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Abstract

and wound healing.

Background: Full-thickness wounds severely affect patients’ life quality and become challenging problems for
clinicians. Stem cells have great prospects in the treatment of wounds. Our previous study confirmed that
autologous basal cell suspension could promote wound healing, and epidermal stem cells (ESCs) were detected in
the basal cell suspension. Herein, this study aimed to explore the effect of ESCs on full-thickness wounds.

Methods: Rat ESCs were isolated and expanded and then were transfected with lentivirus to stably express
enhanced green fluorescent protein. The experimental rats were randomly divided into 2 groups: in the ESC group,
the rat ESCs were sprayed on the full-thickness wounds of rats; in the control group, phosphate-buffered saline was
sprayed the on the wounds. Next, wound healing and neovascularization were evaluated. Colonization, division,
and differentiation of ESCs on the wound were analyzed by immunofluorescence.

Results: The rat ESCs colonized, divided, and proliferated in the wound. Additionally, rat ESCs around blood vessels
differentiated into vascular endothelial cells and formed a lumen-like structure. Compared with the control group,
the ESC group showed enhanced angiogenesis and accelerated wound healing.

Conclusions: Our study confirmed that rat ESCs are safe and effective for treating full-thickness wounds.
Additionally, under certain conditions, ESCs can differentiate into vascular endothelial cells to promote angiogenesis
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Background

The skin is the largest organ of the human body and has
many important functions, such as metabolism, absorp-
tion, protection, body temperature regulation, secretion,
and sensation. At the same time, it is easily damaged when
stimulated by external chemical and physical factors. Full-
thickness skin wounds caused by varicose veins, arterial
occlusion, burns, car accident injuries, war injuries, avul-
sion injuries, and other traumas are the most common
conditions in clinical emergency departments and have
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always posed difficult problems for clinicians [1, 2]. In pa-
tients with full-thickness skin defects, the wounds are
healed mainly by the migration of stem cells adjacent to
the skin epithelial cells and regeneration of the remaining
skin appendages. If the area of the patient’s skin defect is
too large, it may take much longer time to heal, causing
follow-up problems, such as scars and wound contraction,
which affected normal skin function, esthetics, and psych-
ology. Thus, accelerating the speed of repair after skin in-
jury has become the focus of attention of clinicians.
Presently, wound repair treatment mainly relies on surgi-
cal debridement, skin flap covering, skin grafting, wound
dressing, application of epidermal factors, and hyperbaric
oxygen therapy but lacks simple and effective methods
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[3-6]. Therefore, how to increase the effectiveness of
wound healing and regain skin function are the problems
faced by burn and plastic surgeons.

Effective wound repair requires the formation of many
new blood vessels in the granulation tissue to maintain
the nutrition of the wound bed and promote the depos-
ition of extracellular matrix. Therefore, neovasculariza-
tion in the wound tissue plays a very important role in
forming granulation tissue, improving the microcircula-
tion of the wound, reducing the incidence of infection,
and promoting the healing of chronic refractory wounds
or deep burn wounds. Impaired neovascularization will
directly lead to delayed wound healing or poor wound
healing [7-10].

Stem cells are considered ideal seed cells to promote
wound healing due to their strong self-renewal capacity
and multidirectional differentiation potential [11, 12].
Our previous studies demonstrated that autologous basal
cell suspension could promote skin re-epithelialization
and wound healing. Moreover, in the treatment of
chronic wounds, blade thick-skin transplantation com-
bined with autologous basal cell suspension can improve
the survival rate of skin and increase the quality of skin
healing. The number of epidermal stem cells (ESCs) is
very small (accounting for 1% to 10% of epidermal basal
cells) [13-16]. We speculated that the epidermal stem
cells might play an important role in wound healing.
Thus, this study aimed to study the effects of epidermal
stem cells on wound healing.

Methods

Isolation of rat ESCs

One six-week-old rat was sacrificed by cervical dislocation.
The back skin of the rat was removed and placed in a 15-
ml centrifuge tube with 1% phosphate-buffered saline
(PBS; 10010023; Gibco) and then was placed on ice. The
muscle layer was removed, and the skin was cut to a size
of 1 x 1 cm? and placed in a sterile 15-ml centrifuge tube.
Next, 2ml of x 10 Tryple (A1217702; Gibco) was added,
and the sample was digested in a constant-temperature
water bath at 37 °C for 15-30 min with shaking every 3
min. Several T25 culture flasks were evenly coated with 1
ml (0.5 mg/ml) of fibronectin (EN; ~ 5 pg/cm? Shanghai
Fibronectin Biotechnology, Shanghai, China) solution be-
fore planting the basal cell suspension and then were incu-
bated in a 37 °C incubator for 20 min. After the skin was
completely digested, it was rinsed with 1% PBS to stop the
digestion. Next, the basal cells were scraped off using a
sterile scalpel, rinsed, and collected into keratinocyte
serum-free medium (K-SFM; 17005042; Gibco), and then
the cell suspension was filtered in a 50-ml centrifuge tube
using a 200-mesh filter. The cell suspension was trans-
ferred to a 15-ml centrifuge tube and centrifuged at 1000
r/min for 10 min. The supernatant was discarded, and the
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pellet was resuspended in 4 ml of complete medium by
pipetting. The basal cell suspension was then used to coat
the culture flask, which was then incubated in a 37 °C in-
cubator for 20 min. Approximately 10% of the cells ad-
hered to the wall first; these cells were regarded as ESCs.
The ESCs were cultured in K-SFM medium at 37 °C, and
the medium was changed every 2 days.

Immunofluorescence and confocal microscopy

Cell passaging was performed when the cell density of
the second generation of ESCs reached ~ 90%. Briefly,
1 ml of 0.25% trypsin was added to the flask, which was
gently shaken so that the trypsin covered the cell sur-
face evenly and then placed in a cell culture incubated
for 3 min. After the cells dissociated from the flask wall,
3 ml of complete medium was added to stop digestion.
The samples were then centrifuged at 1000 r/min for 5
min, the supernatants were removed, and then the pel-
lets were resuspended and cultured in confocal-grade
glass-bottomed Petri dishes. After the cells adhered,
they were washed 3 times with PBS for 5min each,
fixed with 4% paraformaldehyde (P0099-500 ml; Beyo-
time Biotechnology, Shanghai, China) for 20 min,
washed again with PBS 3 times, and then incubated
with 0.5% Triton X-100 (P0096-500 ml; Beyotime Bio-
technology, Shanghai, China) at room temperature for
20 min. The samples were washed with PBS three
times, and then 5% goat serum blocking solution
(C0265; Beyotime Biotechnology, Shanghai, China) was
added to the glass-bottomed Petri dishes, followed by
incubation at room temperature for 40 min. The block-
ing solution was aspirated, and then the samples were
incubated at 4 °C overnight with 100 pl of the following
diluted primary antibodies: p63 (1:200; ab735; Abcam),
a6-integrin (1:200; ab235905; Abcam), CD71 (1:200;
ab22391; Abcam), CK15 (1:200; ab80522; Abcam),
CK19 (1:200; ab84632; Abcam), CD31 (1:200; ab24590;
Abcam), and CD34 (1:200; ab81289; Abcam). Next, the
samples were washed three times with PBS for 5min
each. After aspirating the excess liquid from the Petri
dishes, the samples were incubated for 1h at room
temperature in the dark with the following diluted
fluorescent secondary antibodies: goat anti-rabbit IgG
labeled with Alex Fluor 488 (1:200; ab150077; Abcam),
goat anti-mouse IgG labeled with Alexa Fluor 594 (1:
200; ab150116; Abcam), and goat anti-rat IgG H&L
DyLight® 594 (1:200; ab96889; Abcam). DAPI (D9542;
Sigma-Aldrich) was added dropwise to the samples,
followed by incubation for 5 min in the dark, and then
the samples were rinsed 4 times with PBS for 5 min
each. The supernatant was aspirated, and then the sam-
ples were mounted with an anti-fluorescence quencher
and observed under a fluorescence
followed by image analysis.

microscope,
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Flow cytometry

Third-generation rat ESCs were collected by centrifuga-
tion, and the supernatant was aspirated. The cells were
then resuspended in 0.5ml of PBS and then were fixed
and permeabilized using the BD Cytofix/Cytoperm™ Fix-
ation/Permeabilization Kit. Next, 2-3ml of incubation
buffer was added to the cells, followed by rinsing by cen-
trifugation. The cells were resuspended in 100 ul of incu-
bation buffer per test tube and were blocked by
incubation for 10 min at room temperature. Next, the
primary antibodies (p63, Abcam, ab124762, 1:200; a6-
integrin, Abcam, ab77906, 1:200) were added to the tubes
at the appropriate dilution and incubated at room
temperature for 60 min. Next, the cells were rinsed with
incubation buffer by centrifugation. They then were incu-
bated at room temperature for 30 min with fluorescent-
labeled secondary antibodies diluted in incubation buffer
as recommended by the manufacturer. Next, the cells
were rinsed in incubation buffer by centrifugation, resus-
pended in 0.5ml of PBS, and then subjected to flow cy-
tometry analysis.

Lentivirus and transfection

To generate ESCs with stable enhanced green fluorescent
protein (EGFP) expression, the cells were infected with a
lentiviral vector encoding the full-length human EGEFP
gene or empty lentiviral vector as the control (OBiO
Technology, Shanghai, China). Stable clones were selected
after 2 weeks using 1 pg/ml of puromycin, and the EGFP
expression level was determined by immunofluorescence.

Animal experiments

To explore the function of ESCs in full-thickness wound
beds in vivo, the rat dorsal wound model was adopted.
Twenty rats were anesthetized by inhaling isoflurane
(INH), and a 2-cm-diameter, full-thickness wound was
made on the dorsal skin of each rat. The wounds were
divided into 2 groups randomly: control group and ESC
group. ESCs that stably expressed EGFP were evenly
sprayed on the wound bed using a 2-ml syringe. For the
ESC group, 1 ml of cell suspension at a cell density of
1 x 10°/ml was evenly sprayed on the wound bed; for the
control group, 1 ml of PBS was sprayed. The rats and
wounds were observed, photographed, and measured
daily until the rats were sacrificed. The wound healing
time was recorded, and the residual wound area rate was
calculated as [(day n area)/(day O area)] x 100% (n =0, 3,
7, 14, or 21). Six rats of each group were sacrificed on
days 0, 3, 7, 14, and 21, respectively, and the wound tis-
sues were harvested and separated into two halves across
the center: one half was processed for histological and
immunohistochemistry analyses, and the other was rap-
idly frozen in liquid nitrogen for western blot analysis.
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Immunohistochemistry analysis

The paraffin-embedded fixed tissue sections of each
group were deparaffinized and rehydrated in xylene and
graded ethanol. Antigen retrieval was performed using
Proteinase K solution (20 pg/ml) at 37°C for 15 min.
After blocking with Bloxall, the sections were blocked
with goat serum for 30 min and then were incubated
with primary antibody anti-CD31 (1:100; ab24590;
Abcam) overnight at 4°C. After washing in PBST, the
sections were then incubated with an HRP conjugated
secondary antibody (1:2000; ab97051; Abcam) for 1 h at
room temperature. The sections were further incubated
with 3,3"-diaminobenzidine (DAB) and counterstained
with hematoxylin and observed by microscopy.

Western blot analysis

Western blotting was performed using antibodies di-
rected against CD31 (1:1000; ab24590; Abcam) and
GAPDH (Sigma-Aldrich; SAB1405848; 1:6000). GAPDH
served as an internal control. The cells were lysed with
radioimmunoprecipitation assay (RIPA) lysis buffer (Cell
Signaling Technology) containing PMSF (1:100; v/v)
(Cell Signaling Technology) for 30 min. The BCA Pro-
tein Assay Kit (Pierce, Thermo Scientific) was used to
measure the total protein concentrations. Aliquots
(40 pg) of total cellular protein were resolved by SDS-
PAGE (10~12%), electrotransferred to PVDF mem-
branes, and blocked with 5% skim milk (w/v) at room
temperature for 1h. The membranes were then incu-
bated with primary antibodies on an orbital shaker at
4°C overnight, and secondary antibodies (HRP-conju-
gated goat anti-mouse and HRP-conjugated goat anti-
rabbit) were added and incubated for 1h at room
temperature. Protein-antibody complexes were then de-
tected by chemiluminescence (Pierce ECL Western Blot-
ting Substrate, Thermo, USA).

Tissue immunofluorescence analysis

Formalin-fixed and paraffin-embedded tissue sections
were deparaffinized in xylene and rehydrated through a
graded ethanol series. Antigen retrieval was performed
using citrate buffer in a pressure cooker at 95 °C for 30
min. The 4-pm sections of each group were blocked in
10% goat serum (16210064; Gibco) for 30 min at 37 °C
and then were incubated with the primary anti-rat CD31
antibody (Abcam; ab24590; 1:200). After incubating at
4°C overnight, the sections were washed with PBST and
incubated for 1h with a goat anti-mouse IgG secondary
antibody labeled with Alexa Fluor 594 (1:200; ab150116;
Abcam). DAPI was added dropwise and incubated with
the sections for 5 min in the dark, and then the sections
were rinsed 4 times with PBS for 5min each. The
remaining liquid in the Petri dish was aspirated, and the
sections were mounted with an anti-fluorescence
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quencher. The sections were analyzed by fluorescence
microscopy (OLYMPUS, Japan).

Statistical analysis

The values were expressed as means + standard devi-
ation (SD) unless otherwise indicated. Comparisons of
the expression difference between the control and ex-
perimental groups were conducted by Student’s ¢ test.
All statistical analyses were performed using SPSS 20.0
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software (SPSS, Chicago, IL, USA), and P<0.05 indi-
cated that the difference was statistically significant.

Results

Morphology and identification of rat ESCs

Our previous study found that FN-precoated culture
dishes promote the adhesion and proliferation of ESCs
[14]. In our study, we used EN to harvest and expand rat
ESCs. The isolated original representative skin stem cells
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Fig. 1 Isolation, identification, and lentivirus transfection of rat ESCs. a Rat ESC morphology on the 3rd and 7th days (x 10 microscope). b Identification
of third-generation cells using p63, 6a integrin, CD71, Ck15, CK19, CD31, and CD34. ¢ Flow cytometry to detect the proportion of p63- and 6a integrin-
positive cells. d Rat ESCs were transfected with lentivirus to stably express EGFP
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were round in shape, small in size, and strong in refrac-
tion. After overnight culture, some cells adhered to the
wall; these cells were polygonal, and the nuclei were lar-
ger. After culturing rat ESCs for 3 days and changing the
medium, the cells formed a clonal colony and adhered
firmly. After 7 days of culture, the cells proliferated signifi-
cantly, and they were connected in a paving-stone-like
sheet shape (Fig. la). Rat ESCs were passaged and ex-
panded, and third-generation cells were analyzed for im-
munofluorescence identification. The cells expressed p63
and 6 integrin, as well as CD71dim. Moreover, CK15 and
CK19 were positive in these cells. Although CD31 and
CD34 were negative (Fig. 1b), the isolated cells were ESCs
but not vascular endothelial cells. The results of cell flow
cytometry analysis indicated that the p63- and 6a
integrin-positive cells accounted for approximately 98.53%
of the third-generation cells (Fig. 1c).
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Rat ESCs improve wound closure and the healing quality
of SD rats

Third-generation rat ESCs were transfected with lenti-
virus to express EGFP (Fig. 1d). We used the ESCs that
stably expressed EGFP for subsequent animal experi-
ments. To investigate whether ESCs can influence the
healing of the wound bed in vivo, we used the rat dorsal
wound model. Compared with the control group, the
ESC group displayed a dramatically higher healing qual-
ity (Fig. 2a), a lower residual wound area (Fig. 2b), and a
shorter healing time (Fig. 2c). These results suggested
that ESCs spray could promote wound healing and im-
prove the healing quality significantly.

Rat ESCs promote the angiogenesis of wounds
To assess angiogenesis, the wound area sections on days 7
and 14 were stained with CD31 for immunohistochemistry.
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Fig. 2 Rat ESCs accelerate wound closure and improve the healing quality of rats. a The wound pictures of the rats’ dorsal skin of the negative

control group and ESC group were taken on postinjury days 0, 3, 7, 14, and 21. b Residual wound rates of the negative control group and ESC
group on postinjury days 0, 3, 7, 14, and 21. ¢ Completed wound healing time of the negative control group and ESC group. *P < 0.05
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Microvessel density (MVD) was assessed using CD31-
positive cells in five areas randomly. The ESC group dis-
played significantly higher MVD than the control group at
both time points, and CD31 expression was strongly positive
(Fig. 3a, b). Similarly, western blots of wound snap-frozen
samples on days 7 and 14 also showed a markedly higher
CD31 expression in the ESC group than that in the control
group (Fig. 3c). All the results above demonstrated that ESCs
could improve wound healing by accelerating angiogenesis.
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Rat ESCs could differentiate into vascular endothelial cells
To explore the role of rat ESCs sprayed on the
wound surface in the process of wound healing, we
have transfected rat ESCs with lentivirus in our previ-
ous experiments to stably express ESCs. We took
tissue samples from the wounds of rats for immuno-
fluorescence staining. On the 7th, 14th, and 21st days,
ESCs that stably expressed EGFP could be observed
on the wounds of rats (Fig. 4a). The ESCs were
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Fig. 3 Expression of angiogenesis factors in rat wounds on days 7 and 14. a, b Representative area and analysis of wound tissue sections stained
with CD31 on postinjury days 7 and 14 showing microvascular regeneration in rat wounds in the negative control group and ESC group. Arrows
indicate the microvascular. ¢ Representative western blot analysis showing the relative protein levels of CD31 for each group on days 7 and 14.
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B.

Fig. 4 Tracking rat ESCs in the wound on postinjury day 14. a Rat ESCs expressing EGFP were observed in the wound on days 7, 14, and 21 after
the operation. Arrows indicate the EGFP-positive cells. b The rat ESCs have dividing and proliferating phases. ¢ The rat ESCs near blood vessels
can express CD31 and participate in the formation of lumen-like structures. Arrows indicate the CD31- and EGFP-positive cells
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mainly colonized in the subcutaneous tissue layer, cells—that is, CD31 expression was positive, and ESCs
and the ESCs divided and proliferated (Fig. 4b). can be seen in CD31-positive cells (Fig. 4c). The
Immunofluorescence staining of blood vessels with above results showed that the ESCs sprayed on the
CD31 revealed red staining in vascular endothelial wound surface can be colonized on wounds to divide
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and proliferate and can differentiate toward vascular
endothelial cells to form a lumen structure.

Discussion

Various factors can cause skin wounds, and the types
and locations of wounds caused by different events may
also be different. Thus, the treatment of wounds is vari-
ous and difficult. Moreover, wounds may affect the life
quality of patients to varying degrees and increase the
social medical burden. Among the factors that cause
wound nonhealing, vascular regeneration disorder is a
key factor. Therefore, a large amount of research is cur-
rently focused on vascular regeneration to promote
wound healing by enhancing angiogenesis. Many studies
have reported that increasing wound angiogenesis can
significantly promote wound repair [17-21]. However,
because wound repair is a pathophysiological process in-
volving multiple factors, any unbalanced factors will
cause abnormal wound healing. Therefore, wound repair
remains a common problem worldwide.

In recent years, stem cell therapy has brought a new
dawn for wound repair because stem cells have promis-
ing characteristics, such as the ability to differentiate
multidirectionally and secrete paracrine growth factors.
Adult stem cells are favored by scholars because of their
immunocompatibility and ethical constraints. ESCs play
an important role in skin repair because ESCs can self-
proliferate and differentiate, promote wound healing,
and restore normal epidermal structure and skin func-
tion [22-24]. A study found that Rhesus putative ESCs
can trans-differentiate into corneal epithelium-like cells
when cocultured with human corneal limbal stroma and
corneal epithelial cells [25]. Thus, ESCs may have the
potential for multidirectional differentiation under cer-
tain conditions.

In our study, we successfully isolated and expanded rat
ESCs in vitro to treat wounds. The results showed that
rat ESCs could promote the healing of full-thickness
skin defects in rats. Moreover, we found that rat ESCs
can promote angiogenesis in the wound bed of the rats.
In that experiment, we transfected the rat ESCs with
lentivirus to stably express EGFP, which we expanded
in vitro. Thus, we could track the ESCs sprayed on the
wound bed. On the 21st day after the operation, ESCs
that stably expressed EGFP could still be observed on
the wounds of the rats. The ESCs were mainly colonized
in the subcutaneous tissue layer and proliferated in the
wound bed. Furthermore, the ESCs near the blood ves-
sels expressed CD31, which is a marker of vascular
endothelial cells. Thus, ESCs can differentiate into vas-
cular endothelial cells. Some ESCs were observed around
the vessels to form vascular tubes. Therefore, we specu-
lated that rat ESCs in the vicinity of blood vessels could
differentiate into vascular endothelial cells and
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participate in the formation of lumen-like structures, in-
dicating that rat ESCs might have partial functions in
vascular endothelial cells.

Conclusion

In summary, our study showed that rat ESCs could pro-
mote the formation of new blood vessels and accelerate
wound healing in full-thickness skin defects in rats. Re-
garding the mechanism, rat ESCs can colonize and pro-
liferate in the wound bed, and the rat ESCs near the
blood vessels can differentiate into vascular endothelial
cells to promote angiogenesis. Our study provided a the-
oretical basis for ESCs to treat full-thickness skin defect
wounds and proved that ESCs are safe and effective in
treating wounds even after in vitro expansion. We found
that ESCs can differentiate into vascular endothelium
cells and can form vessel tubes under certain conditions.
The mechanism of the effect of ESCs on wound healing
and the multidirectional differentiation potential of ESCs
warrant further study to understand the therapeutic ef-
fects of ESCs and expand their therapeutic scope for
diseases.
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