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Abstract

histopathological studies.

have a clinical impact in human treatment.

Background: Wound healing is a complex biological process comprised of a series of sequential events aiming to
repair injured tissue. Adult mesenchymal stem cells (MSCs) have been used in cellular therapy in preclinical animal
studies; a promising source of MSCs is adipose tissue (AT). In this paper, we evaluated the clinical value and safety
of the application of cultured allogenic MSCs from AT for acute and chronic skin wound healing in a canine model.

Methods: Twenty-four dogs of different breeds between 1 and 10 years of age with acute and chronic wounds
were studied. Morphology of the wounded skin was monitored for changes over time via serial photographs and

Results: The percentage of the wounds that exhibited contraction and re-epithelialization were significantly
different between wounds treated with adipose mesenchymal stem cells (ASCs) and control wounds; this effect
was observed in both acute and chronic conditions. At 90 days, re-epithelization of acute and chronic wounds
reached more than 97%. Histopathological study revealed a reduction in inflammatory infiltrate and the presence of
multiple hair follicles on day 7 after treatment with ASCs, promoting epidermal and dermal regeneration. To
guarantee the safety of our treatment, we determined the serum levels of cytokine markers in our patients. ASC
treatment upregulated granulocyte-macrophage colony stimulating factor (GM-CSF) at the gene level, which may
contribute to the recruitment of cells that participate in skin repair to the site of injury.

Conclusions: The development of an allogenic ASC therapy to improve wound healing in a canine model could
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Background

Adult mesenchymal stem cells (MSCs) have been widely
used in regenerative medicine in both in vitro and
in vivo preclinical research and clinical trials. MSCs have
high proliferation potential, self-renewal abilities, and
multilineage differentiation capabilities enabling them to
produce cells of mesodermal and non-mesodermal
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origin; these cells are able to secrete soluble factors that
stimulate the migration, mitosis, and differentiation of
local stem cells. These characteristics make MSCs inter-
esting tools for tissue engineering and regeneration in
human clinical trials.

In recent years, an increasing number of studies have
arisen, with different approaches like comparing the effi-
cacy of allogeneic and autologous MSCs, the origin of
the sample, the method of MSC isolation [1-4], and the
determination of the dose and adjuvant products [5, 6],
because these therapies are not yet fully standardized. In
the European Union, the use of these treatments has
been possible because cell therapy products have been
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considered medicinal products since 2003, according to
legislation through Directive 2003/63/EC [7].

A major advance has been the development of MSC
therapies to treat a variety of human diseases [8, 9]. The
protocols have been developed due to the fact that
MSCs possess unique characteristics, such as hypoim-
munogenicity, immunomodulation, and anti-
inflammatory properties, which make them interesting
and safe tools to be explored for possible therapeutic
uses.

A number of studies confirmed the existence of MSCs
in canine adipose tissue as well as in bone marrow [10-
13]. In preclinical animal studies, a promising source of
MSCs has been found to be adipose tissue (AT). In fact,
adipose mesenchymal stem cells (ASCs) are being used,
especially in small breeds where the amount of bone
marrow that can be harvested is limited and the collec-
tion is more laborious and painful.

In view of future therapeutic applications, the study of
the expression of specific differentiation-related genes is a
pivotal prerequisite. Recent studies have explored the role
of transcription factors, including Rumx2, Sox9, and
PPARYy, in the differentiation of MSCs [14—17]. The over-
expression of a single transcription factor in MSCs may
promote transdifferentiation into a specific cell lineage,
which could then be used for the treatment of some dis-
eases. In this context, it is crucial to use stable housekeep-
ing genes (HGs) for normalization of RT-qPCR data to
obtain validated and comparable results [18, 19]. Wound
healing is a complex biological process comprised of a
series of sequential events aiming to repair injured tissue
[20-22]. During these processes, growth factors, cytokines,
matrix metalloproteases, and angiogenesis factors play an
important role in processes like inflammation, formation
of granulation tissue, re-epithelialization, matrix forma-
tion, and re-modeling [23].

The cellular and molecular mechanisms supporting
tissue repair are still poorly understood, and current
therapies are limited [24-27]. Previous studies of MSC
transplantation in animal models and human patients
have demonstrated improved therapeutic effects in terms
of rapid wound healing and improved dermal regener-
ation [7, 28-33]. After systemic administration, MSCs
are also capable of migrating to and engrafting in sites of
inflammation where they exert local functional effects in
the resident tissue [34—38]. In addition, MSCs regulate
immune and inflammatory responses and can have a
reparative effect through paracrine signaling by releasing
biologically active molecules that affect cell migration,
proliferation, gene expression, and survival of the sur-
rounding cells [33, 39]. Studies have demonstrated that
treatment with MSCs has significant immunomodula-
tory effects during wound healing [40, 41]. This immu-
nomodulatory consequence on the host makes them a
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suitable candidate for allogeneic transplantation. Allo-
genic MSC administration has the advantage of prompt
preparation of material, and it does not depend on the
health status of the patient [42—-44].

In this context, the dog is considered an ideal re-
search model because it is a large animal that shares
the same environment as humans and develops many
diseases that occur in humans, and dog’s immune sys-
tem is known to be similar to those of humans [45,
46]. In addition, wound healing has been studied
using dogs as a translational model for both veterin-
ary and human applications [47].

Identification of the positive and adverse effects of
allogenic MSC transplantation for skin wound healing
using a canine model is needed prior to its use in human
clinical trials.

In this paper, we evaluated the clinical value and safety
of the application of cultured adipose allogenic mesen-
chymal stem cells for treating acute and chronic skin
wound healing in a canine model. We estimated serum
levels of cytokine markers to ensure the welfare and se-
curity of our treatment. Wound skin morphology and
changes over time were monitored via serial photo-
graphs and histopathological studies, and wound closure
areas were estimated. In addition, key transcription fac-
tors involved in the differentiation of mesenchymal stem
cells were evaluated.

We hypothesized that ASC-treated wounds could have
improved outcomes compared to untreated controls
through local mRNA expression of several factors re-
lated to cutaneous wound healing.

The research presented in this study can direct us to-
ward improved therapeutic protocols.

Methods

Twenty-four dogs of different breeds that were be-
tween 1 and 10years of age that presented with acute
and chronic wounds produced by sports activities as
well as household injuries were included in this study,
wounds penetrating into the subcutaneous tissue
without muscular tissue affection. Wounds produced
by bites were excluded. Eight healthy dog skin biop-
sies were taken for RT-qPCR analysis. All animal ex-
periments should comply with the Animal Research:
Reporting In Vivo Experiments (ARRIVE) guidelines
and were approved by the ethical committee of our
institution (approval no. 08/2017). Dog owners pro-
vided informed consent for the treatment. The study
was performed on 24 dogs divided into four groups:
group I, 6 dogs with acute skin wounds treated with
conventional treatment; group II, 10 dogs with acute
skin wounds treated with ASCs; group III, 4 dogs that
had chronic skin wounds for 1-2 months treated with
conventional treatment; and group IV, 4 dogs that
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had chronic skin wounds for 2-3 months that were
then treated with ASCs.

Treatment protocols

All dogs were treated every 48 h for 8 days with 15 mg/
kg IM amoxicillin trihydrate (Bivamox® L.A.; Boehringer
Ingelheim Espana, S.A.) and 5mg/kg every 24h PO
enrofloxacin (Ganadexil enroflocaxino; Industrial Veteri-
naria, S.A., Barcelona, Spain). After 3 days with this
treatment protocol, one dose of 3 x 10” allogeneic ASCs
in phosphate-buffered saline (PBS; as a vehicle) was
injected intradermally around wounds with an area of
up to 10cm? and two doses of 3x 107 cells were
injected in wounds with an area that was greater than
10 cm? The first injection took place at day 3 and the
second dose at day 10 after wounding. Groups I and III
received conventional treatment with an ointment con-
taining Centella asiatica extract and neomycin (Blastoes-
timulina® 1%; Almiral S.A., Barcelona, Spain) until the
wound was healed.

Isolation, expansion, and differentiation of adipose MSCs

ASCs were obtained as previously described by Enciso
et al. [10]. Briefly, omental adipose tissue was obtained
from healthy donor female dogs that were undergoing
elective sterilization, and ASCs were consecutively iso-
lated and cultured in DMEM that contained 10% canine
serum (dog serum was derived from pooled batches ob-
tained from whole blood collected in tubes free of anti-
coagulant, centrifuged at 2000 rpm for 10 min, and
filtered through 0.2 pm) and 1% antibiotic; the super-
natant obtained after 3 weeks from the culture was con-
sidered conditioned medium (CM) and was frozen at —
80°C. ASCs used for injection were cultured in the
Luria-Bertani medium (Scharlab S.L. Barcelona, Spain)
to evaluate sterility. Before using the ASCs therapeutic-
ally, cells were analyzed by flow cytometry to confirm
that they were positive for CD90 and negative for CD34,
CD45, and MCH-II as previously reported [10, 48].
Their ability to adhere to plastic and their fibroblast-like
morphology were confirmed. These criteria of MSC
were defined by the International Society for Cellular
Therapy [49].

Differentiation
The multipotentiality of ASCs was determined by ana-
lyzing their capacity to differentiate into three lineages.

Osteogenic differentiation

Osteogenesis differentiation medium (StemPro, Gibco)
was used according to the manufacturer’s instructions.
ASCs were cultured for 21 days, the medium was chan-
ged every 3rd day, and differentiation was assessed by
von Kossa staining. For this process, the cells were fixed

Page 3 of 14

with 4% formaldehyde solution for 30 min, which was
followed by rinsing with PBS and incubation with 2.0%
silver nitrate in the dark for 30 min. After rinsing with
distilled water and air drying, the cells were exposed to
UV light for 60 min to develop calcium phosphate pre-
cipitate. The cells were washed several times with PBS
and were visualized under a light microscope. Brown
staining indicated the deposition of calcium phosphate
precipitate by osteoblasts.

Chondrogenic differentiation

Chondrogenesis  differentiation medium (StemPro,
Gibco) was used according to the manufacturer’s in-
structions. ASCs were cultured for 14 days, the medium
was changed every 3rd day, and the differentiation was
assessed by Alcian blue staining. The cells were fixed
with 4% formaldehyde for 30 min and then were washed
with PBS. Then, 1% Alcian blue, which was prepared in
0.1 N HCI, was added for 30 min incubation. Finally, the
ASCs were washed with 0.1 N HCl pH 1.0, and distilled
water was added. Blue staining indicated chondrocyte
synthesis of proteoglycans.

Adipogenic differentiation

An adipogenesis differentiation kit (StemPro, Gibco) was
used according to the manufacturer’s instructions. ASCs
were cultured for 21days, the medium was changed
every 3rd day, and differentiation was assessed by the
presence of lipid droplets that were visualized after
staining with oil red O solution. The cells were fixed
with 10% formal calcium fixative for 60 min, and then,
they were washed with PBS and then with 70% ethanol.
Addition of oil red O solution was followed by rinsing
the cells with 70% ethanol and then with tap water. Red
staining indicated the presence of lipids.

Transwell assay

Migration assays were conducted using 8 uM Transwell
plates (Corning). ASCs at passage 3 were seeded in trip-
licate at a density of 3 x 10° cells/Transwell in DMEM in
the upper chamber of Transwell plates. We evaluated
the following solutions: DMEM, DMEM + 10% canine
serum, DMEM + granulocyte-macrophage colony stimu-
lating factor (GM-CSF) (100 or 200 pg/ml), and condi-
tioned medium (CM). The cells were placed in the lower
chamber to induce cell migration. After 8 h, cells on the
top of the Transwell were removed, and cells that had
migrated to the lower surface were fixed by incubation
with cold 70% ethanol (4°C) for 10min (room
temperature), and then, they were incubated with the
May-Griinwald-Giemsa staining solution. Images of cells
were captured using an inverted microscope (Leica) and
were subsequently manually quantified.
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Multiplex assays

Peripheral blood from each dog was collected in sterile
tubes for cytokine analysis. Serum was separated by cen-
trifugation and then was stored at — 80 °C. Serum sam-
ples were batch analyzed at the conclusion of the study.
Bead-based multiplex assays measure multiple cytokines
from the same sample at the same time. Analyses were
performed according to the manufacturer’s instructions,
with internal quality control using a Milliplex MAP Ca-
nine kit with Luminex technology (Immunology Multi-
plex Assay). The following cytokines were measured:
granulocyte-macrophage colony stimulating factor (GM-
CSF), interleukin-6  (IL-6), interleukin-7  (IL-7),
interleukin-8 (IL-8), interleukin-10 (IL-10), interleukin-
15 (IL-15), interleukin-18 (IL-18), interferon y-inducible
protein-10 (IP-10), keratinocyte chemoattractant (KC),
monocyte chemoattractant protein-1 (MCP-1), and
tumor necrosis factor a (TNFa).

Clinical evaluation

Lesion progression was documented using a ruler to
measure wound size. Photographs were taken at 7, 30,
and 90 days post-treatment. The percent wound size and
epithelization were evaluated according to the criteria
proposed by Farghali et al. [50].

Skin biopsies for histological analysis and gene
expression

On day 7 after initiation of treatment, 4-mm-diameter
punch biopsies of the ASC-treated wound, convention-
ally treated wound, and normal skin were taken from
the edge of wounds for histopathological study and RT-
qPCR analysis. Formalin-fixed and paraffin-embedded
skin biopsy samples were stained with hematoxylin and
eosin (H&E) and were examined under a light micro-
scope (Leitz Laborlux S).

RT-qPCR analysis

Total RNA was extracted from 10° cultured ASCs using
an RNeasy” Mini kit (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s protocol. Total RNA from tis-
sue was extracted using TRIzol (Invitrogen); briefly, 50
mg of tissue was homogenized and incubated for 5 min
at 30°C, and then, chloroform was added and incubated
with the homogenized tissue at 30°C for 3 min. The
sample was centrifuged for 15 min at 12,000xg at 4°C,
and the aqueous phase containing the RNA was trans-
ferred to a new tube and treated with RNeasy Mini kit
(Qiagen) according to the manufacturer’s protocol. Re-
verse transcription was performed with 1ug of total
RNA and a “High Capacity RNA-to-cDNA Kit” (Applied
Biosystems, Foster City, CA, USA) according to the
manufacturer’s protocols. RT-qPCR was performed with
a “Power SYBR® Green PCR Master Mix” (Applied
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Biosystems) on QuantStudio 12k Flex equipment (Ap-
plied Biosystems). All nucleotides were purchased from
Metabion International AG (Munich, Baviera, Germany).
A set of primers was designed to amplify the following
canine genes: TBP, RUNX2, SOX9, PPARG, MMP2, GM-
CSF, VEGFA, and IL-10.

Primer designs were based on the Primer3 program [51]
and the National Center for Biotechnology Information
Blast Search Program (http://www.ncbi.nlm.nih.gov/).

The primers were as follows:

Genes Primer sequences
8P Forward: 5-CCGTCTATCTGAACTGGGAAA-3'

Reverse: 5-AAGGGTCATGAGTGGCATGT-3"

RUNX2 Forward: 5" TGAGCACCGAAGAACAACTG-3'
Reverse: 5-GCTGCTGCTGCTACACTGAC-3'
SOX9 Forward: 5-AGCGAACGCACATCAAGAC-3'
Reverse: 5-GAGGCTGAAGGGGCTGTAG-3'
PPARy Forward: 5-TGGCAAAGAGCTGAGAGGAC-3'
Reverse: 5-AAAATCAAGTTCAAACACATCACC-3'
MMP2 Forward: 5-GAGCGAGGGTACCCCAAG-3'
Reverse: 5-GCTCCAATTAAAGGCAGCAT-3'
GM-CSF Forward: 5-TCTCTGAAGTGTTTGACCCTGA-3"
Reverse: 5-CAGGCCCTCCTTGTACAGC-3'
VEGFA Forward: 5-CGTGCCCACTGAGGAGTT-3'
Reverse: 5-GCCTTGATGAGGTTTGATCC-3'
IL-10 Forward: 5-CAGGTGAAGAGCGCATTTAGT-3'

Reverse: 5-TCAAACTCACTCATGGCTTTGT-3"

The PCR protocol started with one cycle at 95°C for
10 min and continued with 40 cycles of 95°C for 15s
and 60 °C for 1 min. Assays were performed in duplicate,
and the average threshold cycle number (Ct) for each
tested gene and condition was used to quantify the
relative gene expression according to the AACt method.
Normalization was performed using 7BP as a
housekeeping gene [18, 52]. To confirm the specificity of
the primers used, the obtained amplicons were
compared with the target gene sequences available in
the GenBank/EMBL databases using Blast software
(http://www.ncbi.nlm.nih.gov/BLAST).

Statistic

The results were analyzed using the software programs
SPSS 25 (IBM Corporation, Endicott, NY, USA) and
Graph Pad Prism version 6. Normally distributed data
were assessed using the Kolmogorov-Smirnov and
Shapiro-Wilk tests. Gene expression along differenti-
ation and gene expression in skin wound by RT-qPCR
were evaluated by ANOVA post-Bonferroni test.
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Migration was evaluated by comparing the number of
ASCs between groups with ANOVA post-Dunnett test.
Serum cytokine levels were evaluated with ANOVA
post-Tukey’s multiple comparisons test between dogs
undergoing conventional treatment or ASC treatment at
7 and 30 days post-treatment. The percentage of regen-
erated area of acute and chronic wounds after conven-
tional and ASC treatment was calculated with ANOVA
post-Bonferroni test. All are expressed as the mean + SD.
Differences were considered significant when p < 0.05.

Results

Differentiation and transmigratory capacity of ASC
Trilineage differentiation capacity of ASCs is shown in
Fig. la. When evaluating the transcription factors, we
observed that PPARy showed a 2-fold increase in
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adipogenic differentiation compared to ASC, while
SOX9 and RUNX2 did not show this augment in their
representative linages; however, their increases were sig-
nificant (p <0.0001) with respect to other lineages
(Fig. 1b) [14]. The values were normalized to the TBP
gene and were compared to ASCs.

The effect of GM-CSF on hematopoietic stem cell
migration is well known, so we evaluated this effect
on ASCs. At a dose of 200 ng/ml, there was an in-
crease in the number of migrating cells compared to
the 100 ng/ml treatment group. Interestingly, condi-
tioned medium induced ASC migration effects that
were similar to those following treatment with GM-
CSF (200 ng/ml). Furthermore, both GM-CSF 200 ng/
ml and conditioned medium produced significantly
different (p <0.05) migration results from those
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observed in the cells grown in DMEM. Our data rep-
resent the mean + SD (Fig. 2).

Evaluation of treatment safety by quantifying cytokine
levels in serum

To estimate potential adverse events associated with the
use of ASC treatment, we evaluated incidents according
to the grading system of the veterinary cooperative
oncology group [53]. We measured the cytokine profiles
at 7 and 30 days post-treatment in sera from six patients
treated with ASCs and four patients that underwent
conventional treatment, and none of them did present
adverse events during the study. Cytokine values in the
serum were similar in patients with conventional and
ASC treatment, except for IL8, which had a higher value
in patients treated with ASCs than it did in the
conventional treatment and was also significantly
different (p < 0.01) at 7 and 30 days (Fig. 3); however, the
IL8 mean value obtained at day 30 (3329 pg/ml) was
within the normal range for healthy dog serum
quantified by O’Neill et al., Kjelgaard-Hansen et al., and
Safra et al. [54—56].

Skin regeneration of cutaneous wounds by ASC therapy

The areas of the wounds were measured on the first,
seventh, thirtieth, and ninetieth days after treatment.
Wound contraction and regenerative area were
calculated and expressed as percentages (Fig. 4a). The
regenerated area in patients with acute wounds
treated with ASCs at 7, 30, and 90 days was
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significantly different (p <0.0001) from that of the
time-matched conventional treatment (Fig. 4b (1)).
Patients with chronic wounds treated with ASCs were
significantly different at 7 (p <0.001), 30, and 90 days
(p <0.0001) from those treated with the conventional
treatment (Fig. 4b (2)). On the other hand, the per-
centages of regenerated area between acute and
chronic wounds in patients treated with ASCs were
significantly different at 7 (p<0.0001) and 30 (p<
0.001) days, while on the ninetieth day, the regener-
ated area was similar (Fig. 4b (3)). In addition, we
have analyzed data of acute wounds that have re-
ceived one or two doses, obtaining the same signifi-
cant difference p < 0.0001 (data not shown).

Re-epithelization was illustrated by photographs taken
on the zero (Fig. 5a (1 and 4), b (1 and 4)), seventh
(Fig. 5a (2 and 5), b (2 and 5)), and ninetieth (Fig. 5a (3
and 6), b (3 and 6)) days post-treatment of acute and
chronic wounds, respectively. On day 7, acute and
chronic wounds treated with ASCs (Fig. 5a (5), b (5))
displayed accelerated skin closure compared with con-
ventional wounds (Fig. 5a (2), b (2)). On day 90, wounds
with ASC treatment presented hair-bearing skin (Fig. 5a
(6), b (6)); acute wound with conventional treatment had
a common scar (Fig. 5a (3)); however, chronic wound
presented unhealing wound (Fig. 5b (3)).

Histopathological evaluations were performed on the
acute wound healing of eight Galgo Espanol dogs, four
of whom were treated with conventional treatment and
four with ASCs.
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The epidermis of the wound that received conventional
treatment (Fig. 6a (1-3)) exhibited epidermal hyperplasia,
hypergranulosis,  hyperkeratosis, and ortho- and
parakeratosis. The dermis exhibited fibrosis and an
abundant mononuclear inflammatory infiltrate extending
mainly through the dermis. These findings were consistent
with acute dermatitis without follicular components, which
is typical of a normal wound healing process. The wounds
treated with ASCs (Fig. 6a (4—6)) exhibited relatively
normal skin, thin epidermis, orthokeratosis, and fibroblast
proliferation. In addition, multiple hair follicles in different
stages of activity, collagen fibers, and a slight presence of
inflammatory cells were observed in the dermis. The
histological characteristics were classified according to the
degree of severity: mild, moderate, or marked (Fig. 6b).

Gene expression in the dynamic process of wound
healing

GM-CSF, VEGF-A, MMP-2, and IL-10 genes were
evaluated in sixteen patients. Ten dogs with acute

wounds were treated with ACS, and six dogs with acute
wounds were treated with conventional treatment. To
compare our results with normal skin, eight biopsies
were taken from healthy dogs. GM-CSF gene expression
in dogs treated with ASCs shows an increase of more
than 2-fold over wounds after that of conventional treat-
ment with a p value <0.01. VEGFA gene expression
shows a decrease in ASC-treated dogs with a p value <
0.001. The expression of the IL-10 and MMP2 genes was
similar in both treatments. The values were normalized
to the TBP gene and were compared to normal skin
(Fig. 7).

Discussion

Wound healing requires a synchronized interplay among
cells, growth factors, and extracellular matrix proteins.
Several studies have demonstrated that mesenchymal
stem cells coordinate the repair response by recruiting
other host cells and secreting growth factors and matrix
proteins.
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A. ACUTE WOUND
CONVENTIONAL TREATMENT
BREED SEX AGE Wound Area(cm2) % of wound after treatment / % of regenerate area
DAY 0 DAY 7 DAY 30 DAY 90 DAY 7 DAY 30 DAY 90
Galgo 1 M 2 10.9 8.5 6.0 5.6 78.0/22.0 55.0/45.0 51.4/48.6
Galgo 2 M 1 7.8 6.9 5.5 4.7 88.5/11.5 70.5/29.5 60.3/39.7
Galgo 3 M 3 7.1 6.8 4.8 3.9 95.8/4.2 67.6/32.4 54.9/45.1
Galgo 4 F 5 5.9 4.7 3.6 2.7 80.0/20.0 61.3/38.7 45.3/54.7
Galgo 5 F 4 3.5 2.9 23 2.0 829/17.1 65.7/34.3 57.1/42.9
Galgo 6 M 4 3.2 3.1 2.9 2.7 96.9/3.1 90.6/9.4 84.4/15.6
ASC TREATMENT
BREED SEX AGE Wound Area (cm2) % of wound after treatment / % of regenerate area
DAY 0 DAY 7 DAY 30 DAY 90 DAY 7 DAY 30 DAY 90
Galgo 7 F 8 99.0 36.0 13 0.04 36.4/63.6 1.3/98.7 0.04/99.96
Doberman F 1 80.0 30.0 10.0 - 37.5/62.5 12.5/87.5 -
Galgo 8 F 3 34.2 9.1 3.8 0.03 36.6/73.4 11.1/88.9 0.1/99.9
Galgo 9 F 2 229 6.5 0.5 0.02 28.4/71.6 2.2/97.8 0.1/99.9
Galgo 10 M 3 19.6 3.1 0.8 0.03 15.8/84.2 4.1/95.9 0.2/99.8
Cocker Spaniel M 7 125 1.1 0.1 0.01 8.8/91.2 0.8/99.2 0.1/99.9
Galgo 11 M 2 7.5 3.2 1.7 0.20 42.7/57.3 226/77.3 2.7/97.3
Mongrel 1 M 1 7.1 15 0.7 0.09 21.1/78.9 9.9/90.1 1.3/98.7
Mongrel 2 F 5 6.3 0.7 0.1 0.01 11.1/88.9 1.4 /98.6 0.2/99.8
Bodeguero Andaluz M 2 2.0 0.4 0.1 0.01 20.0/80.0 4.0/96.0 0.5/99.5
CHRONIC WOUND
CONVENTIONAL TREATMENT
BREED SEX AGE Wound Area (cm2) % of wound after treatment / % of regenerate area
DAY 0 DAY 7 DAY 30 DAY 90 DAY 7 DAY 30 DAY 90
Galgo 12 M 2 320.0 314.0 306.0 295.0 98.1/1.9 95.6/4.4 92.2/7.8
Galgo 13 F 4 130.0 129.0 120.0 110.0 99.2/0.8 923/7.7 84.6/15.4
Galgo 14 M 2 9.0 8.8 8.6 8.2 98.2/1.8 85.8/4.2 91.1/8.9
Mongrel 3 M 5 6.5 6.0 5.9 5.8 923/7.7 90.8/9.2 89.2/10.8
ASC TREATMENT
BREED SEX AGE Wound Area (cm2) % of wound after treatment / % of regenerate area
DAY 0 DAY 7 DAY 30 DAY 90 DAY 7 DAY 30 DAY 90
Galgo 15 M 10 307.0 220.0 55.0 3.4 71.7 /283 17.9/82.1 1.1/98.9
Galgo 16 M 3 300.0 190.0 100.0 9.0 63.3/36.7 33.3/66.7 3.0/97.0
Galgo 17 F 5 114.0 60.0 25.0 3.2 52.6/47.4 21.9/78.1 2.8/97.2
Berger Belge M 4 5.7 4.8 2.8 - 84.2/15.8 49,1 /50.9 -
© © ©
B. 1. ¢ Acute wounds 2.9 Chronic wounds 3. @ Acute - Chronic wounds
o o 5
© © ©
@ o 5 100
c c c
= - -
"6 A S o “6 A N Q “5 0
»® ° S o <
Days Days Days
B Conventional treatment B Acute - ASC treatment
ASC treatment Chronic - ASC treatment
Fig. 4 a Clinical evaluation. Wound contraction and regenerative area expressed in percentages in acute and chronic wounds. b Percentage of
regenerated area of acute and chronic wounds after conventional and adipose-derived mesenchymal stem cell (ASC) treatment. Regenerated
area for acute (1) and chronic (2) wounds treated with ASCs compared with conventional treatment at 7, 30, and 90 days. (3) Comparative studies
between acute and chronic wounds treated with ASCs. Data values are the mean + SD. ***A significant difference of p < 0.001. ****A significant
difference of p < 0.0001. ns, no significant difference

Our study was performed to evaluate the role of
allogeneic ASCs in acute and chronic wound healing
therapies.

Considering this aim, there are essential characteristics
that must be met to allow these cells to be candidates
for cell-based therapy.
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ACUTE WOUND HEALING

—

CHRONIC WOUND HEALING

6)) at day 0, 7, and 90

Fig. 5 Re-epithelization of acute (a) and chronic (b) wounds is shown by representative photographs. Dogs with acute and chronic wounds
treated with the conventional treatment (a (1-3), b (1-3)), and dogs treated with adipose-derived mesenchymal stem cells (ASCs) (a (4-6), b (4—

As we have previously mentioned, these cells can
differentiate into multiple tissue forming cell lineages.
During differentiation, upregulation or suppression of
transcription  factors occurs via specific signaling
pathways. In osteogenic differentiation, Runx2 is a key
transcription factor that elevates osteoblast differentiation.
Chondrogenic differentiation is driven by Sox9, and
adipogenic differentiation is mainly controlled by PPARy.
We reported the expression of these transcription factor
markers involved in the early differentiation of osteoblasts,
adipocytes, and chondrocytes, and we presented images of
differentiated cells (Fig. 1). These data are in agreement
with the study performed by Almalki et al. [14].

As discussed in the “Methods” section, we utilized
TBP gene for normalization of qRT-PCR data, accord-
ing to Rangi et al. [18], who found that TBP has the
top position for both geNorm and NormFinder

analysis in MSCs, and Vandesompele et al, who
found that TBP has the top position for geNorm ana-
lysis in skin wound [19].

Particular attention should be given to the homing
capability of ASC, allowing the cells to find the way
of injury and inflammation. Figure 2 shows the
capacity of these cells under normoxic conditions
when stimulated by conditioned medium as well as
by the inflammatory cytokine GM-CSF to migrate
and mediate regenerative effects at sites of tissue
damage. The role of conditioned medium in increas-
ing the transmigratory effect of ASCs is noted, which
implies that in the process of proliferation, ASCs re-
lease factors and cytokines with chemoattractant ac-
tivity. Enciso et al. [10] demonstrated the expression
of MMP-2 and MMP-9 in ASCs enables the break-
down of the endothelial basement membrane.
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B. ACUTE WOUND
HISTOLOGIC APPEARANCES CONVENTIONAL TREATMENT ASC TREATMENT
7 DAYS
Epiodermal hyperplasia ++++ ++
Hyperkeratosis ( orthokeratosis) ++ ++
Hyperkeratosis ( parakeratosis) bt #
Inflamatory infiltration ++++ +
Fibroblast proliferation + +++
Fibrosis +++ =
Collagen fibers + +++
Hair follicular - +H++
Total animals n=4 n=4

mild, “++" and “+++" = moderate, and “++++" = marked

Fig. 6 Histopathology of acute wound healing in control and ASC-treated skin wounds at 7 days post-treatment. a Representative photomicrographs
demonstrate the histological characteristics of acute healing. H&E staining (bar length =50 pum) (1 and 4), 200 um (2 and 5), and 100 um (3 and 6). (1-
3) Control; (4-6) ASC-treated. H, hyperplasia; O, orthokeratosis; P, parakeratosis; Fb, fibrosis; Mll, mononuclear inflammatory infiltrate; F, fibroblast; HF,

hair follicles; C, collagen fibers. b Criteria for histological appearances in acute wounds with conventional treatment and ASC treatment.

u

and "+'=

Our pilot approach, reported by Enciso et al. [57],
demonstrated a higher regenerative capacity with earlier
and faster closure in wounds treated with ASCs in
comparison to other forms of treatment.

In this paper, we extend this previous study to 24 dogs
and evaluated the clinical value and safety of the
application of cultured adipose allogenic ASCs for
treating acute and chronic skin wound healing in the
canine model described above.

Damage of the skin certainly induces local
inflammation;  this  process involves  multiple
mediators, including chemokines, pro- and anti-

inflammatory cytokines, and growth factors. To ana-
lytically evaluate the etiological role of inflammatory
processes in systemic compartments, it is necessary to
quantify the concentrations of relevant biomarkers in
fluids, such as serum.

As shown in Fig. 3, of the cytokines studied, we did
not observe increased levels in the serum of dogs treated
with ASCs for 7 or 30days. Although we observed a
significant increase in IL-8 cytokine levels in wounds
treated with ASCs at both 7 and 30 days, the levels of
IL-8 (3858.64 pg/ml) in the serum of animals at day 30
post-treatment were similar to the median value (3329
pg/ml) of healthy dogs, which is data obtained with the
multiplex assay by Safra et al, O'Neill et al., and
Kjegaard-Hansen et al. [54, 55]. These results ensure the
safety of our protocol, including potential effects on the
immune system. This is of great importance when inves-
tigating new therapies, especially considering that many
descriptive parameters of the dog’s immune system are
quite similar to those of humans [45].

With respect to the histopathological study, Fig. 5a, b
data support the active regenerative process, which
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Il Conventional treatment

ASC treatment

Fig. 7 Relative quantification of gene expression in acute skin wounds after 7 days of conventional and ASC treatments. Data represent mean
fold change values in genes + SD for both treatments as compared to normal skin. Data values are the mean + SD. **A significant difference of
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p <0.01. ***A significant difference of p < 0.001

revealed better organization of re-epithelialization, re-
duced inflammatory infiltrate, marked collagen fibers,
and the presence of multiple hair follicles in different
stages of activity on day 7 after treatment with ASCs by
promoting epidermal and dermal regeneration.

These data indicate the success of allogeneic ASCs in
wound healing therapy, providing faster wound healing
and re-epithelization than that of other treatments.

Ribeiro et al. showed that the use of allogeneic MSC in
chronic wounds in dogs was effective; however, unlike
our study, at the end of the evaluation, they had the
presence of scarring [58]. This may have been due to the
fact that they used a low dose of stem cells (1 x 10°/cm?)
compared to our study where we used 3 x 10°/cm” and
obtained a regeneration of the skin with characteristics
similar to normal skin as well as reduction of scar
formation.

Many clinical trials in wounds showed that the use
of ASC therapy alone or combined with other
compounds, such as platelet-rich plasma (PRP), hya-
luronic acid, and others, can stimulate cutaneous
wound healing [3, 5, 59-61], achieving good and fast
healing with the final presence of a scar; however, in
our study, we observed that the skin regenerates with
similar characteristics to the normal skin and presents
a small scar and that with time the epithelium will
become normal following the repair process as men-
tioned by Nuschke et al. [62]. However, there are
clinical studies that use autologous fat grafting to cor-
rect wound scars, demonstrating that they are able to
stimulate the regeneration process [63-65].

The therapeutic potential of autologous MSCs has
been demonstrated, both in preclinical and clinical
studies, in different pathologies. However, in many
occasions, the use of autologous transplantation can

have some limitations regarding to the MSC production,
the method for therapy, the delivered dose, the stage of
the disease, and the status and/or genetic receptivity of
the patient [66, 67].

On the other hand, recent clinical studies have
demonstrated therapeutic efficacy in androgenic
alopecia, obtaining greater hair density by transplanting
autologous ASC, PRP, stromal vascular fraction (SVE),
and micrografts containing mesenchymal stem cells
from the hair follicle [68-71] and also by topical use
[72]. These interesting results would allow the possibility
of using our methodology in pathologies in which the
hair follicle is damaged or absent.

As outlined above, the consideration of using
autologous or allogenic mesenchymal cells is still under
discussion. This approach must be done in terms of the
clinical benefit that will be obtained. From our point of
view, allogeneic mesenchymal cell therapy is of great
value in the tissue regeneration process.

In this study, we analyzed the gene expression of IL10,
MMP-2, GM-CSFF, and VEGFA in the process of
cutaneous wound healing in a canine model treated with
allogeneic ASCs. These gene products have important
biological effects on wound healing [23, 73].

It is well known that the process of wound healing is
an organized event resulting in the restoration of the
skin. It involves the interactions of many different cell
types, matrix components, and biochemical factors. In
this context, the GM-CSF gene is a possible candidate
for the regulation of wound healing because it is
synthesized by a number of cells involved in the repair
process [74-76].

Consistent with these comments, we found an
upregulation of GM-CSF at the gene level in our canine
model treated with ASCs. GM-CSF has been shown to
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exert beneficial effects on wound healing in patients suf-
fering from poorly healing wounds and chronic skin ul-
cers with diverse etiology [23, 77].

Considering the role of GM-CSF in transmigration
(Fig. 2), the increased gene expression levels of GM-CSF
may contribute to the recruitment of cells that partici-
pate in skin repair to the site of injury.

However, for IL-10 and MMP-2 genes, there were no
significant differences between treatments and between
them; a possible explanation is that IL-10 regulates
MMP-2 expression [73, 78].

With respect to VEGFA gene, we expected an increase
in gene expression, taking into consideration the
histological findings which revealed better organization
of re-epithelialization; on the contrary, a significant de-
crease was found at day 10 post-initial wounding. Ebra-
himian et al. demonstrated that ASC treatment
promotes angiogenesis and accelerates wound healing by
producing VEGF protein [79]. He showed an increase in
VEGF on day 7 after wound initiation, while on day 10,
the VEGF value decreased, which is similar to our re-
sults. On the other hand, Kanji et al. hypothesize that
MSCs would behave like pericytes, which stabilize blood
vessel formation [80].

In view of the data we present in this study, we
suggest that the beneficial effects observed in canine
wounds after allogenic ASC therapy are due not only to
direct ASC action but also to indirect paracrine
processes through the induction of secondary factors
involved in wound repair.

Conclusion

To the best of our knowledge, the study we have
developed in this paper represents, for the first time, a
cell therapy with allogeneic ASCs in patients with acute
and chronic wounds. It is important to note the clinical
safety of our protocol; an important conclusion is that
this study represents a translational model for human
wound research with respect to tissue regeneration. The
development of an allogeneic ASC therapy to improve
wound healing could have clinical impacts for both dogs
and people.
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