## CORRECTION

## **Open Access**

# Correction to: BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling



Rui Zuo<sup>1+</sup>, Minghan Liu<sup>1+</sup>, Yanqiu Wang<sup>1+</sup>, Jie Li<sup>1</sup>, Wenkai Wang<sup>1</sup>, Junlong Wu<sup>1</sup>, Chao Sun<sup>1</sup>, Bin Li<sup>1</sup>, Ziwen Wang<sup>2</sup>, Weiren Lan<sup>1</sup>, Chao Zhang<sup>1</sup>, Chunmeng Shi<sup>2\*</sup> and Yue Zhou<sup>1\*</sup>

### Correction to: Stem Cell Res Ther https://doi.org/10.1186/s13287-018-1121-9

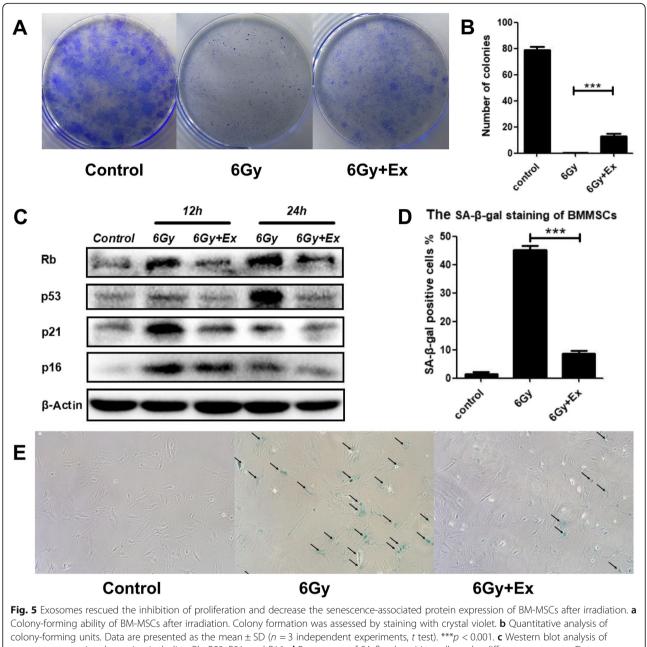
The original article [1] contains an error in Fig. 5 whereby sub-Fig. 5c, d & e are mistakenly mixed-up.

The correct version of Fig. 5 and the respective affected sub-figures can be viewed ahead and should be considered ahead of the incorrect Fig. 5 present in the original article.

#### Published online: 23 January 2020

#### Reference

 Zuo R, Liu M, Wang Y, Li J, Wang W, Wu J, et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Res Ther. 2019; 10:30 https://doi.org/10.1186/s13287-018-1121-9.


The original article can be found online at https://doi.org/10.1186/s13287-018-1121-9

\* Correspondence: shicm@sina.com; happyzhou@vip.163.com

<sup>†</sup>Rui Zuo, Minghan Liu and Yanqiu Wang contributed equally to this work. <sup>2</sup>Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China <sup>1</sup>Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China



© The Author(s). 2020 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.



senescence-associated proteins, including Rb, P53, P21, and P16. **d** Percentage of SA- $\beta$ -gal-positive cells under different treatments. Data are presented as the mean  $\pm$  SD (n = 10 independent experiments, t test). \*\*\*p < 0.001. **e** Senescence-associated  $\beta$ -galactosidase (SA- $\beta$ -gal) staining