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Abstract

Background: Hematopoietic stem cell (HSC) transplantation is an effective treatment strategy for many types of
diseases. Peripheral blood (PB) is the most commonly used source of bone marrow (BM)-derived stem cells for
current HSC transplantation. However, PB usually contains very few HSCs under normal conditions, as these cells are
normally retained within the BM. This retention depends on the interaction between the CXC chemokine receptor
4 (CXCR4) expressed on the HSCs and its natural chemokine ligand, stromal cell-derived factor (SDF)-1a (also
named CXCL12) present in the BM stromal microenvironment. In clinical practice, blocking this interaction with a
CXCR4 antagonist can induce the rapid mobilization of HSCs from the BM into the PB.

Methods: C3H/HEJ, DBA/2, CD45.1%, and CD45.2" mice and monkeys were employed in colony-forming unit (CFU)
assays, flow cytometry assays, and competitive/noncompetitive transplantation assays, to assess the short-term
mobilization efficacy of HF51116 and the long-term repopulating (LTR) ability of HSCs. Kinetics of different blood
cells and the concentration of HF51116 in PB were also explored by blood routine examinations and
pharmacokinetic assays.

Results: In this paper, we report that a novel small molecule CXCR4 antagonist, HF51116, which was designed and
synthesized by our laboratory, can rapidly and potently mobilize HSCs from BM to PB in mice and monkeys.
HF51116 not only mobilized HSCs when used alone but also synergized with the mobilizing effects of granulocyte
colony-stimulating factor (G-CSF) after co-administration. Following mobilization by HF51116 and G-CSF, the long-
term repopulating (LTR) and self-renewing HSCs were sufficiently engrafted in primary and secondary lethally
irradiated mice and were able to rescue and support long-term mouse survival. In monkeys, HF51116 exhibited
strong HSC mobilization activity and quickly reached the highest in vivo blood drug concentration.

Conclusions: These results demonstrate that HF51116 is a new promising stem cell mobilizer which specifically
targets CXCR4 and merits further preclinical and clinical studies.
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Background

CXC chemokine receptor 4 (CXCR4) [1] belongs to the
superfamily of G-protein-coupled receptors (GPCRs) [2, 3]
and has stromal cell-derived factor (SDF)-1a or CXCL12 as
its natural ligand. The binding of hematopoietic stem cell
(HSC)-expressing CXCR4 to microenvironmental SDF-1a
causes transmission of signals to intracellular biological
pathways [4, 5] that mediate many intracellular processes.
The end result is HSC retention and proliferation in
the hematopoietic organ bone marrow (BM) [6-8].
CXCR4 knockout mice show a severe deficiency in
hematopoiesis [9], and this disruption of the SDF-1a/
CXCR4 axis has contributed to the discovery and
application of an effective HSC-mobilizing strategy
[10-12].

HSCs are uncommitted cells and have the ability of self-
renewal, differentiation into specialized hematopoietic
cells, and reconstitution of the bone marrow. Tradition-
ally, pre-transplant mobilization of HSCs was performed
using granulocyte colony-stimulating factor (G-CSF) with
or without chemotherapy [13, 14]. G-CSF can downregu-
late SDF-1a and promote HSC release to the PB [12, 15].
However, in order to collect sufficient quantity of HSCs,
G-CSF-based mobilization requires multiple doses over a
number of days, which is known to alter the function of
the HSC niche, as well as bone formation, and can cause
bone pain and spleen enlargement [16]. In addition, there
is approximately 25% of failure rate in patients with the
use of G-CSF with or without chemotherapy even when
remobilizations are performed [17]. Inadequate or inter-
individual variable numbers of HSCs can lead to delayed
or failed engraftment, prolonged thrombocytopenia or
neutropenia, increased infectious complications, and sub-
sequently prolonged hospital stay or death [18—20]. These
issues of G-CSF prompted the efforts to develop other
HSC mobilization strategies based on targeted therapeu-
tics. AMD3100 is a clinically approved CXCR4 antagonist
used for HSC mobilization [21, 22]. When AMD3100 is
used alone, approximately one-third of patients fail to
mobilize the minimally acceptable amount of CD34-
positive cells needed for allogeneic transplantation [23],
and AMD3100 is often used in combination with G-CSF.
In view of these, there is still the clinical need for new and
effective therapeutics for HSC mobilization.

In the present study, we report the in vivo HSC
mobilization efficacy of HF51116 [24], a novel CXCR4
antagonist developed recently by our laboratories.
HF51116 possesses a very high CXCR4 binding affinity
(IC50=12nM) [25] and potently mobilizes HSCs from
the bone marrow (BM) to the peripheral blood (PB). We
have evaluated the efficacy of HF51116 in mice and
monkeys, which demonstrates its potential as a new
promising CXCR4 antagonist for clinical application in
HSC transplantation.
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Methods

Compound

Of the series of CXCR4 antagonists designed, we synthe-
sized and identified a novel lead small molecule com-
pound HF51116. The purity (>98%) of HF51116 was
checked by analytical high-performance liquid chroma-
tography (HPLC), while the molecular weight (522.73
Da) and identity (Cy9HyNgO) of HF51116 were deter-
mined by high-resolution mass spectrometry (HRMS)
and nuclear magnetic resonance (NMR).

Mice

All mice were housed at the laboratory animal facility
that had been accredited by AAALAC (Association
for Assessment and Accreditation of Laboratory
Animal Care International) and the IACUC (Institu-
tional Animal Care and Use Committee) of Tsinghua
University. Mouse animal protocols were approved
by the laboratory animal facility. C57BL/6, C3H/HE],
and DBA/2 mice were purchased from Charles River.
We obtained B6.SJL-Ptprc® Pepc’/Boy] mice from Dr.
Li Wu’s Lab (School of Life Science, Tsinghua
University).

Monkeys

Male rhesus macaques (4—6 years old) were housed in
individual cages at the Institute of Laboratory Animals
Science, Chinese Academy of Medical Sciences (CAMS)
and Peking Union Medical College (PUMC), which had
been accredited by AAALAC. The protocol was
approved by the same institute with IACUC number
XC19006.

Colony-forming unit assay

The PB samples were obtained from mice and rhesus
monkeys following injections of AMD3100, HF51116,
and/or G-CSF. Ammonium chloride solution was used
to remove the red blood cells. The remaining cells in
suspension were cultured in MethoCult™ GF M3434 or
MethoCult™ H4434 (STEMCELL Technologies) in a
humidified atmosphere. The total numbers of colony-
forming unit (CFU)-granulocyte-macrophage (CFU-
GM), burst-forming unit-erythroid (BFU-E), and multi-
potential colony-forming unit-granulocyte, erythroid,
megakaryocyte, and macrophage (CFU-GEMM) colonies
were enumerated post 8—13 days of culture by the stand-
ard morphological criteria [26].

Flow cytometry assay

Surface antigens were quantified by flow cytometry using
ZE5 Cell Analyzer (Bio-Rad) and BD FACSAria™ III
(BD). PE-labeled mouse anti-human CD34 [27], FITC-
labeled mouse anti-mouse CD45.1, FITC-labeled mouse
anti-NHP CD45, V450 mouse lineage antibody cocktail
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with isotype control, PE-labeled mouse anti-mouse
CD45.2, FITC-labeled hamster anti-mouse CD48, PE-
Cy"7-labeled rat anti-mouse Ly-6A/E, APC-labeled rat
anti-mouse CD117 (BD Biosciences), and PE-labeled
anti-mouse CD150 (SLAM) (BioLegend) antibodies were
used in the flow cytometry assays.

Long-term repopulating assay

The F1 generation (CD45.1/CD45.2) of the C57BL/6 and
B6.SJL-Ptprc® Pepcb/Boy] crosses served as recipients. In
the first repopulation competitive assay, G-SCF (100 pg/
kg, every 12h for 4days; Ohtemachi, Chiyoda-ku,
Tokyo, Japan) was subcutaneously injected into CD45.2"
mice. At 12 h post-final G-CSF injection, saline, 5 mg/kg
HF51116, or 5mg/kg AMD3100 (C-aring, Wuhan,
China) was subcutaneously injected. WBCs were isolated
immediately, 30 min (min), and 1h after injection in
each group. CD45.1" BM cells were also isolated. The
competitor cell number (CD45.1% cells) was 0.5 x 106,
and the donor cell number (CD45.2* cells) was 1.0 x 10°.
Cell suspension, 1.5x10° cells, was intravenously
injected into lethally irradiated CD45.1/CD45.2 mice
(11 Gy, 5.5 Gy split dose, 2h apart, radiation rate 1.05
Gy/min). The percentages of CD45.2" cells were checked
every month for 6 months. At that time, the noncompet-
itive assay was performed to determine the secondary
repopulation. Briefly, lethally irradiated CD45.1/CD45.2
mice received the BM cells from each group of recipi-
ents. The percentages of CD45.2" cells were also
checked.

Pharmacokinetic assays

HF51116 was s.c. injected into rhesus monkeys at 1 and
10 mg/kg. The concentration of HF51116 in serum was
checked by LC-MS (Thermo Fisher, CA). ACQUITY
UPLC BEH C18 column (2.1 x 100 mm, 1.7 um, Waters)
was used to separate the extracts. The binary solvent
system included mobile phase A (0.1% formic acid and
5mM ammonium acetate in 100% H,O) and mobile
phase B (100% acetonitrile). A 10-min gradient with
250 pL/min flow rate was used as follows: 0—1.5 min, 2%
B; 1.5-5min, 2-98% B; 5-7 min, 98% B; 7-7.1 min, 2%
B; and 7.1-10 min, 2% B. Data acquired in selected
reaction monitoring (SRM) for HF51116 with transitions
of 523.5/161.

Blood routine examination
All blood samples underwent blood routine examination
using a ProCyte Dx Hematology Analyzer (IDEXX).

Statistical analysis

Prism (GraphPad) and Xcalibur (Thermo Fisher, CA)
were used for one-way ANOVA, two-way ANOVA ana-
lysis, and descriptive statistics. Data were shown as mean
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+ SEM. The flow cytometry data were processed by
FlowJo (FLOW]JO).

Results

Mobilization of different peripheral blood cells in mice
Through our extensive research efforts over many years,
we have developed a new class of small molecule agents
that are potent antagonists of CXCR4. On the basis of
our representative compound HF50731 [28], we have
developed a new highly potent small molecule analog
named HF51116, which features an unsymmetrical poly-
amine (Fig. 1a). HF51116 binds strongly to CXCR4 with
the IC5o of 12nM in competitive binding with 12G5
[25]. We examined the compositions and dynamics of
different PB cells in mice following subcutaneous injec-
tion of HF51116. The PB showed time-dependent
changes in WBCs and neutrophils in response to
HF51116. At 5mg/kg, total WBC numbers in PB
achieved a maximum number (18.83 K/pL) at 60 min
post HF51116 injection (Fig. 1b). Increases in neutrophil
numbers occurred faster and lasted longer when com-
pared to Omin (0.50 K/pL), with increases of approxi-
mately 9-fold occurring from 30min to 2h after
HF51116 treatment and 3.6-fold increases observed at 4
h (Fig. 1c). The lymphocyte numbers (Fig. 1d) started to
increase at 30 to 60 min, followed by a dramatic decrease
at 1 to 4h. At the same dose and time post-injection of
HF51116 and AMD3100, HF51116 escalated more
WBCs and lymphocytes in PB (Fig. 1b, d). No changes
were observed in platelet numbers in the PB in response
to HF51116 injection, when compared to 0 min (Fig. 1e,
816.83 K/pL), suggesting that HF51116 specifically mobi-
lized WBCs.

Rapid mobilization of hematopoietic progenitor cells
(HPCs) in mice

We demonstrated that the HPC mobilization induced by
HF51116 was dose and time dependent (Fig. 2a—d). At 1
h post-injection of HF51116, the colony numbers
reached a plateau at 5 mg/kg, with no further increase at
10 mg/kg and 20 mg/kg (Fig. 2a). The plateau level was
about 9.36-fold higher than the baseline circulating level
(Fig. 2a, the negative control group, 185 CFUs/mL). The
mobilizing efficacy of HF51116 was comparable to
AMD3100 [29] at a dose of 5 mg/kg. In comparison with
the negative control group, HF51116 induced 8.73-fold
increases in CFU-GM (1035/mL), 11.01-fold increases in
BFU-E (698/mL), and 9.75-fold increases in CFU-
GEMM (33/mL) numbers in PB (Fig. 2b).

CFUs were also rapidly increased at 15min after
HF51116 treatment and reached a pick level at 30 min,
9.57-fold higher than the level in PB collected before
HF51116 injection (Fig. 2c, the Before group, 198 CFUs/
mL). The mobilization efficacy of HF51116 was comparable
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Fig. 1 HFX51116 induced kinetic changes of different blood cells in mice. a The chemical structure of HF51116. Five milligrams per kilogram
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neutrophils (c), lymphocytes (d), and platelets (e) in PB were tested (mean + SEM of n =6 mice/time point)

3 20
g
2 15
<
o
T 10
(8]
0
-
S & &S SR
Q& '@6‘ @6‘ @6‘ ‘5&0
\@
D Time post injection ¢
20 1
)
=
5 15
o
[>¢
<
2 10
T
o
= 5
Z
0 B
S &S S S
Qé‘ .\6& 'b°& @6‘ o’b\@
Time post injection g“

to that of AMD3100 from 15min to 1h post-injection
(Fig. 2c). The PB also showed time-dependent changes in
CFU-GMs, BFU-Es, and CFU-GEMMs in response to
HF51116 (Fig. 2d).

Inter-individual variability in the mobilizations of
HPCs in patients means that approximately 15% of
patients are insensitive to G-CSF [18]. This phenomenon
also exists in different mouse strains [9]. We used
C57BL/6, C3H/HE], and DBA/2 mice to test the vari-
ability in HF51116 response and sensitivity to HF51116
in different mouse strains (Fig. 2e). At 30 min post-
injection of 5mg/kg HF51116, C57BL/6 and C3H/HE]
strains showed comparable sensitivities, but DBA/2

strain exhibited the better sensitivity than C57BL/6
strain.

Synergistic mobilization by HF51116 and G-CSF
After confirming the optimal dose and time for HPC
mobilization, we tested the potential for synergistic ef-
fects of co-administration efficiency of G-CSF+HF51116.
G-CSF, G-CSF+HF51116, or G-CSF+AMD3100 were
subcutaneously injected into mice. The mobilization effi-
cacy in the G-CSF+HF51116 group (24,963 CFUs/mL)
was 5.50-fold higher than that in the G-CSF group (4538
CFUs/mL) and 1.35-fold higher than that in G-CSF+
AMD3100 group (18,512 CFUs/mL) (Fig. 3a). We
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Fig. 2 Mobilization of murine HPCs by HF51116. a, b The dose-dependent response of HF51116 in C3H/HEJ mice. HF51116 was given at different
doses and AMD3100 was given at 5 mg/kg. The negative control group received saline only. Blood samples were collected at 1 h post-injection. a
Sum of CFUs at different doses. b Composition of CFUs at different doses (mean + SEM of n =12 mice/group/dose). ¢, d Dynamic change of
efficacy at different times following subcutaneous (s.c)) injections of HF51116 (5 mg/kg) or AMD3100 (5 mg/kg) into C3H/HEJ mice. HF51116 and
AMD3100 were given at the same dose. CFU numbers were measured at different times for HF51116 and at 1 h for AMD3100. ¢ Sum of CFUs at
different times. d Composition of CFUs at different times (mean + SEM of n =10 mice/time point, n =9 mice for 4 h, n=12 mice for the
AMD3100 group). e Inter-individual variability in different mouse strains. Five milligrams per kilogram HF51116 was subcutaneously (s.c.) injected
into C57BL/6, C3H/HEJ, and DBA/2 mice. The blood samples were collected at 30 min post-injection (mean + SEM of n =12 mice for the C57BL/6
and DBA/2 groups, n =10 mice for the C3H/HEJ group). ****P < 0.0001, **P < 0.01, *P < 0.05; ns, not significant

simultaneously examined the absolute number of
hematopoietic stem and progenitor cells (HSPCs,
Lineage™ Sca-1" ¢-Kit": LSK) and HSCs (CD150" CD48~
lineage™ Sca-1* ¢-Kit": SLAM LSK) in PB mobilized by
these three treatments [30]. The absolute number of
LSK cells in the G-CSF+HF51116 group and G-CSF
group were 8612/mL and 2024/mL, respectively (Fig. 3b,
¢). In addition, the absolute number of SLAM-LSK cells
in the G-CSF+HF51116 group and G-CSF group were
715/mL and 214/mL, respectively (Fig. 3d, e). A
tendency to a higher absolute number of LSK and
SLAM-LSK cells in the G-CSF+HF51116 group was
observed.

Long-term repopulating and self-renewing capability of
HSPCs and HSCs mobilized by G-CSF and HF51116

We also evaluated the long-term repopulating and self-
renewing ability of HSPCs and HSCs post-injection of
G-CSF+HF51116. The recovery of neutrophils and plate-
lets was reflected in the engraftment kinetics, as the
HSPCs and HSCs mobilized by G-CSF+HF51116 treat-
ment showed timely and early engraftment (Fig. 4a—c).
Lethally irradiated CD45.1" recipients receiving light-
density mononuclear cells (LDMNCs) obtained from PB
mobilized by G-CSF, G-CSF+AMD3100, and G-CSF+
HF51116 (Fig. 4a) showed similar engraftment kinetics:
neutrophils recovered to the baseline level at around 18
days (Fig. 4b) and platelets recovered at around 35 days
(Fig. 4c).

We employed CD45 congenic mice to demonstrate
the long-term repopulating ability of HSPCs and HSCs
(Fig. 4d). The percentage of CD45.2" cells in the G-
CSF+HF51116 (73.50%) group was 2.0-fold higher than
in the G-CSF group (35.44%) and 1.3-fold higher than in
the G-CSF+AMD3100 (54.60%) group post 6 months
transplantation (Fig. 4e). We also collected CD45.1/
CD45.2 mouse BM cells and tested self-renewal of the
long-term repopulated cells in a noncompetitive pattern
of secondary transplantation (Fig. 4d). There was no sig-
nificant difference of the percentage of CD45.2" cells be-
tween G-CSF+HF51116 (79.11%) and G-CSF+AMD3100
(70.98%) groups; the percentage of CD45.2" cells was
still 2.0-fold higher in the G-CSF+HF51116 group than
in the G-CSF group (41.76%) after 6 months post-

transplantation (Fig. 4f). These data confirmed that the
HSPCs and HSCs mobilized by G-CSF+HF51116 not
only produce timely and early engraftment but they also
retain a long-term repopulating and self-renewing
capability.

Mobilization of different peripheral blood cells in
monkeys

We addressed mobilization activity of HF51116 in mon-
keys [31]. HF51116 was subcutaneously injected into
rhesus monkeys at 10 or 1mg/kg. Kinetics of WBCs,
neutrophils, and lymphocytes were in time-dependent
manners (Fig. 5a—c). A maximum number of WBCs was
achieved at 2h (Fig. 5a). HF51116 induced a 3.73-fold
(10 mg/kg) change in WBC numbers when compared to
Omin (average 8.87 K/uL) with the P value of 0.0015.
Neutrophil numbers reached the highest level at 4h
post-injection of 10mg/kg and 1mg/kg of HF51116
(Fig. 5b). Lymphocytes showed the maximum in-
creases in number at 2h for both doses (Fig. 5c¢),
similar to the WBC response. However, lymphocyte
numbers decreased quickly from 2 to 8h and had
reached 70% of the 0-min value by 24 h. HF51116 did
not induce changes in platelets when compared to 0
min at either dose, similar to the change in mouse
(Figs. 5d and 1d).

Mobilization of HSCs in monkeys

We examined the CD34" cell counts [32, 33] in the
PB in monkeys (Fig. 6a) [34] and determined that the
HF51116-induced HPC  mobilization was time
dependent (Fig. 6b). Two hours post-injection of 10
mg/kg HF51116, there were 17 CD34" cells/uL PB.
The area under the curve (AUC) was 38.47 for dose
1 mg/kg and 61.50 for dose 10 mg/kg (Fig. 6a). At 2h
post-injection, 10 (5900 CFUs/mL) or 1mg/kg (4373
CFUs/mL) HF51116 produced maximum HPC
mobilization effects at the same time point when
WBCs and CD34" cells reached their maximum num-
bers. One milligram per kilogram HF51116 induced
an approximately 8.5-fold increase when compared to
Omin (510 CFUs/mL) with the P value of 0.0251
(Fig. 6b).
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Fig. 3 Synergistic mobilization by HF51116 and G-CSF. a One hundred micrograms per kilogram G-CSF was subcutaneously injected (s.c.) into
C57BL/6 mice every 12 h for 4 days. Saline, 5 mg/kg HF51116, or 5 mg/kg AMD3100 was subcutaneously injected (s.c.) at 12 h post-final G-CSF
injection. Total CFU numbers were tested at 0, 30, and 60 min post-injection (mean + SEM of n =16 mice). ****P < 0.0001, ***P < 0.001, **P < 0.01;
ns, not significant. b—e The absolute number of LSK and SLAM-LSK cells in peripheral blood post different treatments. The treatment regimen
was the same as described in a. Counting of b, ¢ HSPCs (LSK: Lineage™ Sca-1" c-Kit*) and d, e HSCs (SLAM LSK: lineage™ Sca-1* c-Kit* CD150"
CD48") were analyzed through flow cytometry (mean + SEM of n =3 mice for the G-CSF and G-CSF+AMD3100 group, n =4 mice for the
G-CSF+HF51116 group)

At 10 mg/kg, the highest concentration of HF51116  the plasma at 24h. At 1 mg/kg, the highest concentra-
(6305.89 ng/mL) in the PB plasma occurred at 15min tion (704.641ng/mL) of HF51116 appeared at 30 min
post-injection (Fig. 6¢), and 100.54 ng/mL remained in  and no HF51116 remained in the plasma 8 h later.
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Fig. 4 Engraftment kinetics and long-term repopulating capability of HPCs mobilized by HF51116+G-CSF. a Early engraftment strategy. G-SCF
(100 ug/kg, every 12 h for 4 days) was subcutaneously injected into CD45.2" mice. At 12 h post-final G-CSF injection, saline, 5 mg/kg HF51116, or
5mag/kg AMD3100 was subcutaneously injected into the CD45.2" mice. Light-density mononuclear cells (LDMNCs) were collected in PB at 0, 30,
and 60 min post-injection of each of these agents. Lethally irradiated CD45.17 recipients received a graft of LDMNCs. The control group was
healthy mice with no radiation. The recoveries of neutrophils (b) and platelets (c) were monitored every 2 days for 40 days (mean + SEM of n=10
mice/group). d Competitive repopulation assay strategy using CD45 congenic mice. G-CSF, G-CSF+HF51116, or G-CSF+AMD3100 were injected
into CD45.2 mice. Drug administration strategy was the same as used in a. BM cells from CD45.1 mice and LDMNCs from CD45.2 mice were
isolated. The competitor cell number (CD45.1% cells) was 0.5 x 10° and the donor cell number (CD45.2* cells) was 1.0 x 10°. Cell suspension
containing donor and competitor cells (1.5 x 10° cells) was intravenously injected into lethally irradiated (11 Gy, 5.5 Gy split dose, 2 h apart,
radiation rate 1.05 Gy/min) CD45.1/CD45.2 recipients. e The percentages of CD45.2" cells were checked for 6 months (mean + SEM of n=7 mice).
f The secondary repopulation in a noncompetitive assay. At 6 months post-injection, lethally secondary irradiated CD45.1/CD45.2 mice received
the BM cells of every group of recipients () in a noncompetitive assay. The percentage of CD45.2" was checked every month (mean + SEM of
n=7 mice). ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05; ns, not significant

Discussion

Blocking the SDF-1a/CXCR4 axis can elicit rapid
mobilization of HSCs from the BM to the PB in clinical
practice [35], as demonstrated by the clinically approved
CXCR4 antagonist AMD3100 [29]. Our recent efforts in
developing new CXCR4 antagonists led to the discovery
of HF51116 [25], a novel small molecule which strongly
and specifically binds CXCR4 and effectively blocks
SDF-1a-induced CXCR4" cell migration and calcium in-
flux (unpublished results).

For in vivo efficacy, we assessed the dose-dependent
and time-dependent responses in C3H/HEJ mice and
the mobilization effect in three different mouse strains.
DBA/2 mice were more sensitive than C57BL/6 mice to
HF51116. This variation resembles the situation of inter-
individual variability in human patients and in mice in
response to POL5551 [36]. Our investigation of the

in vivo efficacy for mobilizing HPCs in both mice and
monkeys confirmed that HF51116 consistently and
significantly mobilized CFUs from the BM to the PB.
The HSC mobilization efficacy of HF51116 and
AMD3100 was compared in mice. The HF51116-
induced mobilization of HPCs was dose and time
dependent. At 5mg/kg, the number of CFUs mobilized
at 15min post-injection of HF51116 was the same as
that achieved at 1h post-injection of AMD3100. There-
fore, HF51116 might be a potential alternative to
AMD3100 for patients who do not respond to
AMD3100. In monkeys, the maximum CD34" cell and
CFU mobilization effects also occurred at 2 h. The kinet-
ics of WBC, neutrophil, and lymphocyte mobilization by
HF51116 were also time and dose dependent. HF51116
could induce the increase of neutrophils in PB for a long
time in mice and monkeys. On the other hand, the
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numbers of platelets in PB remained unchanged in mice
and monkeys after HF51116 injection. HF51116 reached
the highest blood concentration at 15 min post-injection
and was subsequently removed from the blood circula-
tion quickly in monkeys.

The repopulating activity was studied by examining
the effect of HF51116 on the long-term repopulation in
CD45 congenic mice. HF51116 dramatically synergized
the mobilizing capacity of G-CSF after co-administered
into these mice. In noncompetitive assays, HSCs and
HSPCs mobilized by HF51116+G-CSF provided timely
engraftment. In competitive assays, the percentage of
CD45.2" cells was higher in the HF51116+G-CSF group
than in the G-CSF and AMD3100+G-CSF groups in the
primary transplant. Treatment by G-CSF may either
elicit inflammatory signals or promote HSC proliferation
to increase the mobilizable HSC pools. HF51116 acts on
the SDF-1a/CXCR4 axis and mobilizes more HSCs than
using G-CSF alone. G-CSF shows inter-individual vari-
ability and causes bone pain due to its toxic side effects
on the BM microenvironment [37, 38], and it requires a
4-day standard treatment, which could be too long. The
stronger HSC mobilization activity of HF51116 plus G-
CSF was clearly demonstrated in the primary transplant
and the activity was similar with AMD3100 plus G-CSF
in the secondary transplant. This short-term higher HSC
mobilization activity of HF51116 plus G-CSF might rep-
resent a possible option for patients who suffer from the
side effects of chemotherapy. In addition, the combin-
ation of HF51116 with other drugs such as proteasome
inhibitors [39, 40], GRO f [34, 41, 42], or Viagra [43] is
worth investigating to find even better and shorter HSC
mobilization regimens.

Conclusions

In summary, we have shown that a novel CXCR4 antag-
onist HF51116 is a potent HSC mobilizer and can rap-
idly and sufficiently mobilize HSCs from BM to the PB
in mice and monkeys. HF51116 not only mobilizes HSCs
when used alone, but also synergizes with G-CSF when
co-administered. The HSCs mobilized by HF51116 have
long-term repopulating activity and are sufficient for
engrafting in primary and secondary lethally irradiated
mice, where they rescue and support the survival of the
animals. In monkeys, HF51116 exhibits strong HPC
mobilization activity and is removed from the circulation
quickly. These results demonstrate that HF51116 repre-
sents a novel and potent HSC mobilizer that targets
CXCR4 and has promising potential for clinical
applications.
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