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Abstract

Background: Some children who have survived cancer will be azoospermic in the future. Performing isolation and
purification procedures for spermatogonial stem cells (SSC) is very critical. In this regard, performing the process of
decontamination of cancerous cells is the initial step. The major objective of the present study is to separate the
malignant EL4 cell line in mice and spermatogonial stem cells in vitro.

Methods: The spermatogonial stem cells of sixty neonatal mice were isolated, and the procedure of co-
culturing was carried out by EL4 which were classified into 2 major groups: (1) the control group (co-culture
in a growth medium) and (2) the group of co-cultured cells which were separated using the microfluidic
device. The percentage of cells was assessed using flow cytometry technique and common laboratory
technique of immunocytochemistry and finally was confirmed through the laboratory technique of reverse
transcription-polymerase chain reaction (RT-PCR).

Results: The actual percentage of EL4 and SSC after isolation was collected at two outlets: the outputs for
the smaller outlet were 0.12% for SSC and 42.14% for EL4, while in the larger outlet, the outputs were 80.38%
for SSC and 0.32% for EL4; in the control group, the percentages of cells were 21.44% for SSC and 23.28% for
EL4 (based on t test (p <0.05)).

Conclusions: The present study demonstrates that the use of the microfluidic device is effective in separating
cancer cells from spermatogonial stem cells.
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Background

The spermatogonium that are present in the testicles
from birth are the precursors to the production of male
sex cells. The presence of these kinds of cells is very
essential for performing the process of spermatogenesis.
But unfortunately, these cells are not capable of making
the mature sperm before the puberty period due to the
fact that they are dependent on hormonal stimuli [1].
Sometimes, this system is in difficulty, and it is possible
to maintain the reproductive capacity and fertility system
in men that can ejaculate. In recent years, the success
rate of chemotherapy or radiotherapy for the treatment
of childhood cancers has been high, whereas more than
70% of children with cancer reach adulthood and repro-
ductive years. Infertility is one of the most common
complications of childhood cancer in treated boys in the
long run. Unfortunately, about one third of children dur-
ing their puberty period would experience a considerable
decrease in the number of sperms or may face with the
medical condition of azoospermia [2, 3]. This can
jeopardize their quality of life [4].

In recent years, many attempts have been made to
cryopreserve testicular tissue and then to transplant it
after chemotherapy and cancer relief, and the willingness
of physicians has increased in this way [5, 6]. Cryopre-
served testicular tissues have been obtained from boys
with cancer before chemotherapy begins to be used to
produce sperm germ cells using different culture
methods. Before starting chemotherapy, the germ cell
(spermatogonial stem cell) is isolated and maintained,
and after the patient’s treatment period and after pu-
berty, the cells can be transplanted to the patient and, as
a result, fertility can be maintained in these individuals.
However, there is a risk of contaminated germ cells
taken by tumor cells [7]. The risk of interstitial and
intravascular infiltration of testicular tissue among chil-
dren would increase due to the hematological metastatic
spread of childhood solid tumors. Additionally, in chil-
dren with acute lymphoblastic leukemia (ALL) cancer,
the risk of interstitial and intravascular infiltration of tes-
ticular tissue is very substantial too. Anyway, among one
fifth of patients diagnosed with this kind of tumor,
microscopic infiltration of leukemic cells would be seen
in their blood tests [8].

Jahnukainen reported that germ cell transplantation
from leukemic mice induced tumor formation. Germ
cells must, therefore, be completely separated from the
tumor cells [7]. Fujita et al. isolated the germ cell from 5
different human cancer cell lines using the FACS tech-
nique. In this study, human germ cells from 5 cell lines
of leukemia by using anti-MHC-I and CD45+ antibodies
(specific tumor cell markers) were isolated. In this study,
it is shown that, with this method, spermatogonial trans-
plantation is not safe enough [9]. Geens et al
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investigated the separation of germ cells from tumor
cells in mice and in human testis cell suspensions using
MACS and FACS. Initially, they created a cancerous
model in the mouse by infusion of the EL4 tumor cell
line; after co-culture isolation, separation of cell suspen-
sion was performed using MACS and FACS, and after
that, unfortunately one of the 20 transplanted mice got
malignant after transplantation. Moreover, Hou et al
[10] have tested the MACS method and showed that the
separation method of magnetic-activated cell sorting was
not able to remove malignant contamination effectively
[10]. As a result, MACS and FACS were not sufficiently
effective for complete tumor cell removal from the tes-
ticular tissue [11]. Furthermore, these methods are com-
plex and costly, and the survival of cells is poorly
reported. Differential plating was also suggested by some
articles to enrich spermatogonia in cell suspension
derived from the testis sample after enzymatic digestion
[12, 13]. Moreover, during this stage of studies perform-
ing the identification process of specific markers, isola-
tion and enrichment of undifferentiated spermatogonia
from differentiated germ cells and vegetal cells were per-
formed precisely by researchers. However, conducting
the process of isolation of blood-related malignancies
from germ cells requires a more precise assessment be-
fore performing any related clinical procedures. In a
study conducted by Dirami and colleagues [12], by utiliz-
ing differential adhesion and sedimentation velocity
(separating based on shape and size), an isolate of cells
was created that contains 95 to 98% porcine type A
spermatogonia. In their study, Shinohara et al. [14] dem-
onstrated that by using the technique of laminin adhe-
sion, the process of isolation of spermatogonial stem
cells (SSCs) was improved to 3-fold [14]. In another
similar study, Morena et al. [15] demonstrated that
attaining an 85% isolate of type A, c-kit-positive sperm-
atogonia utilized the technique of sedimentation velocity
(SV-AUC) in conjunction with differential adhesion hy-
pothesis (DAH) [15].

Due to the lack of specific SSC cell markers, it should
focus on other methods. But it turns out that the focus
on destroying cancer cells instead of focusing on healthy
cells is also a new method used in recent years. Tumor
cells should be targeted as well, and studies have been
carried out in this regard.

Shabani et al. demonstrated the effect of chemotherapy
with cisplatin on the survival rate of cancer cell lines in
acute lymphoblastic leukemia (EL4) and mouse sperm-
atogonial stem cells in vitro. In this study, there were
four groups which received various cisplatin dosage (0.5,
5, 10, and 15 mg/ml) and five groups treated as the con-
trol group (just received medium). The cells’ viability
was examined by colorimetric assay of MTT. Based on
their achieved results, the number of both EL4 and SSC
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with a dose of 15mg cisplatin decreased significantly
compared with the control group (p <0.05). Besides, at
different times, there was a significant difference be-
tween the half maximal inhibitory concentration (IC50)
in doses 10 and 15 mg/ml [16]. Chemotherapy drug re-
lease method requires an intelligent tool to select and
target cancer cells which today uses nanomaterials to
achieve this goal.

In a study conducted by Shabani et al.,, the anticancer
effect of cisplatin encapsulated in spermatogonial stem
cells (SSCs) from in vitro and folic acid-conjugated
poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs)
on malignant EL4 cell line of mice was assessed. As their
main study outcomes, the rate of caspase 3 and BAX
genes in EL4 cells increased, and an increase was ob-
served in the TUNEL-positive cells. Cells treated with
carrier nanoparticles were then grafted to the mouse,
and no tumor symptoms were observed [17]. Eslahi
et al. devised a new method for removing cancer cells
through gold nanoparticles (AuNPs) by Folate-Silica-
Gold Nanorods (F-Si-GNRs); based on their outcomes,
in comparison with SSCs, an increment in the signs of
F-Si-GNR toxicity was observed in EL4 cells [18]. On
the other hand, as shown by Beebe et al. [19], conduct-
ing the sorting process of microfluidic cell may be one
of the most critical techniques for isolating the imma-
ture cells of spermatogonia based on their density and
size [19].

The advancement of microfluidic technology has had a
tremendous impact on the progress of cell biology sci-
ence [20]. The benefits of this new method to non-
traditional and traditional methods include controlling
3-D culture conditions, having micro-scale physical and
fluid properties, and creating multiplexed nanoliter ar-
rays and paths to improve biological research [21-23].

Very low sample size, very fast processing, multi-
functionality, and a very large volume/volume ratio of
microfluidic system are features [24, 25] that offer new
opportunities for cytology and cytopathology, especially
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for cell sorting and detection [26—32]. Leveraging these
advantages, various microfluidic platforms have been de-
veloped (Fig. 1). The next important step is to expand
microfluidic systems for greater and more efficient use,
commercialization and ease of use, industrial improve-
ments, and more effective cost reductions for a long-term
continuous perfusion cell culture like a bioreactor [33].

In this current study, we presented a new technique of
cell sorting of spermatogonial stem cells from cancerous
cells. Based on the performed studies, the present study
is the first scientific trial that has focused on research in-
vestigating the process of delivering a microfluidic-based
cell culture system for achieving this objective. For
spreading the advantages of applying microfluidic tech-
nology to a broader practical scope, the aforementioned
methodology must be developed and integrated into re-
search and screening laboratories.

Methods

Device designed and fabricated

With respect to the advent of the novel technique of
separation, a new spiral microfluidic device was devel-
oped by Warkiani et al. [34]. The pattern of the designed
spiral chip device (in the CAD software environment)
with an eight-loop spiral microchannel has a unique in-
let and two separate outlets with a variable radius that
varies from 8 to 24 mm. The cross section (channel
width) is 600 um, and the heights of the inner and outer
sections were fitted at 80 and 130 um respectively as the
best values for the trapezoid cross section. Then, to cre-
ate a master, the pattern was printed by a high-
resolution printer and was used as a mask in photolith-
ography on a SU-8 (MicroChem) spin-coated on a on a
thin slice of semiconductor (silicon wafer). The device
was prepared by mixing of PDMS prepolymer and the
curing agent (10:1 ratio) (sylgard 184 Dow Corning) and
by degassing onto the master and backing for 2h at
70°C. After the baking procedure, the replica of PDMS
was peeled off from the master. The surface of the two

Fig. 1 A schematic image of a microfluid [23]
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PDMS replica was oxidized by plasma machine and was
bonded irreversibly together. To enhance the bonding,
the device was placed inside an oven (30 min at 70 °C).
Both of fluidic inlets and outlets were punched (with 1.5
mm diameter) and connected respectively to the syringe
pump and the output container (two sterile 15 mL fal-
con) by Tygon® tubing.

Sample processing and cell loading

Before sample processing, the spiral chip was washed by
ethanol 70% and sterile medium. Using a syringe driver,
all samples were split through the inlet into the spiral
microfluidic device. For performing the cell separation
process appropriately, the optimized flow rate of the
sample in microchannels was 1.7 ml/min; typically, into
the spiral microchannel inner wall flows the cells larger
than 12 um and cells smaller than that flow into the
outer wall. In the end, these cells will separate by inner
and outer outlets. The collected cells can then be ana-
lyzed by suitable downstream techniques such as
immunostaining.

Isolation of mouse spermatogonial stem cells

For conducting the present examination, sixty neonatal
mice models in the age range of 3 and 6 days old were
chosen. All of these mice were taken from the National
Medical Research Institute (Tehran, Iran). They were
kept in cages made of plastic in a room at a temperature
range of 22-25°C, with a 12-h light/dark cycle. The
mice could freely reach drinking water and standard la-
boratory pellets. All animal experiments were approved
by the Animal Ethics Committee at Iran University of
Medical Sciences (code: IR-IUMS.95-04-117-29910).
Nearly all germ cells of testicles were isolated by means
of the aforementioned techniques along with some mod-
ifications [16, 35]. Mouse testes were collected in
phosphate-buffered saline (PBS, Invitrogen, USA) and
penicillin/streptomycin. After decapsulation, we used a
2-step enzymatic digestion protocol to obtain a single
cell suspension. The testes were mechanically dissociated
by two-step enzymatic digestion. The testicles were
mechanically and enzymatically digested and isolated. In
the first stage, the testicles were divided into smaller
pieces and incubated in enzymatic solutions. The first
stage enzyme solution contains the following: Dulbecco’s
modified Eagle’s medium (DMEM/f12) with 0.05 mg/ml
DNase, 1 mg/ml trypsin, and 1 mg/ml collagenase for
about half hour with pipetting and shaking at 37 °C for a
period of 15-30 min. The digestion process of tissue was
carried out by enzyme washing and then centrifugation,
and finally, through draining the supernatant solution,
the interstitial cells were removed from the seminiferous
tubules. The remnants of non-digested seminal tubes en-
tered the second stage of enzymatic digestion so that all
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cells were extracted from the tubes at this stage. Finally,
the isolated spermatogonium and Sertoli cells were cul-
tured in special culture media in DMEM/f12 medium
(DMEM/f12; Gibco, Paisley, UK), non-essential amino
acids, 2% Bovine serum albumine (BSA) (Sigma, MO,
USA), 100 pg/ml streptomycin, and 100 IU/ml penicillin
(from Gibco, Paisley, UK). It was a conventional cell
condition, and it was continued for 2 weeks to increase
the cell number. Finally, in the present study, three main
groups were designed, and by accessing the culture col-
lection of Pasteur Institute, Tehran, Iran, the mouse
acute lymphoblastic leukemia cell line EL4 was
prepared.

Identity confirmation of the spermatogonial cell by RT-
PCR

The confirmation of the nature of spermatogonial cells
in the culture medium was investigated by expressing
specific genes of these cells according to previous
studies.

Testicular cells before cultivation and total RNA mole-
cules as a positive control obtained from the testis sam-
ples were extracted by the standard extraction RNX-plus
kit in accordance with guidelines presented by its manu-
facturer (Cinnagen, Iran). Then, the integrity and purity
RNA was examined using a ratio measurement of 26/28
nm. Aimed to eliminate residual genomic DNA (gDNA)
contamination, total RNA was treated by means of de-
oxyribonuclease I (DNase I). Initially, by means of
SuperScript II Reverse Transcriptase (RT) system and
Oligo (dT);s Primers, strand complementary DNA
(cDNA) synthesis was performed.

Human integrin a6 (IGa6) and GDNF family receptor
alpha-1, known as specific primers of promyelocytic
leukemia zinc finger (PLZF) protein, were designed by
means of human sequences that were described before
(Cinnagen). Aimed to control normalization of polymer-
ase chain reaction (PCR), the p-actin gene was included
as a housekeeping gene. Under a specific condition, the
laboratory technique of reverse transcription-polymerase
chain reaction (RT-PCR) was carried out by means of
precisely prepared PCR SuperMix (Cinnagen), primers,
and ¢cDNA. The specific provided conditions include the
following: 35 cycles at 95 °C for a period of 30s; during a
period of 45s, for each primer, a specific annealing
temperature was prepared (B-actin, 60°C; Iga6 and
GFRal, 58-62°C; and PLZF, 55°C); and finally at the
temperature of 72°C for a period of 45s. For dividing
the products of polymerase chain reaction (PCR), ap-
proximately 1pl of each prepared sample was resolved
in an agarose gel of 1.7% for electrophoresis. Then, the
electrokinetic process of electrophoresis was performed
with the help of a working solution of 1x TAE buffer
and a voltage of a 95 W for a period of 45 s (Fig. 3).
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Cell confirmation by flow cytometry

For confirmation of the cell value, spermatogonial stem
cells (SSCs) were fixed in a paraformaldehyde (PFA)
product of 4% in the buffer solution of phosphate-
buffered saline (PBS) with a pH of 7.4. After that, the
process of washing of cells was conducted three times
with paraformaldehyde (PFA) product, incubating in a
1% nonionic surfactant of Triton X-100 in phosphate-
buffered saline for a period of half hour and blocking in
0.5% liquid of Bovine serum albumine (BSA) and finally
in PBS buffer solution for about half hour. Then, the
cells were incubated in a special antibody solution that
contains a primary antibody protein of PLZF (Abcam) at
4.°C for a period of time less than 45 min and were then
examined. The malignant cell line of EL4 was fixed in a
paraformaldehyde (PFA) product of 4% in a PBS buffer
solution with a pH of 7.4 and then for a period of half
hour washed with the buffer solution of PBS and was in-
cubated with a special H-2Kb antibody (Abcam) and fi-
nally assessed precisely (Fig. 5).

Tumorigenic evaluation of cells after microfluidic isolation
For this purpose, we first transformed healthy rats into
azoospermia mice by intraperitoneal injection of busul-
fan 4 weeks before transplantation. Then, for tumor
evaluation, cells were transplanted into azoospermia
mice after microfluidic gates, and after 8 weeks, the
tumor status was checked (Fig. 7).

Statistical analysis

The procedure of analyzing data was performed using
SPSS  Statistics V22, and the statistical significance
threshold was determined to be p <0.05. In this study,
the Tukey test and an independent ¢ test were used for
comparing the cell percentages.

Results
EL4 tumor cell culture was performed in DMEM/F12
medium with FBS 2%, and the percentage of viable cells
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was about 80 + 2.4%. The nature of this cell line during
the culture was suspended cells and did not stick to the
culture dish. As shown in Fig. 1, their appearance was
not spherical and did not form a colony. After 24 h,
there was a significant amount of cell clinging to the
flask. By invert microscope examination, spermatogon-
ium was circular or oval, with a large nucleus and a
small cytoplasm. The isolated SSCs tend to form col-
onies and form a small cell cluster. The proliferation rate
of these cells was very high, with almost every 48 h of
cell passage. Also, El4 cells, which were suspended in
culture medium, were simultaneously cultured and
stored (Fig. 2).

In order to proliferate spermatogonial stem cells, these
cells were cultured in DMEM/F12 medium including 2%
FBS with GDNF 20ng/ml and 10 ng/ml BFGF for 2
weeks. At the end of the first week, the process of for-
mation of cluster stem cell assemblages started after
about 4 h since in the first passage and a large number
of stem cells were colonized in a colony (Fig. 2) culture
medium.

Expression of specific genes of SSCs and EL4 cells using
RT-PCR

As could be seen from Fig. 3, specific markers of sperm-
atogonial stem cells (SSCs) (Intega-6, GFRa-1, PLZF) in
cells after 2 weeks of culture (SC2) and the EL4 marker
of H2K-b EL4 cells from product excretion RT-PCR
have been proven. Also, B-actin was also observed as the
house keeping gene in both samples.

Determination of the percentage of EL4s and SSCs after
microfluidic separation by flow cytometry

In order to evaluate the percentage of spermatogonial
stem cells and tumor cells, flow cytometry was used to de-
termine the percentage of the cells. As shown in Fig. 3,
the percentage of tumor cells and spermatogonial stem
cells after microfluidic isolation was collected at two out-
lets, and the outer outlet were approximately 0.12 + 0.01%

Fig. 2 SSC colonies of mouse neonate spermatogonial stem cell after 2 weeks of culture in free-growth factors DMEM/F12, 1 week after primary
culture, and EL4 tumor cell. a Complete colony of spermatogonium cells. b Tumor cells. Scale bars =100 um
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GFR B-actin PLZF

Fig. 3 Results of RT-PCR production of spermatogonial stem cells and EL4 cells. The expression of PLZF, GFRa-1, and Intega-6 in spermatogonial
stem cells and H2Kb for EL4 cells. B-actin was included as a housekeeping gene
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(SSC) and 42.14 +3.5% (EL4). While the outputs col-
lected from the device for inner outlet were 80.38 +
2.8% (SSC) and 0.32+0.02 (EL4) in the control group,
the percentages of SSC and EL4 cells were 21.44 +
1.3% and 23.28 +0.9%, respectively, which did not
enter the microfluidic apparatus and were individually
mixed in a cell dish (based on ¢ test (p <0.05) (Figs. 4
and 5).

Immunocytochemistry
After isolating the SSC and EL4 cellular composition
using the microfluidic device, the cells were cultured in

separate plates for 1 week, and after the end of the first
week, the immunocytochemistry test was performed to
confirm the microfluidic cells, so for cell EL4, the conju-
gated CD45 marker was PE, and for the SSCs, the PLZF
conjugate marker was used with FITC, which was initially
fixed at 4°C in PBS with PH7.4 for 20 min. After three
times washing with PBS, the cells were exposed to Triton
X-100 for 10 min in order to penetrate the cells, and then,
after three times, the PBS was incubated in 10% goat
serum (Sigma, Missouri, USA) for 1 h. It was then incu-
bated with 10 pg/ml antibodies for CD45 and PLZF for 2
h at room temperature. Then, it was washed with 1% goat
serum in PBS three times and incubated with FITC-
conjugated secondary antibody for 2h at RT away from
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light, PE-conjugated, and stained with PBS for coloration
of the cells with DAPI for 3 min. The coverslips were
mounted and observed under a Nikon Eclipse TE300
Inverted microscope (country). Sample images were cap-
tured by the CCD camera directly connected to the micro-
scope mentioned above (Fig. 6). The ICC data were
quantified on the basis of Image] software and were ana-
lyzed by one-way ANOVA, and the results showed that
for the smaller gate output, the number of CD45+ was
more than the number of PLZF+ cells and was statistically
significant (55 + 2% CD45+ vs 6 + 1% PLZF+, control 35 +
1%, p <0.005), and for the larger gate output, the number
of PLZF+ cells was statistically significant than CD45+
(70 £4% PLZF+ vs 6+ 1% CD45+, control 38 +2%, p <
0.005).

Histological assessment

The tissue sections of testis after transplantation were
checked to confirm the tumorigenicity of the cells and
pathological changes from the tumor. As shown in
Fig. 7c, compared with the control group (a), the

arrangement of epithelial cells of the seminal tubes in
the tumor model was degraded and uncertain so that
the structure of tissue and tubes was severely disrupted.
Other typical pathological changes associated with tes-
ticular cancer, including tumor invasion and hyperplasia
of the testicular tissue, high numbers of lymphocytes,
and the loss of the order of the spermatozoa tubes, were
seen. In histopathologic sections of the EL4 cell line and
SSCs, no pathologic evidence of tumor was detected
after microfluidic isolation, and seminal tubes with nor-
mal appearance in histological sections were observed.
In addition, spermatogonial stem cell transplantation has
improved the relative position and structure of seminal
tubes and the onset of spermatogenesis in many seminal
tubes (b).

Discussion

Over the recent decades, significant advances have been
made in cancer diagnosis and treatment and have led to
an increase in the survival of children. Hence, in the
present study, one of the most critical challenges in the
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Fig. 6 Part A is for the PLZF marker for SSC cells and part B is for tumor cell CD45 markers and the MERGE-shaped image of the above images
and DAPI staining. Based on flow cytometry, in the first row, the control group, which contains the SSC and EL4 cell composition, is seen, and
both types of cells are seen. In the 2nd row is the output from the outer inlet, which indicates a higher number of EL4 cell. The 3rd row refers to
the output of the inner outlet which indicates a higher number of PLZF markers, the SSC cell

Fig. 7 Tissue section confirmation of tumor model and cellular transplantation after microfluidic isolation. a Histology section of the testicular
tissue in the control group (azoospermia-busulfan model). Scale bar =50 um. Empty spaces in the basal part of the seminal tubes indicate the
removal of germ cells. b Seminal tubes in a group consisting of spermatogonial stem cells after microfluidic isolation. Scale bar =100 um. ¢
Histopathologic section of the testicular tumor. Scale bar = 100 um. Pathological changes in testicular tissue are seen (H & E)
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preservation of male fertility is highlighted which is the
destructive effect of chemotherapy on reproductive func-
tion among men, especially in the process of spermato-
genesis. At the present time, one of the most critical
ways for preserving the natural capability of fertility
among boys before their puberty period is performing
the process of testicular tissue cryopreservation. This
procedure is performed mainly for future isolation and
transplantation of spermatogonial stem cells for restor-
ing the process of spermatogenesis [36].

The main concern in the cryopreserved testicular tis-
sue is the potential of cancer cells in the biopsy. Patients
with non-tumor cancers are more likely to be at risk, the
resumption of cancer [36]. In addition to the available
risks of reintroducing lingering tumor cells, the culture
system of SSCs could provide the opportunity of select-
ing the best way for the isolation of cancer cells from
healthy cells.

The high precision and significant amount of cell sep-
aration should be the main feature of cell separation
methods. As long as traditional methods can have high
efficiency in the process of cell sorting in a short period
of time, the achieved progress in microfluidics has rein-
forced the realization of miniaturized devices to be able
to offer similar capabilities that could extract a broad
range of physical principles.

Cell separation methods are rapidly expanding to allow
them to target and isolate small numbers of cells such as
circulating fetal cells (CFCs), hematopoietic stem cells
(HSCs), and circulating tumor cells (CTCs) from the
blood [37-39]. Several methods for cell sorting are cur-
rently underway, with a large and clear limitations that
include the following: low sampling rate and small sam-
plers that do not have the ability to work on larger sam-
ples at a wider scale and in a shorter period of time
(more than 500 million cells), high operating pressures
that can reduce the viability and/or function of equip-
ment and devices that occupy a lot of space, and enough
experience to work with the above equipment and in-
creased risk of safety concerns and sample contamin-
ation because of performing an aerosolized sample
sorting procedure [40]. Older methods for isolating cells
have disadvantages, for example, in FACS, the disadvan-
tage for sorting cells is electrolysis of water based on the
current of electricity between the cathode and anode
poles, which could be one of the main causes of generat-
ing harmful compounds like hydrogen peroxide (H,O,)
and bubbles, which would affect cell viability and sur-
vival and also the pH of a solution seriously if not be
regulated and monitored appropriately, or the use of
nanoparticles to remove cancer cells and isolate healthy
cells, which are considered as newer methods [41, 42].
Studies have shown that nanoparticles and exposure to
them can have devastating effects on prokaryotic cells
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and complex eukaryotes such as humans. Many studies
have shown that nanoparticles can cause degradation of
DNA, inflammatory response, oxidative stress, lipid per-
oxidation, apoptosis, carcinogenicity, non-genotoxic
(NGTX), immunotoxicity, alterations in gene expression,
reproductive toxicity, cytotoxicity, and genotoxicity [43—
50]. The epigenetic changes are among the main avail-
able mechanisms for genotoxicity and toxicity of nano-
particles that happen in the specific DNA methylation
patterns that may cause alternations in the process of
gene expression [51]. On the other hand, although
proteomic and genomic data suggest changes in the pro-
file of protein and gene of cells exposed to NP, epigen-
etic changes are underestimated [49, 52]. Due to the fact
that microchips could precisely control temporal and
spatial conditions in an appropriate miniaturized droplet
microarray platform, they could easily monitor and con-
trol cells [20, 53].

In this study, the percentages of tumor cells and
spermatogonial stem cells after microfluidic isolation
were collected at two outlets, and the outputs for smaller
tumor cells were approximately 0.12% (SSC) and 42.14%
(EL4). While the outputs collected from the device for
larger cells were 80.38% (SSC) and 0.32% (EL4) in the
control group, the percentages of cells were 21.44%
(SSC) and 23.28% (EL4). Bleilevens et al. also showed in
their study that this method is the best method for con-
tinuous separation of cells without labeling of red blood
cells and platelets [54]. The cell separation function was
slightly comparable to that of MACS and FACS devices
for whole blood, for instance, purities are ranging, but as
high as 99%, and throughputs are up to 48,000 cells [32,
55, 56]. Additionally, based on the data presented by
Son et al. [57], at two outer wall outlets, all isolated
sperm cells were obtained from the red blood cells
(RBCs) and also nearly 81% of non-progressive motility
sperms were successfully recovered. On the other hand,
at two inner wall outlets at a flow rate of 0.52 ml min™*
with the system, nearly 99% of the red blood cells are
successfully recovered [57]. The aforementioned devices
could be made by standardized superior microfabrica-
tion systems that reduce the cost and complexity of
commercialization efforts [58—62]. The device provides a
new approach for cancer cell sorting with high through-
put and purity.

Conclusion

Our findings indicated that we have significantly isolated
the tumor cells from spermatogonial stem cells by
microfluidic chips based on cell size. The microfluidic
device could be a novel tool for separation of spermato-
gonial cells from tumor cells. This study was the first
study in this field in Iran. Future research needs to focus
on a way to ensure the less chance of resuming
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malignant cells in an individual that has just been
treated and cured of cancer.
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