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Abstract

Background: Generation of insulin-producing cells from human pluripotent stem cells (hPSCs) in vitro would be
useful for drug discovery and cell therapy in diabetes. Three-dimensional (3D) culture is important for the
acquisition of mature insulin-producing cells from hPSCs, but the mechanism by which it promotes 3 cell
maturation is poorly understood.

Methods: We established a stepwise method to induce high-efficiency differentiation of human embryonic stem
cells (hESCs) into mature monohormonal pancreatic endocrine cells (PECs), with the last maturation stage in 3D
culture. To comprehensively compare two-dimensional (2D) and 3D cultures, we examined gene expression,
pancreas-specific markers, and functional characteristics in 2D culture-induced PECs and 3D culture-induced PECs.
The mechanisms were considered from the perspectives of cell-cell and cell-extracellular matrix interactions which
are fundamentally different between 2D and 3D cultures.

Results: The expression of the pancreatic endocrine-specific transcription factors PDX1, NKX6.1, NGN3, ISL1, and PAX6
and the hormones INS, GCG, and SST was significantly increased in 3D culture-induced PECs. 3D culture yielded
monohormonal endocrine cells, while 2D culture-induced PECs co-expressed INS and GCG or INS and SST or even
expressed all three hormones. We found that focal adhesion kinase (FAK) phosphorylation was significantly
downregulated in 3D culture-induced PECs, and treatment with the selective FAK inhibitor PF-228 improved the
expression of {3 cell-specific transcription factors in 2D culture-induced PECs. We further demonstrated that 3D culture
may promote endocrine commitment by limiting FAK-dependent activation of the SMAD2/3 pathway. Moreover, the
expression of the gap junction protein Connexin 36 was much higher in 3D culture-induced PECs than in 2D culture-
induced PECs, and inhibition of the FAK pathway in 2D culture increased Connexin 36 expression.

(Continued on next page)

* Correspondence: wangyf2011126@126.com

fXiaofang Liu and Jinhua Qin contributed equally to this work.

Stem Cells and Regenerative Medicine Lab, Institute of Health Service and
Transfusion Medicine, Beijing 100850, China

®Hepatal-Biliary-Pancreatic Center, Translational Research Center, Beijing
Tsinghua Chang Gung Hospital, Beijing 102218, China

Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-020-02003-z&domain=pdf
http://orcid.org/0000-0002-6800-2761
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:wangyf2011126@126.com

Liu et al. Stem Cell Research & Therapy (2020) 11:488

Page 2 of 12

(Continued from previous page)

signaling events that regulate endocrine specification.

Conclusion: We developed a strategy to induce differentiation of monohormonal mature PECs from hPSCs
and found limited FAK-dependent activation of the SMAD2/3 pathway and unregulated expression of
Connexin 36 in 3D culture-induced PECs. This study has important implications for the generation of mature,
functional {3 cells for drug discovery and cell transplantation therapy for diabetes and sheds new light on the
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Background

Diabetes is a globally widespread disease characterized
by hyperglycemia due to autoimmune destruction of
insulin (INS)-producing B cells (type 1 diabetes; T1D) or
to extensive [} cell exhaustion and depletion after hyper-
secretion of INS to overcome INS resistance (type 2
diabetes; T2D). All T1D and many T2D patients require
exogenous INS delivery, and the challenges associated
with managing INS dosing may lead to poor overall
glycemic control. Whole pancreas or pancreatic islet
(~6-10 x 10° islets or ~ 10° B cells) transplantation is
considered to be one of the most effective therapies
for patients with severe diabetes that does not involve
exogenous INS [1-3]. However, it is severely limited
by the shortage of donor organs and the necessity of
life-long use of immunosuppressive drugs to prevent
rejection of the transplanted islets. Human pluripotent
stem cells (hPSCs), including human embryonic stem
cells (hESCs) and induced pluripotent stem cells
(iPSCs), can serve as renewable sources of B cells due
to their capacity for extensive expansion and commit-
ment to various somatic cell fates.

Stepwise protocols have been reported for differenti-
ation of hPSCs into INS-secreting cells that mimic pan-
creatic development through the definitive endoderm
(DE), primitive gut tube (PGT), pancreatic progenitors
(PPs), and endocrine precursor (EP) stages, with ultimate
maturation into pancreatic endocrine cells (PECs) [4-9].
Cell—cell and cell-extracellular matrix (ECM) interac-
tions play vital roles in cell proliferation, differentiation,
and functional maintenance. Pancreatic islets are three-
dimensional arrangements of cells with intricate cell—cell
and cell-ECM interactions. It is important that the culture
environment takes into account the spatial organization of
the cell. Three-dimensional (3D) cell culture more accur-
ately imitates the in vivo conditions than traditional two-
dimensional (2D) culture, as it allows cells to grow or
interact with their surroundings in all three dimensions
[10, 11]. Cell-cell and cell-ECM interactions have been
confirmed to be essentially different between 2D and 3D
cultures. These differences result in alterations of the mo-
lecular pathways that regulate cell behaviors, leading to
distinct biological outcomes, such as cell phenotypes and
functions [12]. A typical and clinically relevant example of

a dimensionality-mediated cell response was reported
in 1990 [13]. When growing as monolayers, murine
mammary tumor cells did not display the drug-resistant
phenotypes that previously had been seen only in vivo,
while cells cultured under 3D conditions exhibited the
drug resistance properties. Recently, 3D cell culture has
been increasingly used for stem cell research, in which
cell phenotypes need to be strictly controlled [14, 15].

Studies on islet function have found that intact islets
isolated from the body have better INS release function
than dispersed islet cells and that when the dispersed
islet cells re-aggregated, the INS-secreting activity can
be restored [16]. Bergsten et al. reported that aggregated
mouse insulinoma-derived MIN6 cells, which display
characteristics of pancreatic [ cells, secrete INS in
response to glucose stimulation [17]. These findings
suggest that the spherical structure of islets may be asso-
ciated with the differentiation and maturation of islet
cells. It has also previously been reported that when
stem cells are differentiated into INS-secreting cells, the
cells spontaneously aggregated into clusters, and 3D
aggregate formation is necessary to generate INS-
producing cells [18]. Moreover, Suemori et al. found that
3D culture plays an important role in the induction of
functional INS-expressing cells from hPSCs [19]. Al-
though many studies have reported that 3D culture is
important for the acquisition of mature INS-producing
cells from hPSCs [19-21], none of them has thoroughly
compared 2D and 3D cultures, and the mechanism by
which 3D culture promotes [ cell maturation is poorly
understood.

In this study, we developed a stepwise strategy to differ-
entiate hESCs into mature monohormonal PECs using 3D
culture at the maturation stage. To comprehensively
compare 2D culture and 3D culture, we examined the gene
expression, pancreas-specific markers, and functional char-
acteristics of 2D culture-induced PECs (PECs-2D) and 3D
culture-induced PECs (PECs-3D). 3D culture significantly
increased the pancreatic specification efficiency and en-
hanced the functional maturation of PECs. Furthermore,
the mechanisms were considered from the perspectives of
cell—cell and cell-ECM interactions, which are fundamen-
tally different between 2D and 3D cultures. We found that
3D culture promoted endocrine commitment by limiting
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focal adhesion kinase (FAK)-dependent activation of the
SMAD?2/3 pathway and enhanced functional maturation of
INS-producing cells by upregulating Connexin 36 (Cx36)
expression.

Methods

Cell culture

The hESC line H9 (WiCell, USA) was grown in feeder-
free conditions in six-well Nunclon surface plates (Nunc,
USA) coated with Matrigel (R&D systems, USA) and
maintained in mTESR1 media (Stem Cell Technologies,
USA). Cells were passaged at a 1:3~4 ratio using dispase
(Invitrogen, USA). All Matrigel plates were coated with a
1:80 dilution in Advanced DMEM-F12 (Gibco, USA) and
incubated at room temperature for at least 1 h before use.

Generation of pancreas endocrine cells (PECs) from hESCs
Human ESCs were passaged with Accutase (Sigma,
USA) and plated at a density of 100,000 cells/cm? in
mTeSR1 media with 10 uM Y27632 (Selleckchem, USA)
on RPMI1640 (Gibco, USA), Matrigel (R&D systems,
USA), and collagen IV (R&D systems, USA) (5:2:1)
mixed gel coated-plate (Corning, USA). In the restriction
of definitive endoderm (DE) stage (S1), cells were cul-
tured for 24 h in RPMI1640 with B-27 supplement (1:50,
Gibco, USA), N-2 supplement (1:50, Gibco, USA), 100
ng/ml Activin A (R&D systems, USA), and 50 ng/ml
Wnt3a (R&D systems, USA), and then treated with 100
ng/ml Activin A and 0.2% FBS (Gibco, USA) for 2 days.
In the stage (S2) to get the primitive gut tube (PGT), the
culture medium was replaced with RPMI1640 supple-
mented with B27 supplement (1:50), N2 supplement (1:
50), 30 ng/ml FGF7, 5 ng/ml Wnt3a, 0.75 pM Dorsomo-
phin (Sigma, USA), and 2% FBS (Gibco, USA) for 3 days.
And in the stage (S3) of pancreatic progenitors (PPs),
cells were cultured in advanced DMEM-F12 supple-
mented with B27 supplement (1:100), 2 uM retinoic acid
(Sigma, USA), 0.25 pM cyclopamine (Selleckchem, USA),
30 ng/ml FGF7 (R&D systems, USA), 50 ng/ml Noggin
(R&D systems, USA), 0.3 uM IL-5 (R&D systems, USA),
and 6 uM SB431542 (Selleckchem, USA) for 3 days. At
the end of stage 3, media were changed to DMEM
(Gibco, USA) supplemented with B27 supplement (1:
100), 50 ng/ml Exendin-4 (R&D systems, USA), 6 uM
SB431542, 50 ng/ml Noggin, and 10 mM nicotinamide
(Sigma, USA). For 3D culture, cells at stage 3 were
digested with Accumax and replated at a density of 3 x
10°/ml in ultra-low attachment 6-well plates (Corning,
USA), and the plates were placed on a 3D orbital
shaker set at a rotation rate of 80 rpm in a 37 °C incu-
bator, 5% CO,. Cells were photographed during differ-
entiation using a Nikon Eclipse Ti-S phase-contrast
microscope (Nikon, Japan).

Page 3 of 12

Quantitative real-time PCR analyses

Total RNA was isolated using an RNeasy extraction kit.
RNA was reverse transcribed using Superscript II reverse
transcriptase (Invitrogen, USA) according to the manufac-
turer’s instructions. Quantitative real-time PCR (qRT-PCR)
was performed with SYBR Green real-time PCR master
mix (TOYOBO, Japan) on a Bio-Rad iQ5 Real-Time PCR
detection system (Bio-Rad, USA). The data were analyzed
using the delta—delta Ct method. The primers are listed in
supplementary Table S1.

Immunofluorescent staining

Cells were fixed with 4% paraformaldehyde for 20 min at
room temperature and blocked with 10% normal goat
serum (ZSGB Biotech, China) or normal donkey serum
(Abcam, USA) for 1 h, followed by incubation with primary
antibodies at 4 °C overnight. Labeled isotype-specific sec-
ondary antibodies were added and incubated 1h at room
temperature. Cells were counterstained with 4',6-diami-
dino-2-phenylindole (DAPI) for visualization of cell nuclei
and observed using a Zeiss LSM 510 confocal microscopy
(Zeiss, German) and the Zeiss LSM Image Browser
Software (Zeiss, German). Antibodies used in this study
are summarized in supplementary Table S2.

Flow cytometry

Single-cell suspensions were obtained by dissociation with
Accutase for 3—5min. Cell surface antigen staining was
performed in PBS at 4°C. Intracellular staining was
performed with the BD Cytofix/Cytoperm™ Kit (BD Biosci-
ences, USA) according to the manufacturer’s instructions.
Briefly, cells were fixed and permeabilized with BD Cytofix/
Cytoperm solution for 20 min at 4 °C. Intracellular antigen
staining was performed in BD Perm/Wash solution. The
stained cells were analyzed with BD FACSAria (BD Biosci-
ences, USA), and the data was analyzed using the Flowjo
software version 10 (TreeStar, USA). The sources and
concentrations of primary and secondary antibodies and
isotype controls are listed in supplementary Table S2.

Dithizone staining

The dithizone stock solution was prepared by adding 3
ml ethanol and 50 pl concentrated ammonium hydrox-
ide to 50 mg dithizone (Sigma, USA). The clear dark-red
solution was then diluted with PBS up to 30 ml and
stored at — 20 °C. Next, the stock solution was diluted 1:
20 in PBS. Cells were washed with PBS for three times
and incubated in working solution for 10 min at 37 °C.
Finally, cells were examined under a Nikon Eclipse Ti-S
microscope (Nikon, Japan).

C-peptide release assay
The pancreatic endocrine cells were used for the C-peptide
release assay as previously described. Briefly, after a 1-h
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wash in KRBH medium, 300 pl of basal media that contain
2 mM D-glucose (Sigma) was added to each well of 12-well
dishes. After 1-h incubation, the basal media were changed
into 300 ul of stimulation media (20 mM D-glucose, 30 mM
KCl, or 30 uM Forskolin). The cultures were incubated at
37°C in a 5% CO, environment for 30 min. For each ex-
periment, 6 wells of supernatants were pooled together and
stored at — 20 °C until assay; meanwhile, the cells were har-
vested for protein determination using the Bio-Rad Protein
Assay K (Bio-Rad, USA) according to the Bradford method.
Ultra-sensitive human C-peptide ELISA kit (Mercodia,
Sweden) has been used, and the assays are done according
to the manufacturer’s instructions.

Transmission electron microscopy (TEM)

The cell samples were rinsed with PBS and fixed in 3%
glutaraldehyde/0.1 M sodium cacodylate, pH 7.4 over-
night. Following three rinses with sodium cacodylate
buffer, the samples were postfixed for 1 h in 1% osmium
tetroxide/0.1 sodium cacodylate buffer. After rinsing in
deionized water, samples were dehydrated and embed-
ded in Polybed 812 epoxy resin (Polysciences, Inc.,
USA). The samples were sectioned perpendicular to the
substrate at 70 nm using a diamond knife. Ultrathin
sections were collected on 200 mesh copper grids and
stained with 4% aqueous uranyl acetate for 15min,
followed by Reynolds’ lead citrate for 7 min. Samples
and stained sections were observed using a H7650 trans-
mission electron microscope (HITACHI, Japan) operating
at 80 kV (H7650 Electron Microscopy) and photographed
using an AMT XR16M CCD Digital Camera and AMT
Capture Engine Software version 600.259 (Advanced
Microscopy Techniques Corp, USA).

Western blotting

Cells were harvested in lysis buffer (50 mM Tris-HCI,
pH 7.4, 0.25 mM sodium deoxycholate, 150 mM NaCl, 2
mM EDTA, 0.1% sodium dodecyl sulfate, 1% Triton X-
100) containing protease and phosphatase inhibitors
(Roche, USA). Lysates were sonicated for 30s, main-
tained on ice for 30 min, and then spun at 15,000 rpm
for 15 min at 4°C. Proteins were separated by sodium
dodecyl sulfate—polyacrylamide gel electrophoresis, trans-
ferred to polyvinylidene difluoride membranes, and probed
with antibodies listed in supplementary Table S2. Proteins
were detected by enhanced chemiluminescence HRP sub-
strate (Millipore, USA).

CCK-8 assay

Cell proliferation was assessed by Cell Counting Kit-8
(Dojindo, Japan) assay. PPs from stage 3 were seeded at
2000 cells/well into 96-well plates with 100-pl culture
medium and were incubated at 37 °C overnight. The
10 pl of CCK-8 solution was added to the cells at specific
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time points, and cells were incubated for 2h at 37°C.
The optical density (OD) value of each well was measured
using a SpectraMax M5 microplate reader (Molecular
Devices, USA) at the wavelength of 450 nm.

Statistics

Data are shown as mean + SD. For most statistic evalu-
ation, 2-tailed Student’s ¢ test was applied for calculating
statistical probability in this study. Multi-group compari-
sons were conducted using the two-way ANOVA. p
values less than 0.05 were considered to be statistically
significant. For all statistics, data from at least three in-
dependent samples or repeated experiments were used.

Results

Generation of PECs from hESCs

Our strategy to induce PECs from hESCs in vitro is out-
lined in Fig. 1a. A stepwise four-stage protocol modified
from the methods of previous studies [4, 6] was used to
induce hESC differentiation through the stages of DEs,
PGTs, PPs, and EPs stages to yield PECs, with the first
three stages in monolayer 2D culture and the last stage in
2D or 3D culture (Fig. 1b—i). Sex determining region Y
(SRY)-box 17 (SOX17)- and forkhead box protein A2
(FOXA2)-positive DE was efficiently induced in stage 1,
with high expression levels of EpCAM and CXCR4 (Fig. 1j
and Figure S1). The pancreas-specific transcription factors
pancreatic and duodenal homeobox 1 (PDX1), NK6
homeobox transcription factor-related locus 1 (NKX6.1),
and Neurogenin 3 (NGN3) were significantly upregulated
in PPs; over 95% of PPs co-expressed PDX1 and NKX6.1
(Fig. 1j and Figure S1). In addition, flow cytometry analysis
showed that more than 68% of PPs expressed CD142, a
surface marker used for enrichment of pancreatic endo-
derm cells; this percentage is much higher than previously
reported [21, 22] (Figure S2). In stage 4, when the 2D cul-
ture was continued, large numbers of cell clusters that
topologically resembled normal pancreatic islets emerged
from the underlying monolayer cells (Fig. 1g). To mimic
pancreatic islet development, we dissociated PPs from
stage 3 into single cells and replated them in ultra-low-
attachment cell culture plates for 3D culture. The cells in
suspension self-assembled to form three-dimensional clus-
ters with diameters ranging from 100 to 400 um (Fig. 1i).
The endocrine cell-specific transcription factors paired box
6 (PAX6) and ISL LIM homeobox 1 (ISL1) and hormones
INS, glucagon (GCG), and somatostatin (SST) were in-
duced in EPs and PECs from 3D culture (Fig. 1j and Figure
S1). Overall, hPSCs could be differentiated into PECs in a
stepwise manner following our four-stage protocol.

3D culture promoted the maturation of PECs
To investigate the effect of 3D culture on pancreatic dif-
ferentiation, PECs induced under 2D and 3D cultures
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Fig. 1 Differentiation of human embryonic stem cells to pancreatic endocrine cells. a Schematic overview of the protocols used for the differentiation
of human embryonic stem cells (hESCs) into pancreatic endocrine cells (PECs). The hESCs are differentiated through the stages of definitive endoderm
(DEs), primitive gut tube (PGTs), pancreatic progenitors (PPs), and endocrine precursors (EPs) to yield PECs using a 4-stage protocol. In stage 4, PPs
were either cultured in 2D to produce EPs-2D and PECs-2D or transferred to 3D culture for differentiation into EPs-3D and PECs-3D. b—i Representative
morphology of hESCs (b), DEs (c), PGTs (d), PPs (e), EPs-2D (f), PECs-2D (g), EPs-3D (h), and PECs-3D (i). Scale bars, 50 um. j gRT-PCR analysis of DE-
specific transcription factors (SOX17 and FOXA2), pancreas-specific transcriptional factors (PDX1, NKX6.1, and NGN3), endocrine cell-specific transcription
factors (PAX6 and /SL1), and pancreatic hormones (INS, GCG, and SST) in hESCs, DEs, PPs, EPs-3D, and PECs-3D
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were compared at different levels. QRT-PCR analysis showed  of zinc in INS-containing secretory granules [23]; there-
that the mRNA expression levels of transcription factors fore, DTZ can be used to efficiently stain INS-expressing
PDX1, NKX6.1, NGN3, ISL1, and PAX6 and the hormones  regions of PECs in cultures. We observed discrete areas of
INS, GCG, and SST were significantly higher in 3D culture- DTZ staining in PECs-2D and much darker DTZ staining
induced EPs (EPs-3D) and PECs (PECs-3D) (Fig. 2a). Immu-  in PECs-3D (Fig. 3a). Analysis of ultrastructure by trans-
nostaining of pancreatic hormones illustrated that many mission electron microscopy (TEM) revealed that PECs-
PECs-2D co-expressed INS and GCG or INS and SST, and 3D contained numerous endocrine granules with typical
some cells even expressed all three hormones, exhibiting an ~ morphological characteristics of INS-containing granules
expression pattern resembling that of primary fetal islets  (Figure S4). As previously reported, three types of INS
(Fig. 2b). Nevertheless, the three hormones were mostly  granules were generally observed in mature human (3 cells
expressed in different PECs-3D; a large proportion of mono- by TEM: (i) granules with a light gray, diffuse core; (ii)
hormonal INS-expressing B cells and a moderate percentage  granules with a dense, round core; and (iii) granules with
of monohormonal GCG-expressing a cells were observed.  a dense, rod-shaped core with a crystalline appearance [8].
Although the percentage of SST-positive cells was slightly ~ Notably, we observed examples of each type of INS gran-
elevated, the hormone expression pattern in PECs-3D was  ule in hESC-derived PECs-3D (Figure S4).

most similar to that in primary adult islets (Fig. 2b). More- To confirm the de novo synthesis and release of INS
over, the percentage of INS-expressing cells was much by hESC-derived P cells, we monitored the release of C-
higher among PECs-3D than PECs-2D (Fig. 2c), as was also  peptide into the culture medium in response to high
the case for GCG- and SST-expressing cells (Figure S3).  glucose and stimuli (Fig. 3b). Under basal glucose condi-
Taken together, these data highlight the differences between  tions, PECs-3D released over four times more C-peptide
PECs-2D and PECs-3D and suggest that 3D culture pro- than PECs-2D. Moreover, we observed a 2-fold induc-

motes endocrine cell maturation. tion of human C-peptide release from PECs-3D exposed
to high glucose over the course of a 1-h incubation,
Enhanced B cell function in 3D culture-induced PEC while PECs-2D did not respond sensitively to high glu-

The B cells in islets can be specifically labeled with the cose (Glu). Direct depolarization of the cells via addition
zinc-chelating dye dithizone (DTZ) owing to the presence  of potassium chloride (KCl) and activation of the cAMP
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Fig. 2 Comparison of pancreatic endocrine cells derived from 2D and 3D cultures. a gRT-PCR analysis of pancreas-specific transcriptional factors (PDX1,
NKX6.1, and NGN3), endocrine cell-specific transcription factors (PAX6 and ISLT), and pancreatic hormones (INS, GCG, and SST) in EPs-2D, EPs-3D, PECs-
2D, and PECs-3D. b Immunostaining of insulin (INS), glucagon (GCG), and somatostatin (SST) in PECs induced under 2D or 3D culture conditions and
fetal or adult islets. ¢ Flow cytometry analysis of INS in PECs-2D or PECs-3D. Data represent mean + SD (n = 3), *p < 0.05, **p < 0.01, ***p < 0.001
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Forskolin (FSK) was measured with a C-peptide ELISA kit. Data represent mean + SD (n = 3), **p < 0.01,"**p < 0.001

signal with Forskolin (FSK) markedly increased C-peptide
secretion in PECs-3D during a 1-h incubation. Together,
these data suggest that PECs-3D were capable of producing
appropriately packaged INS granules. Moreover, PECs-3D
could respond more sensitively to glucose and stimuli than
PECs-2D, which indicates that 3D culture enhances func-
tional maturation of hESC-derived B cells.

3D culture might promote endocrine specification by
inhibiting FAK-dependent activation of the SMAD2/3
pathway

In contrast to conventional 2D monolayer culture, 3D
culture is thought to mimic the natural environment
found in vivo, allowing cells to interact with each other,
the ECM, and their microenvironment. FAK, a central
regulator of integrin signaling, that alters the association
between cells and the underlying ECM, was examined in
PECs-2D and PECs-3D. We noticed that phosphorylated
FAK (pFAK) was nearly undetectable in PECs-3D, while
pFAK levels were high in PECs-2D (Fig. 4a). Therefore,
we further determined whether pharmacological

inhibition of FAK would promote endocrine specifica-
tion under 2D culture. PF-228 is a small molecule in-
hibitor that selectively inhibits FAK catalytic activity by
blocking phosphorylation at Tyr-397 [24]. At the end of
stage 3, PPs were treated with or without 2 uM PF-228
for 48 h under 2D culture. The proliferative ability of the
cells was not affected by the treatment with PF-228, as
assessed by CCK-8 assay (Figure S5). Western blot ana-
lysis showed that the FAK inhibitor PF-228 abolished
the phosphorylation of FAK, as expected. Importantly,
the mRNA expression of the proendocrine transcription
factor NGN3, the B cell-specific transcription factors
NKX6.1 and ISL1, and INS were elevated in the presence
of PF-228 (Fig. 4b). Together, these data suggest that the
3D culture promoted endocrine specification by inhibit-
ing FAK activation.

Previous studies have confirmed that inhibition of
SEK/FAK signaling promotes endocrine specification of
human embryonic stem cell derivatives by limiting acti-
vation of the transforming growth factor-p (TGEP)/
SMAD?2/3 pathway [6, 25]. We also observed a sharp
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Fig. 4 Inhibition of focal adhesion kinase (FAK) signaling and transforming growth factor-3 (TGF{) signaling was involved in 3D culture. a
Western blot showing phosphorylated FAK (pFAK) levels in cells induced under 2D culture, 3D culture, and 2D culture treated with PF-228. At the
end of stage 3, PPs were treated with (2D+PF-228) or without (2D) 2 uM PF-228 under 2D culture, or PPs were transferred to 3D culture (3D), and
the lysates were collected 48 h later. The membranes were probed with pAbs specific for pFAK (Tyr-397) or total FAK. b gRT-PCR analysis of PECs
induced under 2D culture, 3D culture, and 2D culture treated with PF-228. ¢ Western blot showing SMAD2 expression levels in PECs induced
under 2D culture, 3D culture, and 2D culture treated with PF-228. Data represent mean + SD (n = 3), *p < 0.05, **p < 0.01

decrease in SMAD2 expression in PECs-3D and con-
firmed that the presence of PF-228 in 2D culture signifi-
cantly downregulated SMAD2 expression (Fig. 4c).
Based on these observations, we concluded that 3D cul-
ture may promote endocrine commitment by limiting FAK-
dependent activation of the SMAD2/3 pathway.

3D culture might enhance B cell function by regulating
Cx36

As described above, compared with 2D monolayer
culture, 3D culture not only improved pancreatic differ-
entiation efficiency, but also enhanced the INS secretory
response to glucose. Cell—cell coupling mediated by gap
junctions formed from connexin contributes to the con-
trol of INS secretion in the endocrine pancreas. INS-
secreting P cells within the pancreatic islets are exclusively
coupled by Cx36 gap junctions in mice and are strongly
coupled by Cx36 gap junctions in humans [26]. It has

been reported that adult B cells, which respond to glucose,
express significantly higher levels of Cx36 than fetal p
cells, which respond poorly to sugar [27, 28]. We con-
firmed by immunostaining that the INS-expressing cells
among human adult p cells expressed much higher levels
of Cx36 protein than those among human fetal p cells
(Fig. 5a). And we observed that Cx36 was expressed in
INS-expressing cells in the late maturation stage (day 27),
but not in the early stage of differentiation, although some
cells already expressed INS at the early stage (Fig. 5a).
Moreover, Cx36 expression was much higher in PECs-3D
than in PECs-2D, as determined by qRT-PCR and western
blot analyses, suggesting that 3D culture might enhance
glucose responsiveness by promoting Cx36 expression
(Fig. 5b, c). Furthermore, treatment with PF-228 in 2D
culture increased Cx36 expression at both the mRNA and
protein levels, indicating that the FAK signaling pathway
was involved in Cx36 regulation (Fig. 5b, c). Taken
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together, our data suggest that 3D culture might regulate
Cx36 expression by inhibiting the FAK pathway, thus pro-
moting B cell maturation.

Discussion

Cells naturally grow, differentiate, and mature in a 3D
environment. 3D cell culture models can almost per-
fectly mimic in vivo cell behaviors and organization;
therefore, 3D culture enables accurate reproduction of
these characteristics in vitro. We established a four-stage
differentiation method for the induction of high-
efficiency PEC differentiation from hESCs, with the first
three stages in monolayer culture and the last matur-
ation stage in 3D culture. Following this protocol, hESCs
were converted to DEs, PGTs, PPs, EPs, and PECs; thus,
the protocol mimicked the natural developmental events
that guide the stepwise formation of mature islet cells in
the pancreas.

Comparison of PECs-2D and PECs-3D showed that
the expression of the pancreas-specific transcription fac-
tors PDX1, NKX6.1, NGN3, ISL1, and PAX6 and the
endocrine hormones INS, GCG, and SST was signifi-
cantly higher in PECs-3D than in PECs-2D. Importantly,

3D culture gave rise to monohormonal endocrine cells,
while PECs-2D co-expressed INS and GCG or INS and
SST, and some cells even expressed all three hormones.
Bruin et al. demonstrated that hESC-derived polyhormo-
nal INS-expressing cells lacked a mechanism to import
glucose, because the glucose transporter was transcribed
but not translated [29]. Additionally, hESC-derived poly-
hormonal INS-expressing cells have been found to dis-
play only mild K" channel activity that does not appear
to be mediated by functional Kytp channels [29-31].
Furthermore, the processing of proinsulin to form the
mature INS hormone is hindered in polyhormonal INS-
expressing cells as a result of a lack of the prohormone
convertase expression [29, 32, 33]. The defects in glu-
cose transporter expression, Katp channel function, and
prohormone processing enzymes may contribute to the
lack of glucose responsiveness in hESC-derived polyhor-
monal INS-producing cells. Consistent with these stud-
ies, our PECs-3D responded more sensitively to glucose
and stimuli than PECs-2D. These data suggest that 3D
culture promotes the functional maturation of PECs.

3D cell culture mimics the specificity of native tissue
with greater physiological relevance than conventional
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2D culture, because it establishes physiological cell—cell
and cell-ECM interactions. Integrin receptors play
major roles in tissue morphogenesis and homeostasis by
regulating cell interactions with ECM proteins [34]. Fur-
thermore, integrin receptors expressed in the human
fetal pancreas play multiple roles in islet cell biological
processes, including adhesion, function, and survival
[35]. FAK represents a crosstalk point for integrin signal-
ing, which is activated by integrin ligation and clustering
[36]. FAK signaling alters the associations between cells
and the underlying ECM, which in turn can have pro-
found consequences for anchorage-dependent growth
and differentiation [37, 38]. It has been reported that
inhibition of SFK/FAK signaling potentiates endocrine
differentiation by inhibiting the TGFB/SMAD2/3 path-
way [25]. Previous studies have also shown that pharma-
cological inhibitors that target the TGEp type I receptor
ALK5 (ALK5 inhibitor II) or ALK5 and its relatives
ALK4 and ALK7 (SB431542) promote the endocrine
specification of hESC derivatives [6] and the subse-
quent derivation of INS-producing B cells [39]. We
observed lower FAK phosphorylation levels and de-
creased SMAD2 expression in PECs-3D than in
PECs-2D. In the presence of the FAK inhibitor PF-
228 in 2D culture, FAK phosphorylation was abol-
ished, and SMAD2 expression was downregulated.
Furthermore, inhibition of FAK with PF-228 in 2D
culture increased the expression of NGN3, NKX6.1,
ISL1, and INS, suggesting that 3D culture may
promote endocrine commitment by limiting FAK-
dependent activation of the SMAD2/3 pathway.

INS secretion and most other functions of pancreatic
islets involve multicellular processes, which allow for
rapid regulation of hormonal secretion in order to match
the changing levels of circulating glucose. The INS-
producing P cells of pancreatic islets are connected by a
large number of small gap junction plaques, which en-
sure cell-to-cell coupling via Cx36 gap junctions [40].
Glucose stimulation induces much stronger secretory
and metabolic responses from either intact pancreatic
islets or clusters of islet cells than from single B cells
[41, 42]. In our study, Cx36 expression was much higher
in PECs-3D than in PECs-2D; consequently, coupling
between pancreatic 3 cells to synchronize the activity of
individual cells was better among PECs-3D than among
PECs-2D. In addition, previous studies have demon-
strated that changes in Cx36 alter the expression of spe-
cific B cell genes that play key roles in glucose-induced
INS secretion [43, 44]. We found that treatment with
PF-228 in 2D culture increased Cx36 expression. Col-
lectively, our results indicate that 3D culture might en-
hance glucose responsiveness by promoting Cx36
expression, and the FAK signaling pathway is involved
in Cx36 regulation.
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Conclusion

In conclusion, we developed a differentiation strategy to
induce differentiation of monohormonal mature PECs
from hPSCs with the last maturation step in 3D culture.
In particular, 3D culture increased the differentiation
efficiency and promoted the functional maturation of
hESC-derived PECs. Moreover, we investigated the mech-
anism and found limited FAK-dependent activation of the
SMAD?2/3 pathway and upregulated expression of Cx36 in
PECs-3D, indicating that 3D culture promoted endocrine
specification of hESCs through comprehensive modula-
tion of cell-cell and cell-ECM interactions. Our method
might provide a new platform for in vitro anti-diabetic
drug discovery and characterization for human metabol-
ism and diabetes. In addition, the development of small
compound inhibitors which can enhance the derivation of
B cells prior to transplantation will likely help bring us
closer to developing a universal cell-based therapy for
diabetes.
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