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PI3K signaling pathway
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Abstract

Background: Retinal pigment epithelium (RPE) replacement has been proposed as an efficacious treatment for
age-related macular degeneration (AMD), which is the primary cause of vision loss in the elderly worldwide. The
embryonic stem cell (ESC) microenvironment has been demonstrated to enable mature cells to gain a powerful
proliferative ability and even enhance the stem/progenitor phenotype via activation of the phosphoinositide 3-
kinase (PI3K) signaling pathway. As the PI3K signaling pathway plays a pivotal role in proliferation and homeostasis
of RPE, we hypothesize that the stemness and proliferative capability of RPE can be enhanced by the ESC
microenvironment via activation of the PI3K signaling pathway.

Methods: To investigate whether the ESC microenvironment improves the stem cell phenotype and proliferation
properties of human RPE (hRPE) cells by regulating the PI3K signaling pathway, primary hRPE cells were cocultured
with either ESCs or human corneal epithelial cells (CECs) for 72 h, after which their proliferation, apoptosis, cell cycle
progression, and colony formation were assayed to evaluate changes in their biological characteristics. Gene
expression was detected by real-time PCR and protein levels were determined by western blotting or
immunofluorescence. LY294002, an antagonist of the PI3K signaling pathway, was used to further confirm the
mechanism involved.

Results: In comparison to hRPE cells cultured alone, hRPE cells cocultured with ESCs had an increased proliferative
capacity, reduced apoptotic rate, and higher colony-forming efficiency. The expression of the stem cell-associated
marker KLF4 and the differentiation marker CRALBP increased and decreased, respectively, in hRPE cells isolated
from the ESC coculture. Furthermore, PI3K pathway-related genes were significantly upregulated in hRPE cells after
exposure to ESCs. LY294002 reversed the pro-proliferative effect of ESCs on hRPE cells. In contrast, CECs did not
share the ability of ESCs to influence the biological behavior and gene expression of hRPE cells.
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Conclusions: Our findings indicate that the ESC microenvironment enhances stemness and proliferation of hRPE
cells, partially via activation of the PI3K signaling pathway. This study may have a significant impact and clinical
implication on cell therapy in regenerative medicine, specifically for age-related macular degeneration.

Keywords: Embryonic stem cell microenvironment, Proliferation, PI3K pathway, Regenerative medicine

Background
Age-related macular degeneration (AMD) is one of the
leading irreversible causes of vision loss in the elderly
worldwide. With the increasing longevity of the popula-
tion, the prevalence of AMD is rising annually [1-5].
Although the exact cause of AMD remains unclear, it is
universally acknowledged that aged or dysfunctional
retinal pigment epithelium (RPE) cells play a vital role in
the initial pathogenesis of AMD [6]. Consequently, RPE
replacement has been proposed as a treatment for AMD.
In 1991, an autologous pedicle RPE graft by Peyman
et al. in a patient with end-stage AMD resulted in im-
proved visual acuity, suggesting that RPE replacement
could be an efficacious treatment [7]. Unfortunately,
patients who require cell transplantation usually do not
have enough viable RPE cells to repopulate the entire
macula adequately [8]. In addition, lipofuscin and mela-
nosomes undergoing significant age-related changes will
influence phototoxicity and detract from the normal
functioning of the RPE and hinder the benefits of RPE
transplantation [9]. Researchers have successfully attempted
to promote RPE cell proliferation and functional recovery
by mesenchymal stem cells [10-12], such as umbilical
cord Wharton’s jelly-derived mesenchymal stem cells
(WJ-MSCs) [13]. But the inevitable immune rejection
by allogeneic cells cannot be ignored. Recent studies
in regenerative medicine have revealed that human
embryonic stem cells (hESCs) and induced pluripotent
stem cells (iPSCs) can be induced to differentiate into
functional RPE cells, providing hope of using pluripotent
stem cells to rescue visual function. However, certain
problems with these approaches limited their clinical
application, such as being costly and time-consuming, and
having low efficiency and the potential for tumorigenesis
[10, 14-16]. Consequently, the development of a conveni-
ent, efficient, and safe method to obtain sufficient viable
autologous RPE cells is urgently required in AMD therapy.
Salero et al. discovered that RPE stem cells (RPESCs)
are present in the human RPE layer, thus providing new
insight for RPE replacement therapy [17]. RPESCs have
a multipotency and self-renewal potential and can differen-
tiate into RPE cells that produce neural and mesenchymal
progeny. It was demonstrated by Blenkinsop et al. that
RPESC-derived RPEs preserve the native RPE morphology,
electrophysiology, and gene and protein expression patterns
[18]. When grown on transwell polyester membranes, the

RPESC-derived RPEs can be transplanted into rabbit
subretinally and survive with retained characteristics in the
subretinal space for at least 4 weeks [19]. Research has
shown that proper culture conditions could turn off sup-
pressive factors to activate RPESC proliferation [20]. There-
fore, activating the surviving RPE within a patient’s eye is a
strategy for replenishing the RPE layer and may also benefit
the neural retina by producing favorable growth factors or
improving RPE support of neural retinal cell function.
Moreover, surgical injury and immunosuppression could
potentially be avoided by this strategy. Therefore, it is cru-
cial to explore ways to promote the proliferation and differ-
entiation potential of RPESCs both in vitro and in vivo.

The embryonic stem cell (ESC) microenvironment
can ameliorate or even reverse the aging process and
enable mature cells to gain a powerful proliferative
ability [21-25]. Yousef et al. have confirmed that the
proliferation of mouse and human muscle progenitors
can be enhanced by hESC-conditioned medium [24].
Similarly, our previous work demonstrated that the
ESC microenvironment markedly improved the stem
cell phenotype and proliferation properties of corneal
epithelial cells and even human corneal endothelial
cells that are considered unable to proliferate and
that the PI3K signaling pathway is indispensable for
these pro-regenerative effects [26—30]. Therefore, we
hypothesize that the stemness and proliferative capability
of RPE can be enhanced by the ESC microenvironment
via activation of the PI3K signaling pathway. To test this
hypothesis, the present study examined the effects of
coculturing primary human RPE (hRPE) cells with ESCs
on the proliferation, apoptosis, cell cycle progression, and
colony formation of hRPE cells. Our findings may open a
novel therapeutic avenue for AMD and other diseases of
RPE dysfunction.

Methods

Cell culture

hRPE cells were extracted from eyecups of bulbus oculi
subsequent to the application of corneal transplantation,
performed at the State Key Laboratory of Ophthalmology
(Guangzhou, China). The cell culture, storage, and subcul-
ture were performed following previously described guide-
lines [17]. hRPE cells were cultured in DMEM/F12
(Corning) with 10% FBS and 1% penicillin-streptomycin.
Subsequent experiments were performed on the fourth or
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fifth generation of hRPE cells, when the cells had reached
the optimum level of cell viability and morphology, in
which the cell confluence rate reached between 70 and
90%. Cell identification was conducted using immuno-
fluorescent staining of CRALBP protein, RPE65, and S-
100 antibodies as described below.

Mouse ESCs were gifts from Professor Andy Peng
Xiang. ESCs were cultured in knockout Dulbecco’s
modified Eagle’s medium (DMEM; Gibco) with 10% FBS
(Gibco), 0.1 mM non-essential amino acid (Gibco), 1%
GlutaMAX media (Gibco), 0.055 mM 2-mercaptoethanol
(Gibco), 5 x 10° units leukemia inhibitory factor (Millipore,
USA), and 1% penicillin-streptomycin. Green fluorescent
protein-labeled ESCs were constructed as described previ-
ously [31] and grown in ESC culture medium.

The CEC cell line, established in our laboratory previ-
ously [32], used as a kind of differentiated cell, without
indifferentiability, to coculture with RPE cells was cultured
in DMEM with 10% FBS, 10ng/ml human epidermal
growth factor (hEGEF, Pepro Tech, USA), 5 mg/ml insulin
(Sigma, USA), 5mg/ml human transferrin (Sigma), 0.4
mg/ml hydrocortisone (MB-Chem, India)) 2mML-
glutamine (Gibco), and 1% penicillin-streptomycin.

hRPE cells and CECs were stained with cell-labeling
solution (CM- Dil or DiD, Invitrogen) according to the
manufacturer’s protocol. 6 x 10> DiD-labeled hRPE cells
were plated in a 75-cm? culture flask with 6 x 10° green
fluorescent protein-labeled ESCs or CECs in hRPE
culture medium. hRPE cells were collected after 72h
using fluorescence-activated cell sorting (BD FACSAria
Fusion, USA). For control groups, hRPE cells were cul-
tured alone in hRPE culture medium.

Cell cycle analysis

Cells were resuspended with 75% alcohol at —20°C
overnight. After that, cells were incubated with 1 mg/ml
RNase A stock solution for 30 min at 37 °C, stained with
100 pg/ml propidium iodide (BD) for 5min at room
temperature, and assessed on an LSRFortessa flow
cytometer (BD). Data analysis was conducted using
Modfit software.

Apoptosis assay

We followed a previous method to evaluate the apoptosis
assay [30]. Staining cells were assessed by BD LSRFortessa
flow cytometer using Annexin V-APC/7-aminoactinomycin
D (Invitrogen) according to the manufacturer’s protocol.

Clone formation assay

The clone formation assay was performed as previously
described [30]. Cells were seeded into 6-well plates
(1000 hRPE cells/well) and cultured for 10 days. Clones
were visualized by crystal violet staining and counted.
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CCK-8 cell proliferation assay

As previously described [30], hRPE cells (700 cells/well)
were seeded in a 96-well plate. Twenty-four hours after
seeding, CCK-8 reagent (Dojindo Molecular Technolo-
gies, Japan) was added to the cell culture media for 1 h
at 37 °C. The cell proliferation curve was generated accord-
ing to the optical density measured at 450 nm (BioTek,
USA).

RT-qPCR

Total RNA was isolated from cell cultures and tissues
using a RNeasy Plus Mini kit (Qiagen, Germany) accord-
ing to the manufacturer’s instructions and then quanti-
fied by absorption at 260 nm as previously described
[31]. ¢cDNA was synthesized with a PrimeScript™ RT
Master Mix (Takara, Japan) and used for qPCR with
SYBR® Premix Ex Taq™ (Takara) in a StepOnePlus ther-
mal cycler (ABI, USA). The GAPDH gene was used as
an internal control. The PCR primer sequences are listed
in Table 1.

Western blot analysis

Protein expression in hRPE cells from four groups was
assessed using western blotting as previously described
[30]. The primary antibodies used are described in Table 2.
The secondary antibody used was HRP-conjugated goat
anti-rabbit IgG (1:2000, Sigma). Localization of antibodies
was detected by an enhanced chemiluminescence kit
(Amersham, Piscataway, NJ).

Immunofluorescence assay

The immunofluorescence assay was performed accord-
ing to the previously described methods [30]. The
primary antibodies used were shown in Table 2. The
secondary antibodies used were Alexa 488 goat-anti
mouse 1gG (1:1000, Invitrogen) and Alexa Fluor 594
donkey anti-rabbit IgG (1:1000, Invitrogen). The cells
were analyzed under an LSM780 or LSM800 confocal
microscope (Zeiss, Germany).

Statistical analyses

All values were presented as the means + standard devi-
ation (SD). The statistical analyses were performed with
GraphPad Prism software. A 2-tailed unpaired Student’s
t test was used for analyses comparing 2 groups. P values
< 0.05 were considered significant.

Results

Phenotype of hRPE cells and mouse ESCs

The primary adherent pigmented hRPE cells at first
plating (P0) reached 90% confluence after 7 days of
cultivation (Fig. 1a). They grew as cobblestone cultures
and contained a great quantity of pigmentation. During
culture, the pigment was diluted upon cell division and
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Forward Reverse
Human-GAPDH CGTATTGGGCGCCTGGTCAC ATGATGACCCTTTTGGCTCC
Human-cyclin A2 CGCTGGCGGTACTGAAGTC GAGGAACGGTGACATGCTCAT
Human-KLF4 TCTCAAGGCACACCTGCGAA TAGTGCCTGGTCAGTTCATC
Human-p21 TGTCCGTCAGAACCCATGC AAAGTCGAAGTTCCATCGCTC
Human-p27 TAATTGGGGCTCCGGCTAACT TGCAGGTCGCTTCCTTATTCC
Human-PAR2 TTGTGTTTGTGGTGGGTTTGC ACCAGATGACAGAGAGGAGGT
Human-PDK2 CTTCAGCAAGTTCTCCCCGTC TCGGGAAGCAGGTTGATCTCT
Human-PDK1 AGAGGGTTACGGGACAGATGC GTCTTTGGGTTCTCTGCTGGG
Human-AKT GGAGAGGAAGAGATGGATGCCT CCACTTGCCTTCTCTCGAACC
Human-PI3K AACACCGACCTCACAGTTTTT CTCAAGCCACACATTCCACAG
Human-cyclin B1 GGTTGTTGCAGGAGACCATGT AACATGGCAGTGACACCAACC
Human-cyclin D1 TTCATTTCCAATCCGCCCTCC TGTGAGGCGGTAGTAGGACAG
Human- FAK GTTATCCCAGTCCGAGGTCCA TGACCTGGATAGATGCTGCCA
Human- CRALBP AGCTGCTCAGAGGCTATGTGA CCAGGGTAGCCAGCTTCAATG
Human- PEDF TTCAAAGTCCCCGTGAACAAG GAGAGCCCGGTGAATGATGG

Table 2 Source and dilution of primary antibodies

Source

Dilution (application)

AKT

p27
CRALBP

S-100
PTEN

cyclinA2
p21

PAR2
cyclinB1

PDK2
KLF4
OCT4
RPE65
cyclinD1

B-actin

Abcam#ab131443

Abcam#ab32034
Abcam#ab15051

Abcam#ab4066
Abcam#ab32199

Abcam#ab32386
Abcam#ab109520

Abcam#ab180953
Abcam#ab181593

Novusbio#NBPI-87307
Abcamiab215036
Abcami#ab18976
Abcami#ab13826
Abcami#ab134175

SIGMA#AS5441

1:10,000 (WB)
1:100 (IF)
1:1000 (WB)
1:1000 (IF)
1:1000 (WB)
1:200 (WB)
1:10,000 (IF)
1:10,000 (WB)
1:10,000 (WB)

1:500 (IF)
1:200 (WB)
1:10,000 (WB)
1:100 (IF)
1:5000 (WB)
1:10,000 (WB)
1:50 (IF)
1:3000 (WB)

the cells gradually acquired a fusiform, largely depigmen-
ted morphology. The results of western blotting indicated
that the differentiation marker proteins CRALBP, S-100,
and RPE65 were expressed in the hRPE cells at P4
(Fig. 1b). Immunofluorescence staining also showed
CRALBP expression in the hRPE cells (Fig. 1c).

The mouse ESCs exhibited a clonal or islet appearance.
Under a light microscope, the clone was bright and round
with a clear, sharp boundary (Fig. 1d). Immunofluores-
cence assays showed that the stem cell markers OCT4
and KLF4 were expressed in the ESCs (Fig. 1e).

Effects of coculture with ESCs on morphological changes
in hRPE cells

The role of ESCs in regulating the morphology of hRPE
cells was investigated. The hRPE cells at P5 in the
control group presented a fusiform pattern (Fig. 2a). On
the other hand, the P5 hRPE cells in the hRPE+ESC
group showed an epithelioid shape with a homogeneous
morphology that is more similar to the primary cultured
cells originating from the eyecups, which maintained a
normal cell property of contact inhibition. Immunofluor-
escent staining indicated reduced OCT4 expression in
ESCs cocultured with hRPE cells (Fig. 2b). After cultur-
ing for 72 h, hRPE cells from all groups were collected
for experiments below.

Coculture with ESCs enhances the proliferative capacity
of hRPE cells

We next investigated the potential effects of ESCs on
the proliferation of hRPE cells. The CCK-8 test (a com-
mon assay for detecting cell proliferation) was used to
obtain the growth curve of hRPE cells from each group.
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Fig. 1 Characteristics of hRPE cells and ESCs. a Representative images of hRPE cells by phase microscopy. b Western blotting of CRALBP, S-100,
and RPE65 in hRPE cells. B-actin served as the internal control. ¢ Immunofluorescence assays of CRALBP in hRPE cells. Scale bar, 50 um. d

Representative images of ESCs by phase microscopy. e Immunofluorescence assays of OCT4 and KLF4 in ESCs. Scale bar, 50 um
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Fig. 2 Effects of coculture with ESCs on morphological changes in hRPE cells. a Representative images of morphology by phase microscopy. b
The expression of OCT4 in ESC before and after coculture as determined by immunofluorescent staining. Scale bar, 50 um
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During the slow-growing latent phase in days 1 and 2,
no marked differences of optical density (OD) values
were detected among the three groups (Fig. 3a). How-
ever, on the third day, the hRPE+ESC group showed
significantly higher OD values than the control group.
All three groups entered the logarithmic growth phase
on the fourth day but the slope of the growth curve for
the hRPE+ESC group was higher than the other two
groups. These observations indicate that the hRPE cells
treated with ESCs possessed a relatively stronger growth
capacity. In contrast, there were no significant differ-
ences in the growth curves between the hRPE group and
the hRPE+CEC group.

To study the effects of ESCs on cell apoptosis, we
employed Annexin V-APC/7-AAD staining and flow
cytometry analysis. We found that the percentages of
apoptotic hRPE cells from the Ctrl, hRPE+CEC, and
hRPE+ESC groups were 13.73 £ 0.9912%, 13.7 + 1.512%,
and 9.473 + 1.835%, respectively (Fig. 3b). There were
fewer apoptotic cells in the hRPE+ESC group than in
the hRPE group (P =0.0065), while the percentages of
apoptotic cells were almost the same in the hRPE and

Page 6 of 12

hRPE+CEC groups. These results suggest that ESCs in-
hibit apoptosis in hRPE cells.

Cell cycle progression was further evaluated by flow
cytometry. As shown in Fig. 4a, the percentage of hRPE
cells entering the cell cycle was significantly higher in the
hRPE+ESC group than the other groups (P < 0.05). In the
hRPE+ESC group, 33.94% + 2.191% of cells were entering
S phase, whereas in the hRPE group, 14.71% + 2.468% of
cells were in S phase. Consistent with the flow cytometry
results, hRPE cells cocultured with ESCs showed higher
expression levels of the cell cycle promoters cyclin A2,
cyclin B1, and cyclin D1, and lower expression levels of
the cell cycle negative regulators p21 and p27, both tran-
scriptionally and translationally (Fig. 4b—d). In contrast,
neither the cell cycle distribution nor the cell cycle-related
protein expression levels of hRPE cells were significantly
changed by coculture with CECs.

Coculture with ESCs enhances the stem cell phenotype of
hRPE cells

As shown in Fig. 2a, the hRPE cells cocultured with
ESCs had smaller cell sizes with bigger nucleus to
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cytoplasm (N:C) ratios than cells in the control group
(Fig. 5a). No obvious differences in morphology and N:C
ratio was observed between the control and hRPE+CEC
groups. To evaluate the clonal growth capacity, the
hRPE cells from the three groups were seeded without a
feeder layer to assess colony-forming efficiency (CFE).
At day 7, the CFE of the hRPEs in the ESC-treated group
reached 10.65 + 0.6856%, whereas the CFE of the control
and hRPE+CEC groups were 3 +0.4082% and 2.925 +
0.3775%, respectively (Fig. 5b).

RT-qPCR analysis revealed that the mRNA expression
of the RPE differentiation markers CRALBP and PEDF
by hRPE cells in the hRPE+ESC group was significantly
decreased by 0.264- and 0.315-fold, respectively, in com-
parison to the control group (Fig. 5c). However, the ex-
pression of KLF4, a marker associated with early stem
cells and reprogramming, was markedly increased by
167-fold in hRPE cells after coculturing with ESCs
(Fig. 5¢). Consistent with the mRNA expression profiles,
western blot analysis revealed that hRPE cells from the
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control group strongly expressed CRALBP, while hRPE
cells in the hRPE+ESC group showed weaker CRALBP
expression (Fig. 5d). KLF4 was barely detectable in the
hRPE cells in the control group but markedly upregu-
lated in ESC-treated hRPE cells (Fig. 5d). In contrast, the
expression of RPE-specific and stem cell-associated
markers in hRPEs from the hRPE+CEC group was not
significantly different from that of the control group.
These observations indicate that ESCs can enhance the
stem cell phenotype of hRPE cells.

ESCs enhance the proliferative capacity of hRPE cells by
activating the PI3K pathway
Our previous finding [27] demonstrated that the ESC
microenvironment promoted the proliferation of corneal
epithelial cells via activation of the PI3K/Akt signaling
pathway. Therefore, we further examined whether cocul-
turing with ESCs enhances the proliferative capacity of
hRPE cells by upregulating the PI3K pathway. We
performed RT-PCR validation of key PI3K pathway
genes, including PAR2, FAK, PI3K, PDK1/2, and AKT,
and found that they were significantly upregulated in
hRPE cells after exposure to ESCs (Fig. 6a—c). In con-
trast, the expressions of these genes were not enhanced
in hRPE cells from the CEC group compared with the
hRPE group.

To determine whether PI3K pathway activity is necessary
for the pro-proliferative effect of the ESC microenviron-
ment, we added the PI3K antagonist, LY294002 to disrupt

PI3K signaling (Fig. 6d). LY294002 abolished the pro-
proliferative effect of the ESCs on hRPE cells in the ESC
co-culture system; the growth of hRPE cells was reduced
and ESC-inhibited apoptosis was blocked (Figs. 3 and 4).
Meanwhile, expression of the cell cycle promoters cyclin
A2, cyclin Bl, and cyclin D1 decreased, while the expres-
sion of p21 and p27 increased significantly (Fig. 4b—d).
These findings indicate that the PI3K pathway is indeed ac-
tivated by ESCs in hRPE cells, which in turn boosts prolifer-
ation. Interestingly, although LY294002 decreased the N:C
ratio and clonal growth capacity of hRPEs (Fig. 5a, b), it did
not affect their expression of RPE-specific and stem cell-
associated markers (Fig. 5¢, d).

Discussion

A variety of signaling pathways, such as the MAPK,
PI3K, and Notch pathways, become deficient or inactive
in senescent cells, including senescent adult stem cells,
leading to anti-proliferation of the organ’s stem cells,
which then prevents their regeneration [33-36]. With
the rapid development in bioengineering, in vivo appli-
cations of biopolymers that release signaling pathway
agonists could evoke efficient regenerative responses
from senescent cells [37-39]. However, achieving “young”
levels of signaling not only promotes cell growth, but also
cause undesired changes, including but not limited to
oncogenic transformation [40-42]. Additionally, even
young cells are doomed to perish when introduced into an
old organ without a youthful niche [43, 44]. Though the
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recent study demonstrated that sub-tenon WJ-MSCs ad-
ministration was effective on reactivating the degenerated
photoreceptors in dormant phase [13], the long-term
effects may be weakened with the gradual aging of WJ-
MSCs in vivo, and the senescence-associated secretory
phenotype secreted by senescent WJ-MSCs may even
produce adverse effects. Therefore, the idea of providing
endogenous or transplanted stem and progenitor cells
with better microenvironments is being pursued by many
researchers in the field of regenerative medicine.

We and others have demonstrated that the ESC
microenvironment manifests a pro-regenerative activity
that enhances and, more importantly, rejuvenates the
regenerative capacity and promotes the proliferation of
differentiated cells. Differentiated ESCs and tissue-specific
adult stem cells yield much weaker results than ESCs [21,
24, 43]. Administration of sub-tenon WJ-MSCs could stop
the progression of retinal degeneration and rescue photo-
receptors in the dormant phase with the paracrine effects
of WJ-MSCs [13]. Interactions between cells involve
multi-directional signaling. In the coculture system, the
stem cell microenvironment serves as a niche by releasing
cytokines via paracrine and autocrine pathways as well as
direct signal transmission via cell-to-cell contact. We have
previously shown that the enhancement of the stem cell

phenotype and proliferation of CECs by ESCs was much
more remarkable in the cell-to-cell contact coculture
system than in the non-contact system which only exists
the paracrine effect. Furthermore, CECs with strong
proliferation after being cocultured with ESCs were not
reprogrammed to pluripotency and were not tumorigenic,
suggesting that the ESC microenvironment could safely
and effectively improve the proliferative potential of adult
cells [26]. Accordingly, we cultured hRPE cells alone or
with ESCs in a cell-to-cell contact coculture system.
Compared with the control group, ESC-treated hRPE cells
had a higher proliferation rate with a faster cell cycle turn-
around time, a decreased apoptotic rate, an increased
clone formation rate, and an increased stemness. How-
ever, CECs do not share the ability of ESCs to influence
the regenerative behavior of hRPE cells, which support the
notion that non-embryonic cells cannot promote the pro-
liferative ability of terminal cells.

With increased aging, RPE cells show a reduced activa-
tion of the PI3K/Akt pathway and are less tolerant to tissue
damage [45]. Studies have shown that epidermal growth
factor and thrombin can stimulate RPE cell survival and
proliferation through activating the PI3K pathway [46, 47].
Our previous studies demonstrated that the proliferation of
corneal epithelial cells was significantly promoted by the
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ESC microenvironment via activation of the PI3K/Akt
signaling pathway [26, 29]. Consistent with these findings,
the present study showed that ESCs upregulate the PI3K
pathway of hRPE cells, which accounts for their pro-
proliferative effect.

An accumulation of evidence supports a key role for
the PI3K pathway in cell cycle progression. Transcrip-
tion and translation of multiple cyclins have been shown
to be dependent on the activation of the PI3K/Akt path-
way [48]. Cyclin D1 plays a central role in cell cycle pro-
gression from G1 to S phase [49], and its accumulation
induces RPE cell proliferation [47]. Cyclin A is involved
in DNA replication in S phase and is required for G2/M
phase transition [50]. Cyclin B facilitates G2/M progres-
sion; depletion of cyclin B causes a dramatic G2 arrest
and reduction in mitotic cells in hTert-RPE1 cells [51].
Moreover, PI3K activation reduces the levels of cyclin-
dependent kinase inhibitors (CDKIs). Both p21 and p27
are important CDKIs with a wide range of kinase inhib-
ition activity that can effectively block the activity of cyc-
lin/CDK complexes to prevent cells from going through
the G1/S phase checkpoint and inhibit cell proliferation
[52]. It was revealed that the level of p21 increases in an
age-dependent manner; hence, p21 has been used as a
senescence marker [53-55]. It has also been demonstrated
that increased p21 expression in RPE cells inhibits their
proliferation in vitro [56]. Consistent with these findings,
our experiments showed that ESCs activate the PI3K
pathway of hRPE cells, which accounts for their pro-
proliferation effect via upregulating cyclins and downregu-
lating CDKIs.

Tissue stem cells have been found in tissues with
lower self-renewal demands such as the nervous system,
and where a rapid rate of cellular turnover is required,
such as the skin [57, 58]. Adult stem cells are an import-
ant cell source in regenerative medicine. Normally, cell
differentiation starts from stem cells that progress to
transiently amplifying cells (TACs) and finally to termin-
ally differentiated cells. This process can be delayed or
even reversed by certain factors or conditions [59]. It
has been shown that a sub-population of multipotent,
self-renewing RPESCs is present in the human RPE layer
[17]. Although there are no definitive markers to identify
RPESCs, RPESCs show higher expression of c-MYC and
KLF4 and lower expression of CRALBP, Tyr, and PEDF
compared to RPE cells [17, 60]. A combination of stem
cell-associated and differentiation markers has enabled
scientists to identify putative RPESCs. The present study
found that the isolated hRPE cells from the coculture
systems expressed a significantly higher level of the key
stemness factor KLF4 at the protein and transcription
levels and decreased level of the differentiation marker
CRALBP. Our results suggest that ESCs, through cocul-
ture, can enhance the stem/progenitor phenotype of
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hRPE cells. As KLF4 is an upstream regulator of the
PI3K/Akt pathway [61], the activation of KLF4 in hRPE
cells by ESCs cannot be affected by PI3K inhibitors.

Conclusions

Our study provides evidence that the ESC microenviron-
ment can enhance the undifferentiated status and prolifera-
tion properties of hRPE cells. This finding opens new
avenues for the potential therapeutic application of ESCs in
regenerative medicine. Further studies on the functional en-
hancement of hRPE cells in the coculture system may shed
light on the use of such cells in regenerative medicine.
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