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Abstract

Background: The efficacy of mesenchymal stromal cell (MSC) therapy is thought to depend on the intrinsic
heterogeneity of MSC cultures isolated from different tissue sources as well as individual MSCs isolated from the
same tissue source, neither of which is well understood. To study this, we used MSC cultures isolated from horses.
The horse is recognized as a physiologically relevant large animal model appropriate for translational MSC studies.
Moreover, due to its large size the horse allows for the simultaneous collection of adequate samples from multiple
tissues of the same animal, and thus, for the unique collection of donor matched MSC cultures from different
sources. The latter is much more challenging in mice and humans due to body size and ethical constraints,
respectively.

Methods: In the present study, we performed single-cell RNA sequencing (scRNA-seq) on primary equine MSCs
that were collected from three donor-matched tissue sources; adipose tissue (AT), bone marrow (BM), and
peripheral blood (PB). Based on transcriptional differences detected with scRNA-seq, we performed functional
experiments to examine motility and immune regulatory function in distinct MSC populations.

Results: We observed both inter- and intra-source heterogeneity across the three sources of equine MSCs.
Functional experiments demonstrated that transcriptional differences correspond with phenotypic variance in
cellular motility and immune regulatory function. Specifically, we found that (i) differential expression of junctional
adhesion molecule 2 JUAM?2) between MSC cultures from the three donor-matched tissue sources translated into
altered cell motility of BM-derived MSCs when RNA interference was used to knock down this gene, and (ii)
differences in C-X-C motif chemokine ligand 6 (CXCL6) expression in clonal MSC lines derived from the same tissue
source correlated with the chemoattractive capacity of PB-derived MSCs.
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Conclusions: Ultimately, these findings will enhance our understanding of MSC heterogeneity and will lead to
improvements in the therapeutic potential of MSCs, accelerating the transition from bench to bedside.
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Background

The potential of mesenchymal stromal cells (MSCs) for
therapeutic use has been an active area of research for
several decades [1-4]. Thousands of studies, both
in vitro and in animal models, have been published, pro-
viding evidence for the therapeutic value of MSC, par-
ticularly as immunomodulatory cells that migrate to
injured tissues and contribute to repair [5-7]. This work
has led to the initiation of hundreds of human clinical
trials, but despite promising results, MSCs are not
widely used therapeutically [8, 9]. This slow transition of
MSC therapy from bench to bedside can, in part, be ex-
plained by inconsistent study results due to variation in
MSC cultures [10].

MSCs can be isolated from various tissue sources in-
cluding, but not limited to, adipose tissue (AT), bone
marrow (BM), peripheral blood (PB), placenta, and den-
tal pulp [11, 12]. The resulting cultures derived from dif-
ferent tissue sources typically exhibit varying degrees of
cellular heterogeneity (inter-source heterogeneity). In
addition, mixed populations of cell types are suspected
to make up cultures isolated from single tissue sources
(intra-source heterogeneity). MSC heterogeneity is trad-
itionally assessed by morphology, expression of surface
markers, cell kinetics, differentiation potential, and select
gene expression patterns [13, 14]. However, the tran-
scriptional heterogeneity of MSCs remains largely unex-
plored and its contribution to the therapeutic value of
MSC:s is poorly understood [15].

Single-cell RNA sequencing (scRNA-seq) is a technol-
ogy that profiles single cells based on gene expression
patterns and has been extensively used to characterize
cellular diversity in human and mouse models [16, 17].
Studies presenting scRNA-seq datasets to address inter-
source variation of MSCs have identified unique gene
expression patterns when primary human Wharton’s
Jelly-derived MSC were compared with commercial hu-
man BM-derived MSCs [18], and when primary human
umbilical cord-derived MSCs from one donor set were
compared with human synovial fluid-derived MSC col-
lected from a separate set of patients [19]. Ideally, inter-
source heterogeneity should be explored by evaluating
samples isolated from the same individual to exclude
donor-to-donor variation. However, it is difficult to col-
lect multiple tissue specimens from the same human
donor due to ethical constraints, especially if tissue

collection is not required for routine care and/or if the
collection procedure is invasive, as is the case for BM and
AT samples. One study, using scRNA-seq and functional
follow-up experiments, explored donor-matched human
MSCs derived from two sources (BM, AT) and found that
AT-derived MSCs depend less on mitochondrial respir-
ation for energy production, express lower levels of hu-
man leukocyte antigen class I (MHC Class I), and have an
increased immunosuppressive capacity relative to BM-
derived MSC [20]. To date, there are no reports on
scRNA-seq data on donor-matched tissue-derived murine
MSCs. Current scRNA-seq datasets generated to address
the intra-source variation of MSC have led to various out-
comes. One study reported a lack of heterogeneity in hu-
man AT-derived MSCs [21], whereas a later study found
them to be heterogeneous [22]. Other studies reported
heterogeneity within murine BM-derived MSC and based
on gene expression patterns, proposed this to be import-
ant for creating specific niches for maintenance and
lineage priming of immune cells [23, 24].

To overcome the practical hurdles of collecting donor
matched MSCs from different tissue sources, the horse
can be used as a model as its large size allows for the
collection of adequate samples from multiple tissues
without compromising the health of the animal. Add-
itional advantages of using the horse as a model are (i)
the availability of an annotated horse genome, (ii) unlike
many laboratory animals, the horse being an outbred
species like humans, and (iii) the horse being a relevant
translational model for the evaluation of novel stem cell-
based therapies [25-27].

In this study, we applied scRNA-seq to explore the in-
ter- and intra-source heterogeneity of primary equine
MSCs collected from three donor-matched tissue
sources (AT, BM, PB). Functional experiments demon-
strated that detected transcriptional differences corres-
pond with phenotypic variation in cellular motility and
immune regulatory function. This improved understand-
ing of MSC heterogeneity will lead to improvements in
the potential of MSC therapy, accelerating its transition
from bench to bedside.

Methods

Cells

Equine mesenchymal stromal cells (MSCs) used for
single-cell RNA sequencing (scRNA-seq) were isolated
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and cultured from adipose tissue (AT), bone marrow
(BM) and peripheral blood (PB), of a healthy adult re-
search warmblood mare, euthanized for reasons unrelated
to this study, exactly as described previously [28]. MSC
used for validation of gene expression patterns were iso-
lated and cultured from AT, BM and PB of two healthy
adult research thoroughbred geldings, euthanized for rea-
sons unrelated to this study. Equine MSCs were character-
ized by immunophenotypical protein profiling using flow
cytometry and the potential for trilineage differentiation,
exactly as described previously [28, 29]. Equine neutro-
phils were isolated from equine peripheral blood, exactly
as previously described [30], and used in chemotaxis as-
says immediately following isolation. Blood collection was
approved by the Cornell Institutional Animal Care and
Use Committee (IACUC # 2014-0038). Equine vascular
endothelial cells (EC) were isolated from the a. carotis of
healthy horses, euthanized for reasons not related to this
study, and cultured, exactly as described before [31].

Single cell library preparation and sequencing

After two passages in culture, MSCs were processed for
scRNA-seq on the 10X Genomics Chromium platform
(10X Genomics). Each sample was processed in a single
lane on the 10X Genomics Chromium instrument, with
a targeted cell recovery of 5000 cells per sample.
scRNA-Seq libraries were prepared with the 10X Gen-
omics Chromium Single Cell 3" Reagent Kit (v2), ac-
cording to manufacturer’s instructions. Libraries were
pooled and sequenced on the Illumina NextSeq 500 in
paired-end configuration (Read 1, cell barcode: 26 nt;
Read 2, transcript: 98 nt) to a read depth of approxi-
mately 24,000 paired-end reads per cell.

scRNA-seq data processing

The EquCab3.0 reference genome [32] was used in all
analyses. Reads were assigned to cell barcodes, mapped
and quantified per gene using CellRanger (v 3.0.1, 10X
Genomics) with default parameters (“standard work-
flow”). Raw BAM files were extracted and processed
with the End Sequence Analysis Toolkit [33] and a
workflow optimized for equine single cell RNA-seq ana-
lysis as described in Patel et al. 2020 [34]. Briefly, ex-
tracted BAM files were modified such that cell barcode
and UMI information were appended to the correspond-
ing read name entry for processing by ESAT. ESAT eval-
uates reads mapped immediately downstream of
annotated genes and includes these reads in expression
quantification of the associated gene. Overlapping gene
intervals (exons from two separate genes on + and —
strands sharing the same and/or overlapping genomic
coordinates) were excluded from expression quantifica-
tion. To recover expression of features duplicated (gen-
etic elements that had identical sequences represented
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in 2 or more regions in the in the EquCab3.0 genome
reference), ESAT was run a second time, with the
parameter “—multimap scale”, on a filtered reference
containing only duplicated features. The resulting (du-
plicated) gene x cell count matrices were “flattened”
to single entries per gene and appended to the pri-
mary gene x cell count matrix. Putative “multiplet”
cell barcodes were identified and removed from
downstream analyses with the DoubletDetection tool
[35].

scRNA-seq data analysis

Processed gene-cell matrices were analyzed in the R stat-
istical environment (v3.5.1) using the Seurat package
(v3.1.1). Data were filtered to exclude genes detected in
less than 3 cells (per tissue source), to exclude cells with
less than 2500 unique molecular identifiers (UMIs) or
greater than 15,000 UMIs (putative doublets), and to ex-
clude cells with greater than 3% UMIs assigned to mito-
chondrial genes (putative dead or dying cells). Gene-cell
count matrices were independently normalized with
SCTransform [36], and the top 3000 most variable genes
(variance-stabilizing transformation) were selected for
dimensional reduction by principal component analysis
(PCA). Seurat’s CellCycleScoring function was used to
score and identify cell cycle phase (G1, G2M or S) of in-
dividual cells. During normalization, cell cycle score dif-
ferences (G2M-S) and mitochondrial transcript
percentages were included as factors for regression. Un-
supervised graph-based clustering (smart local moving
algorithm [37], resolution 0.6) was performed on the
first 14 (AT-MSC), 23 (BM-MSC), 20 (PB-MSC) princi-
pal components (selected by Scree plot visualization).
Data annotated with corresponding clusters were visual-
ized by Uniform manifold approximation and projection
(UMAP; n.dims: as for clustering, n.neighbors: 30, cosine
metric, min.dist: 0.3) [38]. Differential gene expression
analyses were conducted using edgeR (v3.26.8) [39], with
additional modifications for scRNA-seq data [40]. Gene
expression linear models included factors for cellular
gene detection rate (to account for scRNA-seq “drop-
out”), cluster, and cell cycle score differences (as identi-
fied in Seurat analysis above). Specific contrasts are
detailed in relevant Results sections and/or figures. For
all differential gene expression testing analyses, genes
expressed (i.e. greater than or equal to 1 UMI) in less
than 25% of cells for at least one cluster/group within a
contrast were excluded from differential expression re-
sults. DGE tables were further filtered to only include
genes with an adjusted p value <0.05. Gene Ontology
enrichment analysis was conducted with the goana func-
tion, and biological process GO terms with a p value <
0.0005 were reported in results.
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siRNA knockdown

Silencer Select siRNAs targeting equine junctional adhe-
sion molecule 2 (JAM2) were designed (Thermo Fisher,
4,399,665). Silencer Select Negative Control #2 siRNA
was confirmed to not have complementarity to any
equine genes using BLAST (https://blast.ncbi.nlm.nih.
gov/Blast.cgi), and was used as a non-specific (scramble)
control. For RNA-mediated interference (RNAi), 1.25 x
10* MSCs were seeded per cm”. Lipofectamine RNAi-
MAX Reagent (Thermo Fisher) siRNA complexes were
generated, incubated for 5min, and used to transfect
cells with 5 nM siRNA. Lipofectamine:siRNA ratios var-
ied based on culture well size, according to manufac-
turer’s recommendations.

Reverse transcription-polymerase chain reaction (RT-PCR)
SYBR green—based RT-PCR was performed to determine
fold change in transcripts of interest, and data were ana-
lyzed, as previously described [41, 42]. The previously
validated reference gene beta-2-microglobulin (BM2)
was used to normalize samples [43] and all samples,
were run in triplicate. Genes and primer sequences are
listed in Table 1.

Western blotting

Western blotting was used to determine the efficacy of
JAM2 silencing in BM-MSC by siRNA, as previously de-
scribed [42]. Primary antibodies were rabbit anti-JAM2
(ab96465) and rabbit anti-B-actin (ab8227) (Abcam,
Cambridge, MA) as loading control, each diluted 1:1000.
Images of blots were captured on a Bio-Rad imaging sys-
tem (Bio-Rad, Hercules, CA) and JAM2 band intensity
relative to B-actin band intensity was determined using
Image] image processing and analysis software (https://
imagej.nih.gov/ij/).

Proliferation, adhesion, invasion, and migration assays

To asses proliferation, a 5-Bromo-2'-deoxyuridine
(BrdU) incorporation ELISA (Abcam) was used, as previ-
ously described [43]. Cell adhesion was determined
using a microcentrifugation assay, as previously

Table 1 Primers used for RT-PCR
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described [42]. MSC invasion through a monolayer of
EC was determined by electric cell-substrate impedance
sensing (ECIS), as previously described [44]. To asses mi-
gration, in vitro scratch assays with MSCs were per-
formed in 12-well plate wells, as previously described
[45]. Photographs of scratches were taken at 0 and 48 h
post-scratching, and migration distances of cells were
calculated in a blinded manner using Image] software
(http://imagej.nih.gov/ij/).

Cloning

Cloning of MSCs was carried out, as described before
[46], by plating an average of 0.5 cells labeled with Cell-
Tracker Green (Thermo Fisher, Waltham, MA) per well
in 96-well cell culture plates in expansion medium. Four
96-well plates (192 cells) were initially plated. Wells
were observed and those containing one cell were identi-
fied and labeled. After 7-10 days, single cells formed col-
onies that were considered clones. Fourteen clones were
first expanded to 12-well plate wells and then T75 tissue
culture flasks, before being frozen for RNA extraction
and further culture experiments (Figure S1).

Chemotaxis assays

PB-derived MSC clones were plated in triplicate wells of
24-well plates fitted with coverslips, at a density of 100,
000 cells per well in expansion medium. After 24h,
medium was removed, cell monolayers were rinsed with
PBS, and 2 ml DMEM was added to each well. The next
day, conditioned medium (CM), containing all factors
secreted by MSC clones, was collected by removing
DMEM from culture wells and centrifuging twice at 300
x g for 10 min at room temperature (RT) to remove cel-
lular debris. Six hundred pul CM was transferred to a well
of 24-well plates containing coverslips, in triplicate. Each
well was then fitted with an insert containing a 3 pm fil-
ter (Corning, Corning, NY). Equine neutrophils were
plated in each insert at a density of 20,000 cells per in-
sert. Cultures were incubated for 1h at 37 °C at which
time inserts were removed, and plates were centrifuged
at 200 x g for 5min at RT. Culture medium was gently

Gene Product Abbreviation

Forward primer (5-3') Reverse primer (5'-3')

junctional adhesion molecule 2 JAM2
C-X-C motif chemokine ligand 6 CXCL6
adrenomedullin ADM
insulin-like growth factor binding protein 5 IGFBP5
monoglyceride lipase MGLL
asporin ASPN
cellular retinoic acid binding protein 2 CRABP2
beta-2-microglobulin B2M

AAAGTTGGCTCCCAAAGCAC ACACTTGCGATGTCCAACAG
AGAGAACT GCGTTGCATGTG TCAAGGTGGCTACGACTTCC
TCCCGTAACCCTCATGTACC AAGTTCCCTCTTCCCACGAC
CTCATTATTCCGGTGGTTGC GTGGAGGCTGGAGAGACAAG
AAAGGAGCCTACTTGCTCATGG TTTCACGGAAGACGGAGTTG
AAACCCTTGCTTCACCCTTC TCAGCGTCACTGTCACCTTC
CCTGGTGAAATGGGAAAGTG TGTCGTCCGCTGTCATAGTC
TCTTTCAGCAAGGACTGGTCTTT CATCCACACCATTGGGAGTAAA
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removed, coverslips were rinsed with PBS, and adherent
cells were fixed with 70% ethanol before staining with
hematoxylin (Sigma Aldrich). Coverslips were mounted
on slides and photographed. Neutrophils in 10 random
fields were counted and quantified.

Statistical analysis

Chemotaxis, proliferation, adhesion, invasion, migration,
and RT-PCR assays were run in triplicate and analyzed
by an ordinary one-way ANOVA, followed by a Tukey’s
multiple comparisons test. GraphPad Prism (GraphPad
Software, San Diego, CA, www.graphpad.com) was used
for analysis, P < 0.05 was considered significant.

Results

Single-cell RNA sequencing (scRNA-seq) data reveal inter-
source variation of equine mesenchymal stromal cells
(MSCs) isolated from donor-matched tissue sources
Equine MSCs were isolated from donor-matched adi-
pose tissue (AT), bone marrow (BM), and peripheral
blood (PB), and characterized based on their potential to
differentiate into adipocytes, chondrocytes and osteo-
cytes as well as expression patterns of cellular proteins,
as recommended by the International Society for Cellu-
lar Therapy (ISCT) [47]. This characterization corrobo-
rated what we and others previously found for equine
MSCs [28, 45, 48], and as historically reported, little to
no inter-, or intra-, source variation in MSCs was ob-
served [48] (Fig. 1a). scRNA-seq data further supported
the classification of the equine cells isolated from the 3
different sources as MSCs. For example, MSC marker
genes ITGBI (CD29), CD44, THY (CD90), ENG
(CD105) and B2M (a subunit of MHC Class I) were
expressed by the majority of cells from each source
(Fig. 1b), corroborating our flow cytometry findings
(Fig. 1la(ii)). Moreover, transcripts for NTSE (CD73),
CD79A, and DRA (MHC Class II) genes were hardly de-
tected in the analyzed cells (Fig. 1b) and transcripts for
the gene PTPRC (CD45) were not represented at all. Al-
though we cannot rule out that absence of transcript
counts could be due to incomplete sampling depth in-
herent to droplet scRNA-Seq technology, these data
align with the corresponding protein expression patterns
we observed (Fig. 1a(ii), S2). Although CD73 is proposed
by the ISCT as a positive marker of human MSC, we
and others previously reported on its inconsistent and
even absent expression in equine MSC [25, 45, 48]. Ac-
cording to ISCT definitions, MSCs do not express the
endothelial cell marker CD34 [47]. In agreement with
this, we did not detect CD34 transcripts in appreciable
numbers of equine MSC isolated from any of the three
MSC sources, with the exception of a few transcripts in
a minority of cells in AT-derived MSC (Figure S3A). Un-
fortunately, CD34 protein expression cannot be
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evaluated in equine MSC due to the lack of cross-
reacting and/or commercially available equine-specific
anti-CD34 antibodies [48].

To characterize additional defining transcriptional fea-
tures of MSCs derived from different tissue sources, we
analyzed scRNA-seq data from all three tissue sources in
combination. Blinded to tissue origin, unsupervised clus-
tering partitioned 3 distinct cell groups. Post-hoc assign-
ment of sample source revealed that cells predominantly
cluster by tissue of origin (Fig. 2a). Grouping all single
MSCs derived from a given tissue source and modeling
for sub-cluster composition, differential gene expression
(DGE) analysis between tissue sources revealed distinct
gene expression patterns across MSCs isolated from each
source (Fig. 2b). We detected 37, 35, and 20 differentially
expressed genes (log, fold change greater than 1, adjusted
p value less than 0.05, and percentage of tissue source
with detectable expression of gene >25%) in AT-, BM-,
and PB-derived MSCs, respectively (Additional file 1).
Gene ontology (GO) term enrichment analysis indicated
that top ranked GO terms associated with AT-MSCs are
GO:0043567 insulin-like growth factor regulation and
GO:000823 cell proliferation; with BM-MSCs are GO:
0030198 extracellular matrix organization and GO:007155
cell adhesion; and with PB-MSCs are GO:0042476 odon-
togenesis, GO:0048705 skeletal system development and
GO:0016114 small molecule synthesis (Additional file 2).
Expression levels of the top five differentially expressed
genes (ranked by fold change) from each tissue source are
presented in Fig. 2c. The expression patterns of 6 genes
from this group were validated by RT-PCR (Figure S4).
Furthermore, these transcripts were analyzed in matched
AT-, BM- and PB-MSC isolated from 2 additional donor
horses (Figure S4). Overall, tissue specific expression pat-
terns were maintained from horse to horse, with the ex-
ception of monoglyceride lipase (MGLL) and cellular
retinoic acid binding protein 2 (CRABP2), which were dif-
ferentially expressed in MSC isolated from Horse 2.

Junctional adhesion molecule 2 (JAM2) modulates the cell
motility phenotype of BM-derived MSCs

Based on marked and distinct differential expression by
scRNA-seq, and involvement in processes related to cell
motility, we decided to focus on junctional adhesion
molecule 2 (JAM2) and to evaluate its contribution to
inter-source MSC differences. JAM2 encodes the JAM-
2/JAM-B protein and was found by scRNA-seq to be
expressed at significantly higher levels in BM-derived
MSC:s relative to both PB-derived MSCs and AT-derived
MSCs (Fig. 2c). Using quantitative RT-PCR, we con-
firmed the expression patterns of JAM2 in MSCs from
these three different tissue sources (Figure S3B). JAM-2
is known to be expressed on endothelial cells and
hematopoietic stem cells (HSC), as well as cancer cells,
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Fig. 1 Characterization of equine mesenchymal stromal cells (MSCs) isolated from 3 donor-matched tissue sources. a 40x images of adipose
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cytometry (ii). b sc-RNAseq violin plots of the expression levels of the genes corresponding to proteins used for MSC characterization

and to play a role in various processes involving prolifer-
ation, adhesion, migration, and invasion [49-51].
Interestingly, JAM-2 expressed on BM-derived stromal
cells has been shown to interact with JAM-C on HSC,
regulating the migration of HSC progenitors in and out
the BM in vivo [52], but the ways in which JAM-2 ex-
pression levels on cultured MSC modulates proliferation
and motility of these cells themselves have not been

explored. To begin exploring the role(s) of JAM2 in
MSC biology, we first examined baseline levels of JAM-
2-associated functions in MSCs from the three donor-
matched tissue sources. We found a significant differ-
ence in MSC proliferation, as assessed by 5-Bromo-2'-
deoxyuridine (BrdU) incorporation, with AT-derived
MSCs showing the highest proliferation, followed by
BM- and PB-derived MSCs (Fig. 3a(i)), but we did not
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observe any significant differences in adhesion
strength between MSCs from these three sources
(Fig. 3a(ii)). Electric cell-substrate impedance sensing
(ECIS) assays measuring invasion showed that PB-,
but not AT- and BM-, derived MSCs could invade a

monolayer of primary equine endothelial cells (ECs),

as shown by a significant drop in impedance indicat-
ing a disruption of the equine EC monolayer
(Fig. 3a(iii)). Finally, we observed that AT- and BM-
derived MSCs migrated significantly faster using
scratch assays when compared to PB-derived MSCs
(Fig. 3a(iv)).
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To assess the potential role of JAM-2 in these pro-
cesses, we used RNA interference (RNAI) to knock down
JAM?2 expression in BM-derived MSCs, the source with
the highest levels of JAM2 (Fig. 2c and S3B). JAM2 ex-
pression was significantly reduced in BM-derived MSCs
transfected with JAM2-specific siRNA, but not in BM-
derived MSCs transfected with scramble siRNA, when
compared to non-transfected control MSCs, both on
mRNA and protein level (Figure S3C, D).

Repeating the functional assays with JAM2-siRNA-
transfected BM-derived MSCs showed that the knock
down of JAM2 did not significantly affect BM-derived
MSCs proliferation (Fig. 3b(i)), nor did it change adhe-
sion strength (Fig. 3b(ii)), indicating that JAM-2 plays a
redundant role in these functions in BM-derived MSCs.
Consequently, the observed inter-source difference in
proliferation at baseline (Fig. 3a(i)) is most likely

mediated by other genes/proteins. In contrast, knock-
down of JAM?2 resulted in increased invasion capacity
(Fig. 3b(iii)) and decreased migration (Fig. 3b(iv)) of
BM-derived MSCs, demonstrating that JAM-2 modu-
lates the cell motility phenotype of BM-derived MSCs, a
characteristic that may be therapeutically beneficial.
Moreover, JAM2 knockdown in BM-derived MSCs ren-
dered these cells functionally more similar to PB-derived
MSCs (Fig. 3a), the MSC source with significantly lower
expression of JAM2 as determined by scRNA-Seq
(Fig. 2c). Still, JAM2 expression alone cannot account
for these two motility functions, since BM- and AT-
derived MSCs showed similar levels of invasion and mi-
gration (Fig. 3a(iii)&(iv)) despite significantly different
expression levels of JAM2 between these two sources
(Fig. 2¢). It will, therefore, be of interest in future studies
to explore the differential expression of additional genes
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with migratory functions that were identified in our
scRNA-Seq analysis, and how altering their expression,
alone or in combination, influences MSC motility. For
example, insulin-like growth factor binding protein 5
(IGFBPS5), which is highly expressed on AT-derived
MSCs and showed low levels of expression on BM- and
PB-derived MSCs (Fig. 2c), has been reported to either
stimulate or inhibit cell migration, depending on the cell
type it is expressed on [53, 54], and thus, could be an in-
teresting candidate for follow up.

Collectively, these results demonstrate that JAM?2 is in-
volved in cell invasion and migration of BM-derived
MSCs. In addition to differential gene expression, we
suggest that inter-source heterogeneity of MSCs trans-
lates into biologically relevant MSC functions, such as
those related to cell motility.

scRNA-seq data reveal intra-source variation of equine
MSCs isolated from donor-matched tissue sources

In our initial analysis, we observed that clustering was
considerably influenced by expression of cell cycle-
related genes (data not shown), a phenomenon that has
been previously reported in scRNA-seq studies profiling
cells in culture [55]. We, therefore, accounted for “cell
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cycle effect” in data normalization (details in Methods).
In independent analyses (i.e. per tissue source), unsuper-
vised clustering partitioned the AT-derived MSC and
the BM-derived MSCs into 7 clusters each, and the PB-
derived MSCs into 10 clusters (Fig. 4a). Despite mitigat-
ing the effects of cell cycle gene expression, we contin-
ued to observe some clusters apparently defined by gene
expression patterns consistent with proliferation (Fig. 4b).
Therefore, we further analyzed G1 clusters (G2M/S™°)
separately from G2M/S clusters (G2M/S™) in order to
identify differential gene expression patterns across clus-
ters independent of cell cycle classification
(Additional files 3, 4, 5, 6, 7, 8). Under this grouping
strategy, differential gene expression testing revealed ap-
preciable intra-source transcriptional heterogeneity in
MSCs derived from AT, BM and PB, albeit to a lesser
extent in the AT-derived MSC (Fig. 5). For 3 of 5 G2M/
Sl AT-derived MSC clusters, we detected 5 (cluster 0),
32 (cluster 1) and 3 (cluster 5) DEGs, while we detected
no DEGs in clusters 2 and 3 (log, fold change greater
than 1, adjusted p value less than 0.05, and percentage
of tissue source with detectable expression of gene >
25%). Of the G2M/S™ AT-derived MSC clusters, we de-
tected 3 and 13 DEGs for cluster 4 and cluster 6,
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respectively (Additional file 3). For G2M/S" BM-derived
MSC clusters, we detected 14 (cluster 0), 1 (cluster 1),
16 (cluster 2) and 140 (cluster 6) DEGs. Of the G2M/S™
BM-derived MSC clusters, we detected 28, 15, and 38
DEGs for cluster 3, cluster 4 and cluster 5, respectively
(Additional file 4). For 6 of 8 G2M/S' PB-derived MSC
clusters, we detected 3 (cluster 0), 14 (cluster 4), 89
(cluster 4), 6 (cluster 5), 16 (cluster 8) and 67 (cluster 9)
DEGs. No differentially expressed genes were detected
in cluster 1 or 2 in PB-derived MSCs. Of the G2M/S™

PB-derived MSC clusters, we detected 60 (cluster 6) and
34 (cluster 7) DEGs (Additional file 5).

To examine putative biological functions of detected
clusters, we conducted GO term enrichment analysis for
each cluster within each tissue source. Of clusters where
we detected significant enrichment in intra-source com-
parisons, top ranked (per cluster) GO terms within BM-
derived MSC cultures were GO:0016477 cell migration
(cluster 2) and GO:002544 chronic inflammatory re-
sponse (cluster 3). Within the PB-derived MSC culture,
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top ranked GO terms were GO:0006457 protein folding
(cluster 4), GO:0050920 regulation of chemotaxis (clus-
ter 6), GO:0044283 small molecule biosynthetic process
(cluster 7), GO:0001525 angiogenesis (cluster 8) and
GO:0034097 response to cytokine (cluster 9). We did
not detect any significantly enriched GO terms in AT-
derived MSC clusters, suggesting minimal transcrip-
tional differences across detected clusters. Complete GO
term enrichment results are reported as Additional files 6,
7, 8.

Clonal heterogeneity of PB-derived MSCs reveals
functional differences in chemoattractant capacity
Among the GO terms significantly enriched in PB- and
BM-MSC analyses, we noted several terms associated
with cell migration and chemotaxis. We, therefore, ex-
plored possible functionally intra-source variation in
MSC chemotactic activity. To this end, we used an
in vitro limiting dilution cell cloning assay to generate
clonal PB-derived MSC lines to be used for downstream
functional chemotaxis assays [46] (Figure S1). Fourteen
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clonal cell lines from individual PB-derived MSCs were
generated and evaluated by RT-PCR for expression of
various chemotaxis-related genes, as informed by the
scRNA-seq analysis (data not shown). We found C-X-C
motif chemokine ligand 6 (CXCL6), a molecule involved
in the recruitment of granulocytes, to be expressed at a
significantly higher level in clone 5 relative to the other
clones (Fig. 6a). This was consistent with detection of
CXCL6 expression in a minority of cells in the PB-
derived MSC population by scRNA-Seq (Fig. 6b-d). As a
follow up, we performed an in vitro chemotaxis assay
with clone 5 MSCs, comparing the neutrophil attractant
activity of CXCL6™ MSCs to CXCL6'" MSCs (clone 6,
Fig. 6a). Briefly, MSCs were added to the lower wells of
a transwell plate with a 3 pm pore insert which was
seeded with equine neutrophils (Fig. 6e(i)). We observed
that CXCL6™ MSCs stimulated neutrophil migration to
significantly higher levels compared to CXCL6'Y MSCs,
while the bulk, original MSC culture stimulated neutro-
phil migration to intermediate levels (Fig. 6e(ii)). Similar
results were observed when these experiments were
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performed with conditioned medium (CM) collected
from CXCL6™ MSCs (Fig. 6f), indicating that the effects
of MSCs on chemotaxis do not require direct cell
contact.

These results demonstrate that CXCL6 expression
levels in MSCs are correlated with increased neutrophil
migration in vitro and provide proof-of-concept that
intra-source heterogeneity in PB-derived MSCs trans-
lates into biologically relevant functions, such as those
related to immune modulation.

Discussion

To the best of our knowledge, this study is the first to
use single-cell RNA sequencing (scRNA-seq) to compare
expression profiles of mesenchymal stromal cells (MSCs)
isolated from 3 tissue sources from a single donor. Gene
expression profiling at single cell resolution indicate that
MSCs derived from different tissue sources are tran-
scriptionally distinct, and that MSCs derived from the
same tissue source exhibit variation in gene expression
as well. Importantly, we demonstrate that this inter- and
intra-source transcriptomic heterogeneity corresponds
with differences in biological function, with individual
cells/populations exhibiting varied phenotypes.

It is generally accepted, albeit not very well under-
stood, that MSCs isolated from different tissue sources
vary phenotypically [56—58] and consequently, have dis-
tinct therapeutic capacities [59]. This study confirmed
inter-source heterogeneity across cultures derived from
three tissue sources from the same donor. All samples
were processed in parallel at the same time, and al-
though we cannot fully rule out the possibility that the
observed inter-source differences could be due to tech-
nical batch effects, we believe this to be unlikely based
on differential gene expression patterns. Additionally, we
showed that junctional adhesion molecule 2 (JAM?2) ex-
pression levels contribute to differences in MSC migra-
tion and invasion. The importance of MSC motility
when considering these cells for therapy is well appreci-
ated [60, 61]. Ideally, after being injected into a patient,
MSCs migrate to the site of damaged tissue, where they
contribute to repair by secreting active factors that re-
cruit immune cells and stimulate resident cells [62, 63].
For cancer therapy, optimal MSCs for treatment are
considered those with invasive properties so that they
can integrate into tumors [64]. Using knock-down ex-
periments of JAM?2 as proof-of-concept, we determined
that this molecule contributes to migration and invasion
of BM-derived MSCs. Although the role of JAM-2 has
been well-explored in the context of its interaction with
JAM-C on hematopoietic stem cells (HSC), resulting in
the regulation of the migration of HSC progenitors in
and out the BM in vivo [52], its role on migration and
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other JAM-2-associated functions of MSCs had not been
explored until now.

In our initial analyses, we found that a considerable
degree of intra-source transcriptional heterogeneity
could be attributed to genes associated with cell cycle.
This influence of genes involved in cell cycling was
noted previously by another group using scRNA-seq to
study human MSCs [65] but was not directly addressed
in their analysis. Upon accounting for cell cycle phase
(as assigned by gene expression patterns), we observed
intra-source heterogeneity of BM- and PB-derived
MSC:s. Differential gene expression testing between clus-
ters revealed low numbers of differentially expressed
genes detected in AT-derived equine MSCs, a result that
is similar to one obtained in a study using human AT-
derived MSCs [20]. In that study, AT-derived MSCs
were found to exhibit less transcriptomic heterogeneity
when compared to donor-matched BM-derived MSCs.
Our current work now expands on this finding by in-
cluding PB-derived MSCs. These data add to the grow-
ing list of similarities between MSCs from human and
equine origin [66].

In addition to intra-source transcriptional heterogen-
eity detected in our scRNA-seq analyses, we also ob-
served intra-source differences in MSC functions, i.e.
chemoattractive activity. MSC-based immunomodula-
tion is considered highly relevant therapeutically and
MSCs are primarily studied in human medicine for
treatment of immune-related diseases and as anti-cancer
therapies [67-69]. We found that clonal cell lines de-
rived from individual PB-derived MSCs exhibited vary-
ing expression levels of C-X-C motif chemokine ligand 6
(CXCL6) and that this variation in expression directly
correlated with neutrophil attractant activity. In this re-
gard, it is worth noting that human progenitor cell de-
rived CXCL6 has been explored as a therapy [70] and
that equine and human MSCs can be primed to specific-
ally increase CXCL6 production with the goal of improv-
ing therapeutic outcomes [71, 72]. To obtain these
clonal cell lines, we separated cells using a technique
employed by other research groups working with MSCs
[73, 74]. Thus, it can be envisioned that clinical efficacy
of MSC cultures may be enhanced by screening for
clonal cell lines that express a specific immunomodula-
tory expression pattern beneficial for a specific disease.
Moreover, if such a clonal cell line of interest would ex-
press a distinct combination of genes encoding cell sur-
face markers, then MSCs with that particular profile
could be captured by flow cytometric cell sorting from a
bulk MSC mixed culture. This approach has been used
previously to enrich human BM-derived MSCs for
CD146" cells, with the goal of establishing a culture with
enhanced osteogenic differentiation potential [75]. It has
also been shown effective for the isolation of CD457/



Harman et al. Stem Cell Research & Therapy (2020) 11:524

Ter1197/Sca-1" cells from primary mouse BM-derived
MSCs. These markers are indicative of mesenchymal
progenitors, allowing them to be separated from con-
taminating hematopoietic cells [76]. Indeed, our scRNA-
seq results expand the list of potential surface markers
to isolate MSCs from different tissue sources.

While our group and others have begun to explore
MSC heterogeneity, the sources and degree of this het-
erogeneity are not well understood and widely debated
[77, 78]. It has been proposed that MSC populations
may either be comprised of a mixture of cell types with
different cell fates or that they are cells of one particular
type that exhibits subtler cell-to-cell variation. In
addition, heterogeneity can also be introduced by cell
environment, where MSCs derived from different tissue
sources may be similar in origin but primed by the tissue
they reside in to exhibit distinct functions. Further ex-
perimental studies are necessary to fully understand
variation in MSCs and how that variation impacts MSC
function.

The horse is not only an ideal large animal for the col-
lection of donor matched MSCs from different tissues
for transcriptomic and functional in vitro studies, but it
is also a physiologically highly relevant species that can
be used for studies to test MSC activities in vivo. For ex-
ample, a well-established equine skin wound model was
used for treatment with endothelial colony forming cells
and local immune cell responses were assessed, in part,
based on neutrophil density at the wound site [79]. We
propose a similar model could be used to evaluate the
efficacy of MSC clones exhibiting differing levels of
CXCL6 expression on wound healing, and to specifically
determine if MSC-secreted CXCL6 affects neutrophil
migration to damaged tissue by assessing the level of
neutrophil migration. Another equine model, in which
labeled MSCs were injected into surgically created
superficial digital flexor tendon (SDFT) lesions of horses
and tracked for up to 9 weeks post-treatment with low-
field magnetic resonance imaging [80] could, in theory,
be used to evaluate the in vivo importance of JAM-2 for
MSC motility by injecting labeled MSCs with stably
knocked-down or over-expressed JAM?2. It would be of
interest to design such future studies, based on the rele-
vance of equine skin wound and SDFT lesion models for
human wound management and orthopedic injuries [26,
27] respectively.

Conclusions

Taken together, our work demonstrates that single-cell
transcriptomic data can provide the rationale for func-
tional studies that will allow for (i) a better understand-
ing of the cellular heterogeneity that imparts specific
therapeutically beneficial properties on MSC and (ii) the
development of methods to capture and expand specific
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MSCs that exhibit these properties. These advances will
accelerate MSC therapy to move from bench to bedside.
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with protein-specific antibodies. Gray histograms indicate fluorescence of
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Additional file 11: Figure S3. a UMAP plot of CD34 transcripts
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(MSC) gene expression patterns detected using Single-cell RNA sequen-
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used for sc-RNAseq.
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