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Abstract

Mesenchymal stem cells (MSCs) have the capacity to differentiate into multiple lineages including osteogenic and
adipogenic lineages. An increasing number of studies have indicated that lineage commitment by MSCs is
influenced by actin remodeling. Moreover, actin has roles in determining cell shape, nuclear shape, cell spreading,
and cell stiffness, which eventually affect cell differentiation. Osteogenic differentiation is promoted in MSCs that
exhibit a large spreading area, increased matrix stiffness, higher levels of actin polymerization, and higher density of
stress fibers, whereas adipogenic differentiation is prevalent in MSCs with disrupted actin networks. In addition, the
mechanical properties of F-actin empower cells to sense and transduce mechanical stimuli, which are also reported

inducing osteogenic and adipogenic differentiation.

differentiation, Adipogenic differentiation, Cytoskeleton

to influence differentiation. Various biomaterials, mechanical, and chemical interventions along with pathogen-
induced actin alteration in the form of polymerization and depolymerization in MSC differentiation were studied
recently. This review will cover the role of actin and its modifications through the use of different methods in

Keywords: Mesenchymal stem cells (MSCs), Actin, Osteogenesis, Adipogenesis cytoskeleton, Osteogenic

Introduction

Stem cells exhibit a great potential for use in tissue en-
gineering because of their regenerative capacity in many
tissues, including nervous tissue, muscle tissue, adipose
tissue, cartilage tissue, and bone tissue. Examples of cells
with this potential include embryonic stem cells, induced
pluripotent cells, mesenchymal stem cells (MSCs), and
hematopoietic stem cells. Mesenchymal stem cells are
multipotent, meaning that they can differentiate into nu-
merous cell types, and in particular, adipocytes, chon-
drocytes, and osteocytes [1]. The cytoskeleton is known
to play a crucial role in the differentiation of MSCs;
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however, this review will focus specifically on the role of
actin.

Actin is a globular protein with a molecular weight of
approximately 42 kDa and consists of four structural do-
mains [2]. Actin exists in two forms, monomeric G-actin
and filamentous actin (F-actin). The filamentous form is
considered to be crucial for the structure of the cytoskel-
eton. Actin filament organization leads to the formation
of fiber bundles or three-dimensionally structured net-
works. These fiber bundles help maintain mechanosen-
sing and mechanotransduction [3-5] which eventually
allow cells to migrate, proliferate, and differentiate. In
addition, the execution of cell movement is achieved
through the formation of lamellipodia with the help of
densely branched actin filaments. In addition, actin
forms sensory structures in the form of filopodia, which
facilitates signal transduction. Actin polymerization and

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-020-01789-2&domain=pdf
https://orcid.org/0000-0002-2194-8322
https://orcid.org/0000-0002-4994-0613
https://orcid.org/0000-0002-2985-8823
https://orcid.org/0000-0002-8475-3696
https://orcid.org/0000-0002-9339-9174
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jouyang@126.com
mailto:jouyang@smu.edu.cn
mailto:daijx2013@163.com
mailto:daijx@smu.edu.cn

Khan et al. Stem Cell Research & Therapy (2020) 11:283

stress fiber formation are essential for the interaction be-
tween cells and the extracellular matrix (ECM) [6].

Various cues including chemical, mechanical stress,
nanomaterials, and pathogen affect the process of actin
polymerization which will be discussed in detail in the
review.

Actin properties

The effect of actin on cell shape and cell spreading

The actin cytoskeleton is a crucial determinant of cell
shape, which can be more precisely explained as the as-
sembly and disassembly of actin filaments [7-9]. Not-
ably, various biological processes such as proliferation
[10] and differentiation [11, 12] are influenced by cell
shape. In addition, actin cytoskeleton-mediated cell
shape changes have been shown to be vital for the regu-
lation of MSC lineage commitment [13].

Several studies have reported the influence of the actin
cytoskeleton and cell shape on MSC differentiation,
wherein MSCs exhibit a flower shape during adipogenic
differentiation and a star shape during osteogenic lineage
commitment [14, 15]. In addition, a high-stress fiber dens-
ity can clearly be observed in star-shaped cells, whereas
flower-shaped cells present disrupted actin filaments
(Fig. 1) [15]. Similarly, scanning electron microscopy re-
vealed that adipogenic cells adopt round-shaped forms,
whereas angular form containing more projections is
common in osteogenic cells. In contrast, undifferentiated
cells elongate into spindle-shaped cells. Increased actin
polymerization with perinuclear actin bundles framing the
nucleus is observed during osteogenesis, whereas a dis-
rupted actin network is observed during adipogenesis [16].

Cell shape directly mediates Rho (Ras homologous) activ-
ity which leads to the activation of Rho-associated coiled-
coil-containing protein kinase (ROCK), hence creating cell
tension by phosphorylating myosin light chain (MLC).
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Force generated by actomyosin contraction determines the
shape of cells which eventually affect the stem cell fate [17].
Similarly, Rho activity was reported to be higher in cells
that spread properly than in unspread cells. Moreover,
when cells are grown at a high-density place, they differen-
tiate along the adipogenic cell lines, and in contrast to that,
osteogenic cell lines are adopted at low-density sites. This
difference can be explained by the fact that they have differ-
ent cell spreading and cell shape [17]. In addition, when a
micropattern substrate was used to investigate the import-
ance of cell spreading in osteogenesis, the results showed
that osteogenesis was favored when cells could spread over
a large area, whereas adipogenesis was facilitated when cell
spreading occurred over a smaller area [17, 18].

The actin cytoskeleton was recently reported to influ-
ence the shape of the nucleus during adipogenic and
osteogenic differentiation [19]. Adipogenic differenti-
ation leads to a decrease in the size of the nucleus, likely
because of a disruption in the actin filament structure
[20]. In contrast, F-actin polymerization increases the
size of the nucleus during osteogenic differentiation [21].
Actin perinuclear cap, made of contractile bundles, is
connected to focal adhesion with nucleus through the
LINC complex. This physical connection between focal
adhesion and nucleus is crucial for force transmission to
the nucleus [22-24]. Stiffness of the nucleus is also af-
fected by actin polymerization as actin polymerization
increases nuclear stiffness, whereas actin
depolymerization decreases nuclear stiffness [25]. How-
ever, further studies are required to understand actin’s
role in nuclear mechanics and how nuclear mechanics
and nuclear morphology affect stem cell differentiation.

Mechanical properties of actin
The actin cytoskeleton regulates the mechanical behav-
ior of cells through its assembly and disassembly.

Remarkable stress fiber

Osteogenesis

Disrupted actin

Adipogenesis

Fig. 1 Star-shaped and flower-shaped cells that favor osteogenesis and adipogenesis, respectively
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Specifically, cell stiffness is influenced by the F-actin
cytoskeleton. Extensive modulation of actin filaments
occurs when cells undergo differentiation [26]. Disrupt-
ing F-actin results in the cells to be softer and more vis-
cous than control cells. Actin-disrupting drugs induce
the degradation of actin filaments, which reduces actin
density at the cortical region and eventually renders cells
softer [27, 28]. Thin and long actin filaments extend par-
allel to the long axis in undifferentiated or control cells,
whereas the actin cytoskeleton reorganizes into a dis-
rupted meshwork around the oil droplet in cells under-
going adipogenic differentiation [29, 30]. Osteogenic
cells present comparatively thick bundled fibers at the
periphery. Early studies regularly reported that osteo-
blasts are comparatively stiffer than adipocytes [31, 32].

Various techniques have been developed to evaluate
the mechanical behavior of cells, including microaspira-
tion, atomic force microscopy (AFM), nanoindentation,
optical tweezers, and force traction microscopy [33]. A
micropipette was used to measure the elastic modulus
before and after MSC differentiation, and differentiated
stem cells were reported to be stiffer than undifferenti-
ated MSCs [34]. Young’s modulus during osteogenic dif-
ferentiation is 0.6-fold higher than that during
adipogenesis; however, Young’s moduli of MSCs de-
creased significantly after treatment with cytochalasin D
(CD) [31]. Actin filaments are thicker in MSCs than in
osteoblasts, which present a thin and dense actin net-
work. Thick actin filaments render Young’s modulus of
MSCs higher than that of osteoblasts [35].

Actin cytoskeleton and Rho pathway
Rho family GTPase is the key regulatory molecule in-
volved in the remodeling of the actin cytoskeleton.
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About 20 different types of Rho family proteins, includ-
ing RhoA, Racl, and Cdc42, are essential in actin
reorganization by interacting with the downstream ef-
fector proteins [36, 37]. RhoA is mainly responsible for
the generation of cell force and tension within the cell
by regulating the activity of myosin II. Activation of
RhoA is carried out by mechanical stresses, and inhib-
ition of RhoA or its downstream effectors and mamma-
lian Diaphanous (mDia) and ROCK lead to
reorganization of stress fibers [38, 39]. ROCK exist in
two forms, i.e, ROCK1 and ROCK2, and both isoforms
reported to augment the activity of myosin II. This aug-
mentation is achieved by the phosphorylation of myosin
light chain (MLC) either by directly phosphorylating
MLC [40] or by indirectly through inhibition of MLC
phosphatase (Fig. 2). RhoA and its downstream effectors
mediate the association of actin filament and myosin
motor molecules which generate actomyosin contractile
forces and stress fibers formation [41, 42].

Stress fibers are an actomyosin structure composed of
F-actin and myosin-2 held together by crosslinking pro-
teins such as alpha-actinin, fascin, and filamin. Three
types of stress fibers are generated in a cell following
mechanosensory cues, namely, dorsal stress fibers, trans-
verse arcs, and ventral stress fibers. Dorsal stress fibers
only exert a stabilizing function, as they cannot contract
[43], and are therefore involved in connecting dorsal
stress fibers to transverse arcs [44]. Ventral fibers have
abundant concentrations of myosin-2 motors and are
connected to focal adhesions. Another fiber subtype, the
actomyosin complex, surrounds the nucleus and con-
nects the nuclear envelope to focal adhesions [45]. Dir-
ect connections between the nuclear envelope and focal
adhesions help the nucleus propagate the mechanical
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Fig. 2 The Rho pathway regulates actin polymerization, contractile force generation, and F-actin stabilization
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stimuli from focal adhesions into the nucleus [23, 46,
47].

ROCK activates and phosphorylates another kinase,
LIM motif-containing protein kinase (LIM kinase),
which eventually leads to the phosphorylation of cofilin,
an actin-severing protein [41]. Stabilization of actin
under tensile force is achieved by inhibiting the activity
of cofilin (CFL). LIMK-deficient mice are reported to
have reduced bone mass. Additionally, LIMK knock-
down results in reduced phosphorylation, which leads to
a reduction in osteoblast differentiation and cell viability
[48]. A lower level of LIMK and a high level of active
(nonphosphorylated) CFL1 were reported during hMSC
adipogenic differentiation [49]. LIMK can be phosphory-
lated by both Rho small GTPase and ROCK, which inac-
tivates CFL1 [50, 51]. Knocking down both CFL1 and
Destrin (DSTN) promotes actin polymerization, which
in turn facilitates osteoblast differentiation. However,
part of DSTN influences osteoblast differentiation medi-
ated partly by enhancing cell viability [23]. The observed
difference in both DSTN and CFL1 can be explained by
the possibility of different affinities in the binding of
actin-binding protein with actin cytoskeleton. Further
studies are needed to test this hypothesis.

Several studies have suggested that the abovemen-
tioned kinases (Rho, ROCK, Rac, LIMK) might be regu-
lators of osteoblast differentiation [52-54]. These
signaling pathways may exert their effects not only
through changes in the actin cytoskeleton organization,
but also by further signaling through the FAK, JNK, and
p38 MAPK pathways [55]. The TGEB1 pathway is an-
other pathway which regulates the actin cytoskeleton
and favors osteogenic MSC differentiation [56].

Numerous factors are involved in regulating actin
polymerization and depolymerization. End-to-end
polymerization is catalyzed by the formins, whereas sec-
ondary branches are promoted by the actin-related pro-
tein 2/3 complex (Arp2/3 complex). Blocking the Arp2/
3 complex inhibits osteogenesis, which is indicative of
the importance of nuclear actin branching in osteogen-
esis. Inhibition of either mDia2 (found in the cytoplasm)
or mDial (found in both the cytoplasm and nucleus) re-
sults in decreased adipogenesis. In contrast, knocking
down mDia2 leads to a decrease in osteogenesis, while
silencing of mDia2 has no effect on osteogenesis [57].
Knocking down mDia2 also leads to a decrease in the
expression and structure of lamin-B1 [58]. However, it is
not clear whether mDia2 knockdown decreases osteo-
genesis directly through nuclear actin or indirectly
through lamin-B1. Surprisingly, a decrease in ossification
has been reported after lamin-Bl silencing [59]. In
addition to being found at the periphery, lamin A/C and
lamin-B1 interact with chromatin in the nucleoplasm
[60, 61]. This suggests that mbDia2-mediated actin
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polymerization affects lamin integrity and composition,
which might be crucial for MSC differentiation [58].

Interventions in actin remodeling and their effect
on MSC differentiation

Actin alteration induced by mechanical stresses

The role of mechanical stress-mediated actin alteration
and the role of these changes in MSC differentiation
have been the subject of numerous studies. Remodeling
of actin filaments occurs under static mechanical force,
which eventually affects cell proliferation and differenti-
ation. F-actin are aligned under combined static-
dynamic stress, whereas irregular actin distribution is
observed in the control groups. However, static stress
alone did not result in actin filament alignment when
compared with dynamic stress. Additionally, hMSC pro-
liferation rates are higher under static stretch as com-
pared to dynamic stretch [62].

The transfer of mechanical signals through the actin
cytoskeleton into the nucleus is performed by the LINC
complex. Nuclear actin plays an essential role in main-
taining the nuclear shape and height during stress. Any
disruption to actomyosin contraction results in the alter-
ation of the mechanics inside the cell nucleus. The activ-
ity of signaling pathways, such as the Yes-associated
protein (YAP) and extracellular-signal-regulated kinase
(ERK) pathways, is decreased following a reduction in
actomyosin contractility [63]. Tensile stress suppresses
adipogenesis [64] and promotes osteogenesis. Cyclic
strain increases actin polymerization and longitudinally
aligned actin filaments, while a combination of BMP9
with cyclic strain leads to thicker filaments during osteo-
genesis [65]. Cyclic strain increases cofilin phosphoryl-
ation, which helps to stabilize actin filaments through
the Rho-ROCK-LIMK pathway [66].

Actin polymerization is regulated by the focal adhesion
kinase (FAK) signaling pathway during cyclic stretch
which promotes MSC osteogenic differentiation [67].
Actin polymerization and the bundling of stress fibers
are reinforced by the activation of mammalian target of
rapamycin complex 2 (mTORC2); as a result, actin
polymerization favors osteogenesis [68]. Compression
forces reduce the height of cells and circumferentially
aligned stress fibers. An increase in the contractility was
observed by these stress fibers, which eventually results
in resistance to the mechanical force [69]. Compression
forces on hydrostatic collagen gels induce a drastic
change in cell morphology, whereby cells become flat-
tened and completely lack stress fibers. However, cells in
compressed gel develop an ovoid shape and present a
close network of numerous actin filaments. The actin fil-
aments in dense gels show a greater tendency toward
osteogenic differentiation as compared with hydrostatic
gels [70]. Another study showed a similar result for F-
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actin stress fibers, which become prominent when estro-
gen was added under mechanical pressure, wherein, al-
kaline phosphatase activity, an early indicator of
osteogenesis, was observed to be higher showing osteo-
genesis [71].

Fluid flow shear stress promotes robust actin
polymerization and facilitates osteogenesis. Fluid shear
stress induces Rho activation, which is imperative for
the nuclear translocation of the transcriptional co-
activator with PDZ-binding motif (TAZ) transcription
factor [72]. Fluid shear stress increases osteogenesis by
increasing calcium influx and F-actin assembly. A correl-
ation exists between fluid shear stress-induced osteogen-
esis and F-actin [73]. F-actin can mediate the assembly
and disassembly of intermediate filaments and vinculin
(involved in focal adhesion), which are required for the
induction of osteogenesis through the transient receptor
potential melastatin 7 (TRPM7)-osterix axis. This sug-
gests that F-actin might indirectly act as a mediator in
fluid shear stress-induced osteogenic differentiation [73].
Further studies are required to completely understand
this process.

Microgravity has been used to study physiological
changes, such as the maintenance of MSCs in the undif-
ferentiated state and cell proliferation and differentiation
[74, 75]. The most important change that occurs inside
the cell is the disruption of actin filaments through im-
paired Rho signaling. Sustained stimulation by micro-
gravity =~ promotes  adipogenesis  during = MSC
differentiation [76, 77]. Osteogenesis is inhibited as actin
depolymerization prevents the translocation of transcrip-
tional co-activator with PDZ-binding motif (TAZ) into
the nucleus [55]. Sinusoidal vibration has a role in the
formation of F-actin fibers, which ultimately results in
osteogenic MSC differentiation. The exact mechanism
underlying the vibration-induced differentiation is not
yet clear, and further studies are required to explore this
molecular phenomenon [78]. Low-intensity vibration
leads to the disruption of actin fibers, which favors adi-
pogenesis in MSC differentiation; however, the exact
mechanism is not yet clear [79]. An ultrasound-based
method, acoustic tweezing cytometry, also facilitates the
formation and contractility of F-actin, which ultimately
promotes Yes-associated protein (YAP) translocation,
thereby favoring osteogenesis [80].

Chemical clues induce actin modifications

Following chemical intervention, cells undergo a drastic
transition from polymerization to depolymerization and
vice versa [81]. F-actin and G-actin both play a vital role
in the osteogenic and adipogenic differentiation of
MSCs. During adipogenic differentiation, the ratio of G-
actin to F-actin is increased (76% on day 13), whereas
the F-actin fraction is higher during osteogenic
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differentiation [49, 55]. Cell stiffness varies in a manner
that is dependent on the polymerization and
depolymerization of actin filaments. Studies have dem-
onstrated that depolymerization decreases cell rigidity
that eventually favors chondrogenesis or adipogenesis,
whereas actin polymerization promotes MSC commit-
ment to an osteogenic fate [16, 17, 29, 82].

Chemical induction of actin polymerization and
depolymerization influences the differentiation of MSCs.
Disruption of the cytoskeleton by treatment with cyto-
chalasin D (CD) leads to a significant decrease in the
levels of osteogenic markers, i.e., calcium deposition and
alkaline phosphatase (ALP), when compared with un-
treated cells. Additionally, a change in the cytoskeleton
at the initial stages of differentiation is sufficient to affect
the levels of osteogenic markers. This suggests that actin
cytoskeleton integrity is essential for MSCs to show the
phenotypic behavior of differentiated cells [29].

Numerous studies have suggested that an inverse cor-
relation exists between actin polymerization and adipo-
genesis, whereas there is a direct correlation between
actin polymerization and osteogenesis (Table 1) [49]. CD
treatment has been reported to reduce actin
depolymerization, which leads to osteogenic and adipo-
genic differentiation in hMSCs. In vivo injection of CD
contributes to an increase in bone mass and adipocyte
generation [84] (Fig. 3). This result was different from
those of other studies and can be attributed to cellular
composition or the duration of CD treatment. Actin
polymerization may be downregulated at the initial
phase of differentiation [49, 84]. Sen et al. [72] reported
the increased availability and translocation of G-actin
into the nucleus, resulting in increased expression of
osteogenic and adipogenic-related gens [84]. Several
studies have indicated that cytoplasmic F-actin branch-
ing is increased during osteogenic differentiation [16, 17,
35, 49, 55]. A different study, using RNA-Seq analysis,
reported that CD treatment induces osteogenesis via the
vestigial-like family member 4 (VGLL4) gene and that
the effect of CD depends on the biological state of the
cells analyzed [85]. This effect of CD on different tissue
needs to be further elucidated to explain the role of CD
effect on different stem cell types and their
differentiation.

Shuttling of G-actin between the cytoplasm and the
nucleus is a highly regulated process [86]. A threefold
increase in G-actin was observed in the nucleus after
treatment with CD, which led to reduced levels of cyto-
plasmic actin. Actin is translocated into the nucleus with
the help of importin 9 and cofilin [57, 87] and is re-
ported to be the trigger for osteogenesis in MSCs.
Knocking down cofilin and importin reduces actin shut-
tling into the nucleus, which eventually suppresses the
osteogenic process. Actin has also been reported to have
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Table 1 Chemicals that promote actin polymerization or depolymerization and their role in the osteogenic or adipogenic

differentiation of mesenchymal stem cells
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Chemical Dose and duration Osteogenic/adipogenic marker References
Cytochalasin = 0.1 ug/mL for 48 h ALP and calcium levels decreased at days 5 and 10 [29]
D
Cytochalasin = 100 ng/mL for 1, 3, 7, Decreased levels of ALP and osteocalcin, increased levels of adiponectin and peroxisome (6]
D and 14 days proliferator-activated receptor gamma (PPARG)
Cytochalasin - 0.02 mg/mL Increased adipogenesis [83]
D
Cytochalasin = 1-20 uM, 1 h every day  Decreased osteoblast differentiation, decreased ALP and mineral matrix [55]
D for 9 days
Phalloidin 0-6 UM, 3h every day  Increased ALP activity and mineralized matrix formation
for 9 days
Cytochalasin - 0.1 mg/mLday 1 Osterix, osteocalcin, and Runt-related transcription factor 2 (RUNX2) levels increased on days 2 [84]
D and 3
Cytochalasin 0.1 mg/mL for 3 days Increase in osteogenesis (higher level of alkaline phosphatase, tissue-nonspecific isozyme (Alpl),  [57]
D specificity protein (Sp7), gamma-carboxyglutamic acid-containing protein (Bglap genes)) and
adipogenesis (higher level of fatty acid-binding protein (FABP4), adiponectin gene (ADIPOQ),
and peroxisome proliferator-activated receptor y (PPARy genes)) in growth medium, increased
adipogenesis in adipogenic medium, and increases osteogenesis in osteogenic medium
Cytochalasin = 0.1 mg/mL for 14days  Increase in osteogenesis through increased expression of the VGLL4 gene; the effect of [85]
D cytochalasin D was dependent on the biological state of the cells
Cytochalasin = 1-20 uM for 1 h every  Increased adipocyte differentiation [49]
D day for 13 days
Phalloidin 0-3 uM for 3 h every Decreased adipocyte differentiation and adipocyte-specific gene expression (ADIPOQ, LPL, [49]
day for 13 days PPARG, FABP4)
Cytochalasin - - Increased adipogenesis through the regulation of the FGF2, TGFf32, EGR2, MEF2D, and IRST [56]

D

genes

or adipogenesis
A\

Fig. 3 Mechanical, chemical, biomaterial, and possible pathogen-related interventions lead to actin reorganization and facilitate osteogenesis
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a role in gene expression, through influencing chromatin
remodeling, RNA processing, and transcription [88]. Nu-
clear actin has been suggested to be directly involved in
MSC differentiation into different lineages.

Nuclear actin-induced osteogenic differentiation might
depend on the availability of the YAP transcription fac-
tor. Actin depolymerization in the cytoplasm results in
the nuclear influx of G-actin that subsequently leads to
YAP exclusion from the nucleus. Studies have shown
that RUNX2 expression is repressed through its binding
to YAP [89], wherein YAP was translocated out of the
nucleus by the influx of G-actin [57]. Nuclear YAP ex-
clusion is associated with reduced proliferation [90]
which may subsequently also affect differentiation [91].
Similarly, an increase in the G-actin/F-actin ratio is ob-
served in adipogenic differentiation media. G-actin also
binds to megakaryoblastic leukemia 1 (MKL1) in the
cytoplasm and prevents its translocation into the nu-
cleus, which results in an increase in adipocyte differen-
tiation. An antagonistic relationship exists between
PPARG and MKL1 in adipocyte differentiation, whereby
knockout of MKLL1 leads to an increase in white adipo-
genesis (Fig. 4) [92]. A different study indicated that
MKL1 and serum response factor (SRF) independently
negatively regulate brown adipogenesis [93]. Nuclear G-
actin polymerization may be required for the initiation
of MSC differentiation, an idea that requires further in-
vestigation. The inner nuclear membrane-localized pro-
tein lamin A/C and emerin might have a regulatory role
in actin polymerization [94] during the initiation of dif-
ferentiation. Actin depolymerization is a key regulator of
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adipogenesis  during MSC differentiation.  Actin
depolymerization increases the levels of phosphorylated
p38 and ERK1/2 and also increases the gene expression
of PPARG during adipogenesis [83]. Similar findings
have been reported in another study, which showed that
adipogenic and osteogenic differentiation is regulated by
the p38 MAPK and ERK1/2 pathways through the re-
modeling of actin filaments [16].

Interventions in actin remodeling and their effect
on MSC differentiation

Biomaterial induced actin remodeling

In addition to the external mechanical forces on cells
mentioned above, intracellular forces are shifted to cells
through ECM adhesion or by cell-cell junctions. The
stiffness of intrinsic forces is proportional to the stiffness
of the matrix [95]. Intracellular pathways are also influ-
enced by these forces, which eventually change the ex-
pression of genes and proteins through nuclear signaling
proteins. Integrins are the cell components which make
up the connection between cell and outer environment,
and these integrins trigger the cell-ECM interaction
[96-98]. The association of extracellular components
with the cytoskeleton is carried out through the cyto-
plasmic domain of integrins forming the focal adhesion
zone. These adhesion sites are composed of adhesome
(protein complexes) which allow mechanical coupling
[99-104]. Moreover, assembly and disassembly of adhe-
some are affected by substrate elasticity. In fact, soft sub-
strate destabilizes the adhesion, whereas stiff substrate

-

.

Fig. 4 Actin facilitates the movement of MKL1 into the nucleus and nuclear YAP exclusion, which regulates differentiation
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produces forces which in turn adhesion stabilization
[105-107].

The cell activates myosin II motors when it interacts
with the substrate, which leads to the changes in the
confirmation of adhesome’s components such as talin,
vinculin, and focal adhesion kinase FAK [95]. The force
from ECM to cell modulates focal adhesion and FAK
signaling pathway, thereby activating the RhoA signaling
by phosphorylating it [108]. RhoA then augments the ac-
tivation of ROCK, which eventually phosphorylates
MLC. Thus, through local adhesome, intracellular actin
cytoskeleton senses the cell force results in the activation
of multiple mechanosensitive pathways, including YAP/
TAZ and MKLI1 [109, 110].

Stem cells assess substrate stiffness which encourages
its differentiation into different lineages. Neural differen-
tiation is favored in soft substrate, whereas moderate
substrate stiffness appreciates chondrogenic differenti-
ation. Similarly, the stiffer substrate encourages osteo-
genic differentiation in stem cells [111-113]. These
results suggested that the elastic modulus of native tis-
sue is similar to the elastic modulus of stem cell differ-
entiation; thereby, osteogenic differentiation is favored
when a stiff scaffold is used [114]. Besides, various new
microenvironments such as 2D and 3D scaffolds are also
utilized to assess the differentiation potential of stem
cells. Morphological structure, gene expression, and cell
function, proliferation, and differentiation of cells in 3D
are different than the cells in 2D [115]. Furthermore, the
3D scaffold can be able to augment the production of
osteogenesis [116] and chondrogenesis as compared to
2D scaffold and thus is being used more frequently in
osteochondral tissue engineering [117, 118].

Stem cell behavior is influenced by the surface topog-
raphy as well and thereby, survival of stem cells is based
on the topography of scaffold, in vivo [119]. However,
in vitro, surface topography influences cell adhesion,
gene expression, proliferation, and fate of stem cells.
Roughness and texture are the two most important
properties of surface topography which help in the regu-
lation of cell fate. On a rough surface, the proliferation
of stem cells was reported to be reduced and osteogen-
esis was favored. Moreover, concave surfaces showed
better interaction of stem cells with more inclination to-
ward osteogenesis [120]. Recently, nanomaterials are
emerged as potential candidates in the development of
biomaterial to influence stem cell fate. In fact, their
small size and bioactive characteristics made them more
suitable to interact with physiologic environment of
cells. Nanomaterial (NM) composition, topography, and
morphological and electrical properties have been shown
to influence stem cell response [121]. Bacakowa et al.
studied 3 different layers of nanoparticle coated with ful-
lerene C60, single-wall carbon nanotubes (SWCNTs),
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and multiwall carbon nanotubes (MWSNTSs). The actin
filament turned into a thick bundle and cells spread
more than control [122]. Another research recently pro-
posed the interaction of nontopographic structures with
actin cytoskeleton which result in actomyosin contrac-
tion. This contraction affects cell migration and cell
spreading in the 3D environment [123]. Various types of
nanomaterial and their effect on the differentiation of
MSCs will be discussed in Table 2.

Pathogen induced actin alteration
The pathogen can take a wide variety of beneficial out-
comes after manipulating the host cells, for example,
actin filament formation at the apical surface of mucosal
epithelia by activating Rac and Cdc42. This activation is
achieved after translocating effectors Salmonella typhi-
murium exchange factor (SopE and SopE2) into host
cells [133-136]. F-actin formation results in the mem-
brane ruffling which causes an intake of the pathogen
inside of cells by micropinocytosis [133, 137, 138]. Other
gram-positive bacteria Listeria spp. cause actin
polymerization on its own surface using the activity of
protein ActA which is an analog of members of the
Wiskott-Aldrich syndrome protein (WASP) nucleation
promotion factor. Branched actin polymerization is
achieved on the surface of a pathogen by recruiting the
Arp2/3 complex which helps bacteria to move into the
cells. There are various bacteria mentioned in Table 3
which induce polymerization [139, 140]. Some bacteria,
i.e., Escherichia coli, attach to the cell membrane by
structuring specialized actin filaments [141], whereas
others, ie., Chlamydia, induce actin polymerization in
host cells helping itself for its reproduction [143, 144].
The role of these bacteria and viruses on actin
polymerization was not studied on MSC differenti-
ation. However, recently, a study on heat-inactivated
bacterial pathogens Escherichia coli, Staphylococcus
aureus, and Streptococcus pyogenes, showed to have
increased MSC proliferation and differentiation
[150]. Moreover, a balanced approach of probiotics
and oral bacteria is proved to increase the MSC pro-
liferation and osteogenic differentiation [151]. Modi-
fication in the actin cytoskeleton during the
interaction of certain bacteria and viruses with the
cell could be a potential area for the induction of
MSC differentiation. Application for advanced tech-
niques like gene editing and bioengineering, etc. in a
bacterial cell by making it less pathogenic [152]
eventually could help reprogram the MSCs cells into
multiple lineages. Moreover, it could help in regen-
eration medicine and cell-based therapy using actin
remodeling as the main tool against infectious
diseases.
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Table 2 Nanomaterial's use in mesenchymal stem cells

Nanomaterial Differentiation potential

Polymeric NMs Poly(p,L-lactide-co-glycolide)-bovine albumin serum (PLGA-  Increase osteogenesis, decrease adipogenesis [124]
BSA) differentiation

Ceramic NMs Hydroxyapatite nanoparticles (HAP NPs (20 nm)) Enhance osteogenic differentiation [125]

Carbon NMs SWCNTs Enhance adipogenic, osteogenic [126]

Carbon NMs Reduced graphene oxide (rGO) nanosheets Enhance osteogenic differentiation [127]

Metal/metal oxide Chitosan-gold nanoparticle (AuNPs) Enhance osteogenic differentiation [128]

NMs

Metal/metal oxide BSA-AuUNPs (70, 100 nm) Enhance osteogenic differentiation [129]

NMs

Metal/metal oxide BSA-AuNPs (40 nm) Decrease osteogenic differentiation [129]

NMs

Metal/metal oxide BSA-coated gold nanorods (70 nm) Enhance osteogenic differentiation [129]

NMs

Metal/metal oxide Polyethylene glycol-gold nanoparticles PEG-AuNPs (4 nm) Decrease osteogenic differentiation [130]

NMs

Metal/metal oxide Gold nanoparticles, carboxylic acid (AuNP-COOH) (17 nm) Decrease osteogenic differentiation [131]

NMs

Metal/metal oxide Zincoxide (ZnO NPs) Enhance osteogenic differentiation [132]

NMs

Conclusion stabilized actin fibers, whereas disrupted actin was

Actin filaments appear to be a vital determinant in
the differentiation of MSCs. Actin remodeling is a
commonly observed phenomenon during the differen-
tiation of MSCs into adipogenic and osteogenic line-
ages. Actin polymerization, stabilization, and stress
fiber formation are observed in osteogenesis, whereas
less organized and depolymerized actin networks are
observed during adipogenesis. The literature reviewed
here suggested that actin polymerization and
depolymerization appear to be an essential element
for osteogenesis and adipogenesis, respectively. Not
surprisingly, osteogenic cells appear stiffer which have

Table 3 Pathogens and actin interaction

found in round adipogenic cells. Various interven-
tions, i.e.,, mechanical, chemical, and biomaterial, also
suggested actin polymerization and stabilized actin in
osteogenic cells as compared to actin depolymerization in
adipogenic cells. In addition, pathogens induce actin
polymerization for their invasion and use actin ma-
chinery of host cells which might be taken as a tool
for regenerative medicine and cell-based therapy.
However, there are few questions unanswered; how
actin perceives varied signals from the environment
and decides to create softness and stiffness in the
form of cell tension within the cells?

Pathogen Mechanism of action adaptation in host cell References
Salmonella spp. Translocate effectors (SopE and SopE2) into host cells which increase F actin polymerization. [133, 134,
137]

Listeria monocytogenes ActA protein recruits an Arp2/3 on the surface of listeria which promotes actin polymerization that [139, 140]
helps in the movement of bacteria in the cells.

E. coli Actin-rich filament that facilitates their attachment. [141, 142]

Chlamydia trachomatis Secrete actin-recruiting phosphoprotein (Tarp) which cause actin polymerization depolymerization in  [143, 144]
the host cell.

Coxiella burnetii Infects phagocytic human macrophages via binding to complement receptor 3 (CR3) receptors, [145]
triggering the reorganization of filamentous actin at the attachment site.

Rickettsia conorii Attachment to host cell requires actin rearrangement via recruitment and activation of Arp2/3. [146]

Tick-borne pathogen Anaplasma  Actin polymerization at invasion. [147]

phagocytophilu

Ehrlichia chaffeensis Manipulation of cytoskeleton through SUMOylation-dependent protein-protein interactions between  [148]
bacterial effectors and host cytoskeletal components.

Vaccinia viruses Receptor tyrosine kinase signaling which in turn ignite actin polymerization through N-WASP-Arp2/3  [149]

cascade.
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Although chemically induced actin depolymerization
favors adipogenesis, future studies should focus on the
role of actin polymerization/depolymerization in cell dif-
ferentiation. However, it is essential to understand how
actin contributes to osteogenesis and what is the role of
nuclear actin in cell differentiation. In addition, further
studies are required to determine the role of signaling
pathways that regulate actin organization, such as
TGEP1, in MSC differentiation. TGFP1 mediates actin
cytoskeleton organization during osteogenesis; however,
TGEPL or Cyto D treatment alone also induce adipogen-
esis. Therefore, TGEP1 or Cyto D might either promote
different patterns in actin filament, or actin cytoskeletal
reorganization might be independent of TGEP1 [56].
Furthermore, a better understanding of how the balance
between YAP and TAZ is regulated and how this bal-
ance is affected by the cytoskeleton is also required.
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