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UBA2 activates Wnt/[-catenin signaling ")
pathway during protection of R28 retinal
precursor cells from hypoxia by

extracellular vesicles derived from placental
mesenchymal stem cells
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Abstract

Background: Stem cell transplantation has been proposed as an alternative treatment for intractable optic nerve
disorders characterized by irrecoverable loss of cells. Mesenchymal stem cells, with varying tissue regeneration and
recovery capabilities, are being considered for potential cell therapies. To overcome the limitations of cell therapy,
we isolated exosomes from human placenta-derived mesenchymal stem cells (hPMSCs) and investigated their
therapeutic effects in R28 cells (retinal precursor cells) exposed to CoCl,.

Method: After 9 h of exposure to CoCl,, the hypoxic damaged R28 cells were divided into the non-treatment
group (CoCl, + R28 cells) and treatment group (CoCl, + R28 cells treated with exosome). Immunoblot analysis was
performed for Pcna, Hif-1a, Vegf, Vimentin, Thy-1, Gap43, Ermn, Neuroflament, Wnt3a, -catenin, phospo-GSK3p, Lef-1,
UBA2, Skp1, BTrcp, and ubiquitin. The proteomes of each group were analyzed by liquid chromatography/tandem
mass (LC-MS/MS) spectrometry. Differentially expressed proteins (DEPs) were detected by label-free quantification, and
the interactions of the proteins were examined through signal transduction pathway and gene ontology analysis.

Result: We observed that exosome could significantly recover proliferation damaged by CoCl, treatment. In addition, the
treatment group presented the decreased expression of Hif-1a protein (P < 0.05) and increased expression of proliferation
marker, Pcna, and nerve regeneration-related factors such as Vimentin, Thy-1, and Neuroflament (P < 0.05) compared with
the non-treatment group. In total, 200 DEPs were identified in the non-treatment group and treatment group (fold
change 2 2, p < 0.05). Catenin and ubiquitin systems (UBA2, UBE2E3, UBE2I) were found in both the DEP lists of
downregulated proteins from the non-treatment group and upregulated proteins from the treatment group. The mRNA
expressions of ubiquitin systems were significantly decreased under hypoxic conditions. Moreover, UBA2 and Wnt/[3-
catenin protein were associated with the rescue of the hypoxic damaged R28 cells. Using a siRNA system, we could find
it out that hPMSC exosomes could not repair altered expressions of target proteins by CoCl, in lacking UBA2 R28 cells.
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Conclusion: This study reported that hypoxic damaged expression of regeneration markers in R28 cells was significantly
recovered by hPMSC exosomes. We could also demonstrate that UBA2 played a key role in activating the Wnt/f3-catenin
signaling pathway during protection of hypoxic damaged R28 cells, induced by hPMSC exosomes.
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Background

Optic neuropathies are the most common cause of irre-
versible vision loss [1]. There is still no effective treat-
ment for optic neuropathies; the improvement of new
treatment methods is required. In previous studies,
neural regeneration has been induced by injecting
placenta-derived mesenchymal stem cells (MSCs) [2].
MSCs are multipotent stromal cells that exist in mesen-
chymal tissues; their neuroprotective effect in optic
nerve (ON) injury models has been reported [3].

MSCs have some exclusive features compared to other
stem cell types. They are simple to isolate and expand
and exhibit a high differentiation capacity, low immuno-
logical response, and low risk of tumor formation [4, 5].
However, direct injection of MSCs is highly prone to
several issues, including the risk of thrombosis and
tumor-related mutations [6]. Concerns have been raised
about the safety of MSCs for clinical use, with studies
reporting the possible threat of in vitro MSCs to develop
tumors, ectopic tissue formation, toxicity caused by cells,
and immune-related rejection on transplantation [7, 8].
Mice injected with these MSCs developed tumors in
multiple organs, since chromosome instability and ele-
vated telomerase activity were proposed as contributing
factors for developing malignancy in mouse MSCs [9].
Multifocal organizing thrombi were noted in the pul-
monary arteries 1 week after the administration of a sin-
gle intravenous injection of mesenchymal stem cells
[10]. On the other hand, MSC-secreted exosomes are
smaller and easier to produce, and they appear no risk
of tumor formation [11]. Therefore, to lower this risk,
we paid attention to the nanosized extracellular vesicles
(EV), exosomes, which are smaller.

Exosomes are small lipid-bound cellularly secreted
vesicles that comprise ectosomes secreted directly from
plasma membranes and apoptotic bodies released from
dying cells [12]. They are a type of membrane vesicle,
with a size less than 150 nm, containing proteins,
mRNA, and miRNA, and are derived from internal vesi-
cles of multivesicular bodies such as tumor cells, T cells,
and mast cells [13]. Exosomes mediate some of the
tissue-healing properties of MSCs, are helpful in tissue
regeneration, and present strong therapeutic potential
[14] for diseases such as myocardial infarction, spinal
cord injury, Alzheimer’s disease, and diabetes [15, 16].
They are not self-replicating and, owing to their small

size, can be sterilized by filtration, which makes them
promising for therapeutics [17, 18].

Previous studies of the effect of MSC and MSC-
derived EVs provided conflicting results [19-21]. A re-
port demonstrated that exosomes from MSCs have a
similar role in promoting tumor growth to the MSCs
themselves [19]. MSC-derived exosomes exhibited differ-
ent protein and RNA profiles compared with their donor
cells, and these vesicles could be internalized by breast
cancer cells. The results demonstrated that MSC-derived
exosomes significantly downregulated the expression of
vascular endothelial growth factor (VEGF) in tumor
cells, which lead to inhibition of angiogenesis [20]. How-
ever, no studies comparing the effects of MSC and MSC
exosome in the ON precursor cell damage were reported.
The factors and mechanism to rescue damaged ON pre-
cursor cells would be different in each type of exosome.
Therefore, we isolated exosomes from placenta-derived
MSCs and conducted a study to verify their neuro-
regeneration effect.

Methods

Human placenta-derived mesenchymal stem cell (hPMSC)
preparation and isolation of exosomes from hPMSCs
Human placenta stem cells were obtained from CHA
General Hospital, Seoul, Republic of Korea. The sample
collection and use for research purposes were approved
by the Institutional Review Board of the hospital. Prepar-
ation and culturing were conducted as previously re-
ported [22]. Human PMSCs were cultured in Minimum
Essential Medium (MEM)-alpha GlutaMAX (Thermo
Fisher Scientific, Waltham, MA, USA) supplemented
with 10% FBS (Thermo Fisher Scientific), 1% penicillin/
streptomycin (Thermo Fisher Scientific), 25 ng/mL hu-
man fibroblast growth factor 4 (Peprotech Inc., Rocky
Hill, NJ, USA), and 1 pg/mL heparin (Sigma-Aldrich, St.
Louis, MO, USA). When 80% confluence was reached,
the culture medium was replaced with MEM-alpha
GlutaMAX containing 10% exosome-free FBS (Thermo
Fisher Scientific). The conditioned hPMSCs were har-
vested from the medium, and residual cells and debris
were discarded by centrifuging at 2000xg for 10 min at
4°C. After centrifugation, the supernatant was filtered
using a 0.2-pm pore filter and transferred to a centrifuge
tube (Pall Corporation, Port Washington, NY, USA).
The supernatant was centrifuged at 4000 rpm for 45 min
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at 4°C. The collected supernatant again underwent
ultracentrifugation at 27,500 rpm for 85min at 4°C.
Thereafter, the supernatant was removed, and the pre-
cipitate was washed with phosphate-buffered saline
(PBS) and then ultracentrifuged at 27,500 rpm for 85
min at 4°C. Finally, the exosome precipitates were dis-
solved in 100puL PBS and quantified by the BCA
method. The exosomes were stored at — 80 °C.

Cell culture and treatment

R28 retinal precursor cells were provided from Dr. Seigel
[23]. Immortalized R28 retinal precursor cells were
maintained in low-glucose Dulbecco’s modified Eagle’s
medium (DMEM,; Sigma-Aldrich) with 10% FBS (Thermo
Fisher Scientific), 1x minimal essential medium nonessen-
tial amino acids (Thermo Fisher Scientific), 100 pg/mL
gentamicin (Sigma-Aldrich), and 1% penicillin/strepto-
mycin (Thermo Fisher Scientific). A hypoxic condition
was induced by exposing the cells to CoCl, (Sigma-Al-
drich). R28 cells (2x10°) were treated with CoCl,
(200 uM) for 9h. Then, they were treated with hPMSC
exosomes (12 pg/mL). After 24 h, the cells were harvested
and prepared for analysis.

Small interfering RNA

The target sequence of siRNA (Bioneer Corporation,
Daejeon, Republic of Korea) was as follows: siRNA rat
UBA2, 5'- GCA CGA AAC CAU GUG AAU AGG A.
siRNA negative control (Bioneer) was used as the nega-
tive control (scramble). R28 cells were transfected using
Lipofectamine 3000 (Thermo Fisher Scientific) according
to the manufacturer’s instructions.

Cell Counting Kit-8 (CCK-8) assay

R28 cells were plated in 96-well plates at the density of
1 x 10* cells/well. After CoCl, (200 puM) treatment for 9

h, the cells were incubated with hPMSC exosomes
(12 pg/mL). After 24h, R28 cells were incubated with
10 uL. CCK-8 (Dojindo Laboratories, Munich, Germany)
for 1 h. The absorbance at 450 nm was detected by a mi-
croplate reader (Molecular Devices, San Jose, CA, USA).

Reverse transcription-polymerase chain reaction (RT-PCR)
analysis

Total RNA was isolated from hOFs using TRIzol reagent
(Thermo Fisher Scientific). RT-PCR was performed with
nPfu-Forte PCR polymerase (Enzynomics, Daejeon, Re-
public of Korea). We quantified the gene expression
using Image] software (National Institutes of Health,
Bethesda, MD, USA), and RT-PCR reactions were per-
formed using a CFX-96 machine (Bio-Rad Laboratories,
Hercules, CA, USA). The nucleotide sequences of all the
primers used were as follows: Rat UUBA2 FP: 5'- ACG
ATT CGG AAC ACA CCT TC, RP: 5'- GCT TCA
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GCC TCT GTT GGT TC; Rat UBE2E3 FP: 5'- TCG
AGT GCT GTG TTC AAA GG, RP: 5'- CTG GTG
CTA GGG CTC TCA TG; Rat UBE2I FP: 5'- TCT CCC
TGC CTG TTA GCT GT, RP: 5'- TGG GCT GTA
GGG TAA GGT TG.

Immunoblot analysis

R28 cells were lysed in radioimmunoprecipitation assay
(RIPA) buffer. Equal amounts of total protein were resolved
by sodium dodecyl sulfate-polyacrylamide gel electrophor-
esis (SDS-PAGE) and transferred to membranes. The
membranes were immunoblotted with anti-Pcna (Agilent
Technologies, Santa Clara, CA, USA), Hif-la (Abcam,
Cambridge, UK), Vegf, Thy-1, Gap43 (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA), Ermn (Abcam), Neurofla-
ment (Cell Signaling Technology, Danvers, MA, USA),
Vimentin, Wnt3a, B-catenin (GeneTex, Irvine, CA, USA),
phospo-GSK3p (Cell Signaling Technology), Lef-1 (Gene-
Tex), UBA2 (Abcam), Skpl, BTrcp (Cell Signaling Technol-
ogy), and ubiquitin (Abcam). After washing, the
membranes were incubated at room temperature for 2h
with horseradish peroxidase-conjugated anti-rabbit/mouse/
goat IgG secondary antibodies at a 1:10,000 dilution (Gene-
Tex). Immunoreactive bands were visualized with enhanced
chemiluminescence solution (Bio-Rad Laboratories) and
analyzed using ImageQuant™ LAS 4000 (GE Healthcare,
Chicago, IL, USA).

Proteomics

Proteomic analyses were performed for 4 types of sam-
ples: R28 cells with PBS, R28 cells with exosomes, R28
cells treated with CoCl,, and R28 cells treated with
CoCl, and exosomes. Thus, we investigated how exo-
somes worked in both undamaged and damaged cells.

Materials

Tris (2-carboxyethyl) phosphine (TCEP) was supplied by
Thermo Fisher Scientific. Formic acid (FA) and iodoaceta-
mide (IAA) were purchased from Sigma-Aldrich. Trypsin
was obtained from Promega (Madison, WI, USA). High-
performance liquid chromatography (HPLC)-grade water
and acetonitrile were purchased from JT Baker (Phillipsburg,
NJ, USA).

Sample preparation

R28 cells (2 x 10°) were treated with CoCl, (200 uM) for
9h. Then, they were treated with hPMSC exosomes
(12 pg/mL). After 24h, the cells were harvested. Each
cell pellet then was mixed with 1 mL of lysis solution (8
M Urea, 0.1 M Tris-HCl buffer, pH 8.5) and 40 uL of
protease inhibitor cocktail (x 25 stock solution) in glass
tubes. Cell lysis was performed using a Covaris S2
Focused-Ultrasonicator (Covaris, Woburn, MA, USA)
for 8 min. The protein concentrations in the samples
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were determined using Pierce BCA Protein Assay Kits
(Thermo Fisher Scientific). Filter-aided sample prepar-
ation (FASP) was performed using Ultracel” YM-30 cen-
trifugal filters (Merck Millipore, Germany), as previously
reported [24]. In brief, protein (100 pug) was reduced with
TCEP (37 °C, 30 min), alkylated with IAA (25 °C, 30 min,
in the dark), and digested with trypsin (37 °C, 18 h, en-
zyme to protein ratio = 1:50). After digestion, the peptide
mixtures were collected. FA was added to inactivate
trypsin. The samples were then desalted using C18
Micro spin columns (Harvard Apparatus, MA, USA),
vacuum-dried (1800 rpm, 3 h, ScanSpeed 40 centrifugal
evaporator), and reconstituted in 0.1% FA/water (solvent
A) prior to analysis.

Liquid chromatography-tandem mass spectrometry (LC-MS/
MS) analysis

An LC-MS/MS setup consisting of a Dionex Ultimate
3000 HPLC system coupled with a Q Exactive™ Hybrid
Quadrupole-Orbitrap MS (Thermo Fisher Scientific) sys-
tem was used for sample analysis. Samples were loaded
into an Acclaim™ PepMap™ 100 C18 nano-trap column
(75um x2cm, 3um particles, 100A pores, Thermo
Fisher Scientific) using solvent A at a flow rate of 2.5 uL/
min for 5 min. An Acclaim™ PepMap™ C18 100A RSLC
nano-column (75 um x 50 cm, 2um particles, 100 A
pores, Thermo Fisher Scientific) was used to separate
the peptide mixtures. The solvent consisted of solvent A
and solvent B (0.1% FA/80% ACN). The flow rate was
fixed at 300 nL/min. A 185-min gradient setup for solv-
ent B was used as follows: 4% (14 min), 4—20% (61 min),
20-50% (81 min), 50-96% (1 min), 96% (10 min), 96—4%
B (I1min), and 4% (17 min). The nano-electrospray
ionization source was operated in positive mode with a
spray voltage of 2.0kV. The capillary temperature was
320°C. The isolation width was +2m/z, and the scan
range was 400-2000 m/z. The resolutions in full-MS
scans and MS/MS scans at 200 m/z were 70,000 and 17,
500, respectively. MS was conducted using a data-
dependent acquisition method. The top ten precursor
ions with the highest intensity were isolated in the quad-
rupole and fragmented by higher-energy collisional
dissociation with 27% normalized collisional energy. Dy-
namic exclusion was set at 20s to minimize repeated
analyses of the same abundant precursor ions.

Data processing and bioinformatics

Database search for proteins and data processing were
conducted as previously reported [25]. In brief, raw MS/
MS data files were searched against a SwissProt human
protein database (https://www.uniprot.org/) using a
built-in Andromeda search engine in MaxQuant version
1.5.8.3 (www.coxdocs.org) for label-free quantification
(LFQ). The following parameters were used for the
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search: missed cleavages with trypsin, < 2; variable modi-
fications, methionine oxidation (+ 15.995 Da), and carba-
mylation of protein in N-term (+43.0006 Da); static
carbamidomethylation of cysteine (+57.0215 Da); first
search peptide tolerance, 20 ppm; and main search pep-
tide tolerance, 4.5 ppm. A false discovery rate (FDR) cut-
off of 1% was used. LFQ data from MaxQuant were
imported into Perseus software platform version 1.6.5.0
(www.coxdocs.org). Protein LFQ intensities were trans-
formed using log2(x), and samples with missing values
for given proteins were assigned random values using
the imputation principle (downshift 1.8, width 0.3, total
matrix mode). After Z-score normalization, Student’s T
test was used to compare the protein abundances of the
groups. Differentially expressed proteins (DEPs) were fil-
tered with a cutoff p value <0.05 and log2FC >1 (fold-
change). Heatmap was generated. Gene ontology (GO)
analysis was performed using Panther (http://geneontol-
ogy.org/). Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways and protein-protein interactions were
analyzed using the String database (https://string-db.org/).

Statistical analyses

All the results are presented as mean * standard error of
the mean (SEM). Data analyses were conducted using
GraphPad Prism (GraphPad, La Jolla, CA, USA). Statisti-
cally significant differences were identified using the ¢
test or nonparametric statistical test, followed by the
Mann-Whitney U test at a significance level of 5%.

Results

Characterization and recovery effects of hPMSC exosomes
The isolated exosome protein expressed the exosomal
markers CD9, CD63, and CD81 (Fig. 1la). To examine
the changes in the target proteins of R28 cells under
hypoxic conditions, we exposed the cells to CoCl,. After
9h, the hypoxia-damaged R28 cells were treated with
hPMSC exosomes. We performed CCK-8 assay to deter-
mine the effects of the exosomes on CoCl,-induced cell
proliferation. The cell proliferations were significantly
recovered upon the administration of the exosomes
(Fig. 1b). The exosomes also restored the target protein
expression disturbed by CoCl,. Hif-1a expression, which
increased after CoCl, exposure, was significantly de-
creased by the exosome treatment (Fig. 1c). To support
the proliferation assay result, we investigated the
changes of proliferation-related gene expression. The
CoCl,-induced downregultaion of proliferating cell nu-
clear antigen (PCNA) was significantly increased by exo-
some treatment (Fig. 1c). In contrast to that of Hif-1a,
the expression of regeneration-related proteins such as
Vegf, Vimentin, Thy-1, Gap43, Ermn, and Neuroflament
decreased under hypoxic conditions. The expression of
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Fig. 1 Characterization and recovery effects of hPMSC-derived exosomes. a Isolated exosome protein expressing exosomal markers CD9, CD63,
and CD81. R28 cells were treated with CoCl, (200 uM). After incubation for 9 h, the cells were treated with exosomes. b CCK-8 assays performed
after 24 h. Data are presented as mean + SEM (***p < 0.0001; *p < 0.05). ¢ Western blot analyses of target protein expression levels, using R28
lysates with CoCl,. The quantified values of target protein expression are presented (bottom panel). Statistical significance was determined using
an unpaired t test (*p < 0.05; **p < 0.005; ***p < 0.0005; ****p < 0.0001). All experiments were performed in triplicate

Vimentin, Thy-1, and Neuroflament significantly in-
creased after the exosome treatment (Fig. 1c).

Hierarchical clustering and gene ontology

To understand the integrated biological effects of exo-
some treatment during hypoxia, we performed prote-
omic analysis using R28 cells. The hierarchical clustering
of the differentially expressed proteins was determined
using four conditions (Control, Exosome, CoCl,, CoCl,
+ exosome) (Fig. 2a). The Venn diagram in Fig. 2b
shows the number of expressed proteins associated with
injury and recovery processes. The control, CoCl,, and
CoCl, + exosome groups expressed 1887, 1704, and
1744 proteins, respectively, indicating an altered expres-
sion after exposure to CoCl, (Fig. 2b). The number of
differentially expressed proteins (DEPs) between each
group indicated significant changes in the proteome

under exposure to CoCl, and CoCl, + exosome (p<
0.05) (Fig. 2c¢).

Gene ontology classification of reliably quantified
proteins from exosomes in hypoxia-damaged retinal
precursor cells

In total, 614 DEPs were identified in R28 cells before
and after exposure to CoCl, (fold change >2, P<0.05).
Panther Classification System (version 15.0) was used for
GO analysis of the DEPs. Using a false discovery rate <
0.05, GO functional clusters were enriched and catego-
rized into three databases: biological processes, molecu-
lar functions, and cellular components of the two
groups. Figure 3 shows that the DEPs were classified as
top 5 GO terms based on —log;, (p value). The upregu-
lated proteins of CoCl,-treated R28 cells were involved
in protein folding, cytosolic processes, and RNA binding,
as shown in Fig. 3a. The downregulated proteins were
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Fig. 2 Cluster analysis of differentially expressed proteins in R28 cells. MaxQuant version 1.5.8.3 (www.coxdocs.org) for label-free quantification
(LFQ) was used to identify differentially expressed proteins in treated groups (exosome, CoCl,, and CoCl, + exosome) and PBS-treated control
cells. a Heatmap of differentially expressed proteins (p < 0.05 and log2FC = 1) in lysates of four groups (control, exosome, CoCl,, and CoCl, +
exosome) analyzed by hierarchical clustering. High expression is shown in red; low expression is shown in green. b Venn diagram showing the
number of proteins identified in proteomic analysis of experimental groups of R28 cells. ¢ Graph presenting the number of significantly up- and
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related to nuclear-transcribed mRNA catabolic pro-
cesses, cytosolic ribosomes, protein-containing com-
plexes, RNA binding, and heterocyclic and organic cyclic
compound binding (Fig. 3b). In total, 200 DEPs were
identified in CoCl, + R28 cells and CoCl, + R28 cells
treated with exosomes (fold change >2, p<0.05). The
upregulated proteins of CoCl, + R28 cells treated with
exosomes were involved in organelle organization,
protein-containing complexes, intracellular components,
purine ribonucleotides, and ribonucleotide binding, as
shown in Fig. 3c. The downregulated proteins were re-
lated to gene expression, ribonucleoprotein complexes,
and RNA binding (Fig. 3d).

Network analysis of recovery process mediators

We performed a detailed examination of the interactions
of the proteins revealed by GO analysis. Proteins unique
to both R28 cells damaged by CoCl, and CoCl, + R28

cells treated with exosomes were mainly involved in
protein-containing complexes and RNA binding for mo-
lecular functions. Catenin and ubiquitin systems (UBA2,
UBE2E3, UBE2I) were found in both the DEP lists of
downregulated proteins from R28 cells damaged by
CoCl, and upregulated proteins from CoCl, + R28 cells
treated with exosomes. The interactions between them
and other identified proteins of the ubiquitin-mediated
proteolysis pathway are shown in Fig. 4a, b.

Effects of hPMSC exosomes in hypoxia-damaged in vitro
model

Based on proteomic data, we could verify significantly
changed target proteins in both CoCl, + R28 cells and
CoCl, + R28 cells treated with exosomes. To determine
the relationship between CoCl, and altered target pro-
tein expression, we determined the changes in exosome-
induced expression during hypoxia, i.e., UBA2, UBE2E3,
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Fig. 3 Gene ontology (GO) distribution of differentially expressed proteins in R28 cells damaged by CoCl, and treated with hPMSC-
derived exosomes. a GO annotations for biological processes, molecular functions, and cellular components of upregulated proteins in
R28 cells damaged by CoCl,, compared with those of controls. b GO annotations for biological processes, molecular functions, and
cellular components of downregulated proteins in R28 cells damaged by CoCl,, compared with those of controls. ¢ GO annotations for
biological processes, molecular functions, and cellular components of upregulated proteins in CoCl, + R28 cells treated with exosomes,
compared with those of R28 cells damaged by CoCl,. d GO annotations for biological processes, molecular functions, and cellular
components of downregulated proteins in CoCl, + R28 cells treated with exosomes, compared with those of R28 cells damaged by

and UBE2I mRNA expression. These target genes
from proteomic data were downregulated upon CoCl,
exposure. However, damaged UBA2 expression signifi-
cantly recovered after exosome treatment (Fig. 5a).
Furthermore, the expression of some proteins in the
ubiquitin proteasome process, such as UBA2, Skpl,
BTrcp, and ubiquitin, decreased in hypoxia-damaged

R28 cells. The expression of the weakened proteins
seemed to increase after exosome treatment, but it
was not significant (Fig. 5b). CoCl, treatment reduced
Wnt3a and P-catenin protein expression. After exo-
some treatment, the expression increased. However,
only the increase in [(-catenin expression was signifi-
cant (Fig. 5¢).
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Fig. 4 Network analysis of DEPs relating to ubiquitin-mediated proteolysis pathway in R28 cells. Protein-protein interactions in groups: a CoCl; vs

control and b CoCl, + exosome vs CoCl,

Role of UBA2 during recovery induced by hPMSC
exosomes

Based on the proteomics and in vitro experiment results,
we assumed that UBA2 was a mediator during the hyp-
oxia recovery response induced by exosomes. Therefore,
using an siRNA system, we investigated the effects of
exosomes on UBA2-lacking R28 cells damaged by CoCls,.
As shown in Fig. 6, in UBA2 knockdown R28 cells, the
expression of B-catenin, Wnt3a, Neuroflament, and Thy-
1 significantly reduced compared to that in scramble
cells. Exosome treatment of cells damaged by CoCl, re-
stored the [-catenin, Neuroflament, and Thy-1 expres-
sion. However, these exosome recovery functions for the
neuro-regeneration markers Neuroflament and Thy-1
did not work in UBA2 knockdown cells. This implied
that the exosomes had lost their recovery capability with
respect to target proteins in hypoxia-damaged R28 cells.
Taken together, these results suggest that UBA2 is a
downstream mediator of the recovery pathway induced
by exosomes (Fig. 7).

Discussion

The optic nerve (ON) comprises axons of retinal gan-
glion cells (RGCs), and this disorder is characterized by
RGCs death [26]. ON injury is one of the leading causes
of blindness due to RGC degeneration [27]. Various

somatic tissue-derived MSCs have proved significant
neuroprotective and axogenic effects on RGCs [27, 28].
There have been many reports using R28 cells in terms
of RGC injury model to investigate the rescue function
of MSCs from ON damage. However there is a limita-
tion of the RGCs impairment model in replacement of
RGCs with R28 retinal precursor cells. But R28 cells are
immortalized retinal precursor cells that could differenti-
ate into both neuronal and glial cell properties [29]. In a
murine oxygen-induced retinopathy model, intravitreal
injection of MSC-derived EVs reduced the severity of
retinal ischemia [18]. Along with in vivo study, in vitro
experiment was performed so that pretreatment with
EVs could defend R28 cells against oxygen deficiency sit-
uations [30]. So far, R28 cells provide an important ex-
perimental system for the various studies of retinal
ganglion cells, such as retinal cell differentiation, neuro-
protection, and neuronal function [23, 31].

Exosome treatment offers significant potential advan-
tages over cell therapy. Unlike cells, exosomes do not
replicate, change phenotype, or actively migrate from
the application site, and can hence be manipulated with
more accuracy [32]. Moreover, they can be more pre-
cisely dosed, because they are non-dividing. Exosomes
are gradually being recognized as potential biomarkers
for neurodegenerative diseases. For example, spinal cord
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injury can lead to differential regulation of exosomal
miRNAs that control calcium signaling, synaptic func-
tion, axon guidance, and axon degeneration [33, 34].
Exosome biology in the visual system is not well-
characterized; recent studies used exosomes mostly to
detect and monitor ON trauma and disease [32]. Exo-
somes derived from photoreceptors are highly expressed
in patients after rhegmatogenous retinal detachment
[35], and exosomes containing specific subsets of

miRNAs can serve as biomarkers for glaucoma detection
and analysis [36].

Furthermore, it has been reported that bone marrow
MSC (BMSC)-derived exosomes exert neuroprotective
and axogenic effects on RGCs and that the therapeutic
effects of these exosomes diminish after knockdown of
Argonaute-2, a key miRNA effector molecule [37]. This
implies that the mechanism may be related to miRNA in
exosomes. It was demonstrated intravitreal injections of
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exosomes from MSCs prevent axonal loss and degener-
ation after mechanical injury and involve in the regener-
ation of injured retinal ganglion cells [37]. Treatment of
primary adult rat cortical neurons with BMSC-derived
exosomes promoted neurite outgrowth [38]. The
promising neurite outgrowth seen when retinal cul-
tures were treated with BMSC-derived exosomes was
corroborated by their efficacy to promote regeneration
of GAP-43 axons after optic nerve crush [37]. In this
study, they successfully knockdown Ago2 and demon-
strated that BMSC exosomes had a considerably
muted effect in promoting RGC neuroprotection,
axon regeneration/survival, and RGC functional pres-
ervation [37].

Intravenous transplantation of MSC-derived exosomes
improves neurogenesis, neurite remodeling, and angio-
genesis after ischemic brain injury [39, 40]. Therapy
based on the delivery of MSC-derived exosomes consid-
erably increased the number of neuroblasts in ischemic
regions of the central nervous system [39]. Mesenchymal
stromal cell exosomes contain miRNAs, messenger
RNAs, and proteins, which can be transferred to recipi-
ent cells and thereby modify their characteristics [41].
As miRNAs have an essential role in gene regulation,
the miRNAs encapsulated into MSC exosomes have a
primary effect on ischemic injury. In addition, it is
known that the injection of exosomes extracted from
placenta-derived MSCs in hypoxic conditions promotes
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Fig. 7 Proposed pathway of recovery of R28 cells, induced by hPMSC-derived exosomes, after hypoxic damage

angiogenesis [13]. MSC exosomes are augmented in
some nodes associated with NF-«B signaling, which has
been reported to be a significant mediator of angiogen-
esis [42].

However, other mechanisms seem to be at work in
exosomes. Recent studies have demonstrated that MSC-
derived exosomes can reduce neuro-inflammation, pro-
mote neurogenesis, and improve functional rehabilita-
tion in animal models [43]. A study showed that delivery
of exosomes derived from MSCs into a patient with
steroid-refractory graft-versus-host disease suppressed
pro-inflammatory cytokine secretion and reduced the
symptoms associated with the disease [44]. The viruses
were thought to exit cells through lysis. In recent times,
it has become apparent that they use autophagy path-
ways for viral release [45]. The cell-to-cell spread of
cytoplasmic constituents is thought to require cell lysis.
Components of the autophagy pathway have been shown
to play a role in the secretion of cytoplasmic signaling
proteins [45]. Changes in the autophagy level affect exo-
somal release. Upon stimulating autophagy, multivesicu-
lar bodies fuse more with autophagic vacuoles, resulting
in inhibition of exosomal release [46, 47]. The autophagy
may control exosome composition and progression in
age-related neurodegenerative synucleinopathies [47].

Based on our findings, exosomes seem to exert a
unique recovery effect on hypoxia-damaged R28 cells via
the UBA2-activated Wnt signaling pathway. To investigate
the exosome mechanism during the recovery process in

CoCl,-damaged R28 cells, we gathered clues on the func-
tions of exosomes, using proteomics, and tried to prove
the pathway through functional studies. The identified
protein markers validated the accuracy of the proteomic
analysis [48]. This analysis confirmed that exosomes de-
rived from hPMSCs had a number of characterized pro-
teins involved in protein-containing complexes and RNA
binding for molecular functions. Through proteomic ana-
lysis, factors related to ubiquitin and Wnt signaling in R28
cells exposed to hypoxic conditions were derived as candi-
date targets, and their expression was confirmed through
Western blot experiments. Additional proteomic measure-
ments can help characterize the overall proteome, and
relative protein quantification can aid in identifying the
candidate marker proteins.

The ubiquitin-proteasome system (UPS) consists of
ubiquitin-activating enzyme E1, ubiquitin-binding en-
zyme E2, and ubiquitin protein ligase E3 [49]. The Skpl-
cullin 1-F-box (SCF) E3 ligase complexes, the largest
family of E3 ligases, comprise cullin, Skpl, and F-box
proteins. The SCF E3 ubiquitin ligases play an important
role in regulating critical cellular processes that promote
the degradation of many cellular proteins, including sig-
nal transducers, cell cycle regulators, and transcription
factors [50]. Changes in ubiquitin-related factors upon
CoCl, exposure confirmed that the expression of UBA2,
UBE2I, UBE2E3, and ubiquitin decreased in cells treated
with CoCl, and that the expression recovered after exo-
some treatment.
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UBA2 is known to promote cell proliferation. Inhib-
ition of UBA2 expression reduces the proliferation of
colorectal cancer and gastric cancer cells regulating
cyclinB1, B cell lymphoma-2, and E3 ubiquitin-protein
ligase MDM2 [51, 52]. Moreover, UBA2 has functions
such as molecular adhesion, movement, and migration
[53]. Factors related to Wnt signaling, one of the pro-
cesses in proteasome degradation, were also present in
the DEP list obtained in this proteomics study. There-
fore, the expression of UBA2 in R28 cells verified the
role of the exosomes. The ubiquitination process was
inhibited due to CoCl, injury, and Wnt signaling was
deactivated by abnormal ubiquitination. However,
PMSC-derived exosomes restored the UBA2 function
and activated the Wnt signaling pathway. Cheng et al.
reported that UBA2 was needed for cell migration and
invasion through Wnt/p-catenin signaling in tumor cell
growth. This study suggested UBA2 could regulate the
nuclear localization of B-catenin. Silencing of UBA2
caused inhibition of Wnt/B-catenin downstream mole-
cules [53]. Our study also demonstrated that UBA2 was
a key mediator protein in the exosome-induced recovery
process of regeneration marker expression altered by ex-
posure to hypoxia conditions.

These results were valuable in identifying DEPs and
new markers in the hPMSC exosome proteome. How-
ever, the relatively small sample size used in this study
limits the validity of the outcomes. Additional samples
are required for high-throughput analysis to obtain more
accurate proteomic data. Full coverage of peptides could
not be achieved for complex biologic samples such as
exosomes, since the dynamic range was only suitable to
detect the most abundant ionized peptides in MS. Other
data-independent acquisition methods may help expand
the overall detection ability for proteomes and validate
the candidate marker proteins identified by relative pro-
tein quantification [48]. The establishment of a prote-
ome map and quantitative analysis platform may provide
biologists the tools to investigate unknown biological
functions [48].

The ubiquitination system is involved in diverse cellu-
lar pathways that entail the post-translational modifica-
tion of proteins. Protein ubiquitination can be reversed
by de-ubiquitinating enzymes (DUBs). DUBs are key
players in various cellular processes, and several of them
are linked to malignancies and neurological diseases
[54]. Although the understanding on functions of DUBs
at the structural and cellular levels is limited, the pos-
sible regulation of DUB activity in various signaling
pathways should be considered as a mechanism of bio-
logical therapeutics for neurological diseases.

We could demonstrate the neuroprotective effect
afforded by hPMSC-derived exosomes. This study was
performed only in vitro to evaluate the potential
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therapeutic effect of exosomes on hypoxia-damaged ret-
inal precursor cells. The neuroprotective effect of exo-
somes is to be investigated in an ON injury animal
model to validate the rescue function in RGCs. Exo-
somes offer a cell-free alternative to hPMSC therapy,
and they can be easily separated, purified, and stored.
Exosome treatments lack the risks or difficulties (im-
mune rejection and unwanted proliferation/differenti-
ation) associated with transplanting live cells into
vitreous bodies or veins. The ideal timeframe for such
treatments is currently unknown; the efficacy of a single
or weekly/monthly injections of exosomes should be
studied. This study revealed the significant, albeit lim-
ited, ON regeneration effect of exosomes extracted from
placenta-derived MSCs. Other sources of exosomes can
be studied to compare the nerve regeneration effects on
hypoxic injury.

Conclusions

This is the first report on the therapeutic benefit that
hPMSC-derived exosomes offer to protect retinal pre-
cursor cells after hypoxic injury. We discovered that
UBA2 played a key role in activating the Wnt/B-catenin
signaling pathway during the recovery process of dam-
aged R28 cells, induced by hPMSC-derived exosomes.
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