologia Molecular, Departamento de Ciências da
Saúde, Universidade de Brasília, Brasilia, DF, Brazil. 2Laboratório de
Hematologia e Células-Tronco, Departamento de Ciências da Saúde,
Universidade de Brasília, Brasilia, DF, Brazil. 3Programa de Pós-graduação em
Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília,
Brasilia, DF, Brazil. 4Laboratório de Hematologia, Hospital das Clínicas da
Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo,
Ribeirao Preto, SP, Brazil. 5Laboratório de Bioquímica e Química de Proteínas,
Departamento de Biologia Celular, Universidade de Brasília, Brasilia, DF, Brazil.
6Unidade de Transplante de Medula Óssea, Instituto de Cardiologia do
Distrito Federal, Brasilia, DF, Brazil. 7Laboratório de Biologia Funcional (LFBio),
Centro de Terapia Celular (CTC), Hemocentro de Ribeirão Preto, Rua Tenente
Catão Roxo, Ribeirão Preto, SP 2501, Brazil. 8Programa de Pós-graduação em
Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasilia,
DF, Brazil.

Received: 17 December 2019 Revised: 21 February 2020
Accepted: 20 March 2020

References
1. Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue

repair. Front Immunol. 2013;4:201.
2. Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by

mesenchymal stromal cells: what do we know so far? Biomed Res Int. 2014;
2014:216806.

3. Chinnadurai R, Copland IB, Patel SR, Galipeau J. IDO-independent
suppression of T cell effector function by IFN-γ-licensed human
mesenchymal stromal cells. J Immunol. 2014;192:1491–501.

4. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P,
et al. Human bone marrow stromal cells suppress T-lymphocyte
proliferation induced by cellular or nonspecific mitogenic stimuli. Blood.
2002;99:3838–43.

5. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D. Human bone
marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-
dioxygenase-mediated tryptophan degradation. Blood. 2004;103:4619–21.

6. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate
allogeneic immune cell responses. Blood. 2005;105:1815–22.

7. Najar M, Rouas R, Raicevic G, Boufker HI, Lewalle P, Meuleman N, et al.
Mesenchymal stromal cells promote or suppress the proliferation of T
lymphocytes from cord blood and peripheral blood: the importance of low
cell ratio and role of interleukin-6. Cytotherapy. 2009;11:570–83.

8. Yang S-H, Park M-J, Yoon I-H, Kim S-Y, Hong S-H, Shin J-Y, et al. Soluble
mediators from mesenchymal stem cells suppress T cell proliferation by
inducing IL-10. Exp Mol Med. 2009;41:315–24.

9. Lepelletier Y, Lecourt S, Renand A, Arnulf B, Vanneaux V, Fermand J-P, et al.
Galectin-1 and Semaphorin-3A are two soluble factors conferring T-cell
immunosuppression to bone marrow mesenchymal stem cell. Stem Cells
Dev. 2010:1075–9 Available from: https://doi.org/10.1089/scd.2009.0212.

10. Gieseke F, Kruchen A, Tzaribachev N, Bentzien F, Dominici M, Müller I.
Proinflammatory stimuli induce galectin-9 in human mesenchymal stromal
cells to suppress T-cell proliferation. Eur J Immunol. 2013;43:2741–9.

11. Saldanha-Araujo F, Ferreira FIS, Palma PV, Araujo AG, Queiroz RHC, Covas DT,
et al. Mesenchymal stromal cells up-regulate CD39 and increase adenosine
production to suppress activated T-lymphocytes. Stem Cell Res. 2011;7:66–74.

12. Bader P, Kuçi Z, Bakhtiar S, Basu O, Bug G, Dennis M, et al. Effective
treatment of steroid and therapy-refractory acute graft-versus-host disease
with a novel mesenchymal stromal cell product (MSC-FFM). Bone Marrow
Transplant. 2018;53:852–62.

13. Lucchini G, Introna M, Dander E, Rovelli A, Balduzzi A, Bonanomi S, et al.
Platelet-lysate-expanded mesenchymal stromal cells as a salvage therapy for
severe resistant graft-versus-host disease in a pediatric population. Biol
Blood Marrow Transplant. 2010:1293–301 Available from: https://doi.org/10.
1016/j.bbmt.2010.03.017.

14. Müller I, Kordowich S, Holzwarth C, Isensee G, Lang P, Neunhoeffer F, et al.
Application of multipotent mesenchymal stromal cells in pediatric patients
following allogeneic stem cell transplantation. Blood Cells Mol Dis. 2008;40:
25–32.

15. Resnick IB, Barkats C, Shapira MY, Stepensky P, Bloom AI, Shimoni A, et al.
Treatment of severe steroid resistant acute GVHD with mesenchymal
stromal cells (MSC). Am J Blood Res. 2013;3:225–38.

Silva-Carvalho et al. Stem Cell Research & Therapy          (2020) 11:156 Page 11 of 12

https://doi.org/10.1089/scd.2009.0212
https://doi.org/10.1016/j.bbmt.2010.03.017
https://doi.org/10.1016/j.bbmt.2010.03.017


16. Ball LM, Bernardo ME, Roelofs H, van Tol MJD, Contoli B, Zwaginga JJ, et al.
Multiple infusions of mesenchymal stromal cells induce sustained remission
in children with steroid-refractory, grade III-IV acute graft-versus-host
disease. Br J Haematol. 2013;163:501–9.

17. von Bahr L, Sundberg B, Lönnies L, Sander B, Karbach H, Hägglund H, et al.
Long-term complications, immunologic effects, and role of passage for
outcome in mesenchymal stromal cell therapy. Biol Blood Marrow
Transplant. 2012;18:557–64.

18. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M,
et al. Treatment of severe acute graft-versus-host disease with third party
haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–41.

19. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et al.
Mesenchymal stem cells for treatment of steroid-resistant, severe, acute
graft-versus-host disease: a phase II study. Lancet. 2008;371:1579–86.

20. Oliveira-Bravo M, Sangiorgi BB, Schiavinato JLDS, Carvalho JL, Covas DT,
Panepucci RA, et al. LL-37 boosts immunosuppressive function of placenta-
derived mesenchymal stromal cells. Stem Cell Res Ther. 2016;7:189.

21. Sangiorgi B, De Freitas HT, Schiavinato JLDS, Leão V, Haddad R, Orellana
MD, et al. DSP30 enhances the immunosuppressive properties of
mesenchymal stromal cells and protects their suppressive potential from
lipopolysaccharide effects: a potential role of adenosine. Cytotherapy. 2016;
18:846–59.

22. de Noronha NC, Mizukami A, Caliári-Oliveira C, Cominal JG, JLM R, Covas DT,
et al. Priming approaches to improve the efficacy of mesenchymal stromal
cell-based therapies. Stem Cell Res Ther. 2019;10:131.

23. Carvalho AÉS-, Sousa MRR, Alencar-Silva T, Carvalho JL, Saldanha-Araujo F.
Mesenchymal stem cells immunomodulation: the road to IFN-γ licensing
and the path ahead. Cytokine Growth Factor Rev. 2019;47:32–42.

24. Chinnadurai R, Copland IB, Garcia MA, Petersen CT, Lewis CN, Waller EK,
et al. Cryopreserved mesenchymal stromal cells are susceptible to T-cell
mediated apoptosis which is partly rescued by IFNγ licensing. Stem Cells.
2016;34:2429–42.

25. Serejo TRT, Silva-Carvalho AÉ, de Braga LDCF, de Neves FAR, Pereira RW, de
Carvalho JL, et al. Assessment of the immunosuppressive potential of INF-γ
licensed adipose mesenchymal stem cells, their secretome and extracellular
vesicles. Cells. 2019;8 Available from: https://doi.org/10.3390/cells8010022.

26. Taddio A. Failure of interferon-γ pre-treated mesenchymal stem cell
treatment in a patient with Crohn’s disease. World J Gastroenterol. 2015:
4379 Available from: https://doi.org/10.3748/wjg.v21.i14.4379.

27. Franco D, Franco T, Schettino AM, Filho JMT, Vendramin FS. Protocol for
obtaining platelet-rich plasma (PRP), platelet-poor plasma (PPP), and
thrombin for autologous use. Aesthetic Plast Surg. 2012;36:1254–9.

28. Klinker MW, Marklein RA, Lo Surdo JL, Wei C-H, Bauer SR. Morphological
features of IFN-γ–stimulated mesenchymal stromal cells predict overall
immunosuppressive capacity. Proc Natl Acad Sci. 2017:E2598–607 Available
from: https://doi.org/10.1073/pnas.1617933114.

29. Marklein RA, Klinker MW, Drake KA, Polikowsky HG, Lessey-Morillon EC,
Bauer SR. Morphological profiling using machine learning reveals emergent
subpopulations of interferon-γ–stimulated mesenchymal stromal cells that
predict immunosuppression. Cytotherapy. 2019:17–31 Available from:
https://doi.org/10.1016/j.jcyt.2018.10.008.

30. Henden AS, Hill GR. Cytokines in graft-versus-host disease. J Immunol. 2015:
4604–12 Available from: https://doi.org/10.4049/jimmunol.1500117.

31. Liem LM, van Houwelingen HC, Goulmy E. Serum cytokine levels after HLA-
identical bone marrow transplantation. Transplantation. 1998;66:863–71.

32. Pidala J, Sarwal M, Roedder S, Lee SJ. Biologic markers of chronic GVHD.
Bone Marrow Transplant. 2014;49:324–31.

33. Choi SW, Reddy P. Current and emerging strategies for the prevention of
graft-versus-host disease. Nat Rev Clin Oncol. 2014;11:536–47.

34. Sivanathan KN, Gronthos S, Rojas-Canales D, Thierry B, Toby CP. Interferon-
gamma modification of mesenchymal stem cells: implications of
autologous and allogeneic mesenchymal stem cell therapy in
allotransplantation. Stem Cell Rev Rep. 2014:351–75 Available from: https://
doi.org/10.1007/s12015-014-9495-2.

35. Leijs MJC, van Buul GM, Lubberts E, Bos PK, Verhaar JAN, Hoogduijn MJ,
et al. Effect of arthritic synovial fluids on the expression of
immunomodulatory factors by mesenchymal stem cells: an explorative
in vitro study. Front Immunol. 2012; Available from: https://doi.org/10.3389/
fimmu.2012.00231.

36. Liu F, Qiu H, Xue M, Zhang S, Zhang X, Xu J, et al. MSC-secreted TGF-β
regulates lipopolysaccharide-stimulated macrophage M2-like polarization via

the Akt/FoxO1 pathway. Stem Cell Res Ther. 2019; Available from: https://
doi.org/10.1186/s13287-019-1447-y.

37. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact,
prostaglandin E(2) and transforming growth factor beta 1 play non-
redundant roles in human mesenchymal stem cell induction of CD4+
CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol. 2009;
156:149–60.

38. Ghannam S, Pène J, Torcy-Moquet G, Jorgensen C, Yssel H. Mesenchymal
stem cells inhibit human Th17 cell differentiation and function and induce a
T regulatory cell phenotype. J Immunol. 2010:302–12 Available from:
https://doi.org/10.4049/jimmunol.0902007.

39. Tang B, Li X, Liu Y, Chen X, Li X, Chu Y, et al. The therapeutic effect of
ICAM-1-overexpressing mesenchymal stem cells on acute graft-versus-host
disease. Cell Physiol Biochem. 2018;46:2624–35.

40. Li X, Wang Q, Ding L, Wang Y-X, Zhao Z-D, Mao N, et al. Intercellular
adhesion molecule-1 enhances the therapeutic effects of MSCs in a dextran
sulfate sodium-induced colitis models by promoting MSCs homing to
murine colons and spleens. Stem Cell Res Ther. 2019;10:267.

41. Hoogduijn MJ, Crop MJ, Korevaar SS, Peeters AMA, Eijken M, Maat LPWM,
et al. Susceptibility of human mesenchymal stem cells to tacrolimus,
mycophenolic acid, and rapamycin. Transplantation. 2008;86:1283–91.

42. Wang B, Lin Y, Hu Y, Shan W, Liu S, Xu Y, et al. mTOR inhibition improves
the immunomodulatory properties of human bone marrow mesenchymal
stem cells by inducing COX-2 and PGE. Stem Cell Res Ther. 2017;8:292.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Silva-Carvalho et al. Stem Cell Research & Therapy          (2020) 11:156 Page 12 of 12

https://doi.org/10.3390/cells8010022
https://doi.org/10.3748/wjg.v21.i14.4379
https://doi.org/10.1073/pnas.1617933114
https://doi.org/10.1016/j.jcyt.2018.10.008
https://doi.org/10.4049/jimmunol.1500117
https://doi.org/10.1007/s12015-014-9495-2
https://doi.org/10.1007/s12015-014-9495-2
https://doi.org/10.3389/fimmu.2012.00231
https://doi.org/10.3389/fimmu.2012.00231
https://doi.org/10.1186/s13287-019-1447-y
https://doi.org/10.1186/s13287-019-1447-y
https://doi.org/10.4049/jimmunol.0902007

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Plasma collection and preparation
	Enzyme-linked immunosorbent assay
	MSC culture and characterization
	MSC priming
	MSC proliferation
	Immunosuppression assay
	MSC morphology
	Generation of regulatory T cells
	VCAM-1 and ICAM-1 expression
	Real-time PCR
	Statistical analysis

	Results
	Clinical characteristics of GVHD patients
	Inflammatory profile of GVHD plasmas
	MSC phenotype was not altered by GVHD plasma priming
	MSC proliferation after priming with GVHD plasma
	MSC priming with specific plasma samples boosted their immunosuppressive capacity
	Primed MSCs with enhanced immunosuppressive potential show altered morphology
	Generations of Tregs by MSCs
	MSCs primed with cGVHD present increased expression of ICAM-1
	Gene expression of MSCs primed with GVHD plasma
	Correlation analysis

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

