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Abstract

Osteogenic differentiation and bone regeneration are complex processes involving multiple genes and multiple
steps. In this review, we summarize the effects of the long noncoding RNA (lncRNA) H19 on osteogenic
differentiation.
Osteogenic differentiation includes matrix secretion and calcium mineralization as hallmarks of osteoblast
differentiation and the absorption of calcium and phosphorus as hallmarks of osteoclast differentiation.
Mesenchymal stem cells (MSCs) form osteoprogenitor cells, pre-osteoblasts, mature osteoblasts, and osteocytes
through induction and differentiation. lncRNAs regulate the expression of coding genes and play essential roles in
osteogenic differentiation and bone regeneration. The lncRNA H19 is known to have vital roles in osteogenic
induction.
This review highlights the role of H19 as a novel target for osteogenic differentiation and the promotion of bone
regeneration.
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Introduction
Bone regeneration is a complex process involving the
synergistic effects of mesenchymal stem cell (MSC)-de-
rived osteoblasts and hematopoietic stem cell-derived
osteoclasts. After fracture or the onset of osteoporosis
and other diseases, the damaged bone releases cytokines.
These cytokines induce osteoblastic matrix secretion and
calcium mineralization. MSCs gradually differentiate
into bone progenitor cells, pre-osteoblasts, and osteo-
blasts. Then, osteoblasts begin to synthesize and secrete
matrix, repair the tissue microenvironment, and induce
bone regeneration. Moreover, with the differentiation of
osteoclasts, the organic and inorganic compounds re-
leased by the damaged bone are absorbed. Ca2+, (PO4)

3−,
and other degradation products enter the blood

circulation. These processes work effectively through
complex multigene processes, with multistep regulation.
MSCs are stem cells with multipotent differentiation

capacity. Many studies have demonstrated that MSCs
play crucial roles in maintaining and repairing various
connective tissues, including cartilage, muscle tissue,
bone, and adipose tissues [1]. As an essential process in
bone regeneration and cell repair, the osteogenic differ-
entiation potential of MSCs is induced by the extracellu-
lar microenvironment. Indeed, mechanical and
molecular signals regulate osteogenic differentiation at
the transcriptional and post-transcriptional levels [2]
(Fig. 1).
In prior studies, the roles of protein-coding genes and

noncoding microRNAs in osteogenic differentiation have
been extensively studied. However, long noncoding
RNAs (lncRNAs), which account for a large proportion
of the genome sequence, have not been sufficiently
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studied. With the recent development of high-
throughput RNA sequencing (RNA-seq) and other tech-
nologies, lncRNAs, previously regarded as transcriptional
noise, have been shown to have positive roles in regulat-
ing nuclear chromatin structure and gene expression.
Zuo et al. [3] first reported the relationship between
lncRNAs and bone generation in 2013. In response to
bone morphogenetic protein-2 (BMP-2), lncRNA ex-
pression profiles are significantly altered in C3H10T1/2
cells, demonstrating a correlation between lncRNAs and
osteoblast differentiation. Moreover, researchers have
identified 116 differentially expressed lncRNAs, facilitat-
ing further studies of these sequences in osteogenesis.
In this review, we summarize the effects of the

lncRNA H19 on osteogenic differentiation. We also dis-
cuss the roles of other lncRNAs associated with this
process and highlight the potential applications of this
information regarding the understanding and manage-
ment of bone-related diseases.

Structure and function of lncRNAs
lncRNAs, as by-products of RNA polymerase II tran-
scription, belong to a family of noncoding RNAs
(ncRNAs) with lengths of 200–100,000 nt. These mole-
cules have little or no protein-coding potential [4, 5].
Functionally, lncRNAs act as regulatory ncRNAs and in-
clude microRNAs (miRNAs), small interfering RNAs

(siRNAs), and Piwi-interacting RNAs [6]. Compared
with miRNAs, lncRNAs show lower expression levels
and exhibit relatively low homology among species.
However, promoters and exons are conservative to some
extent, indicating that the functions of lncRNAs are rela-
tively conserved [7]. Many lncRNAs contain conserved
secondary structures and exhibit alternative splicing and
subcellular localization. In addition, many lncRNAs
show specific expression during various stages of tissue
development.
lncRNAs can be divided into five types: sense, anti-

sense, bidirectional, intronic, and intergenic; the func-
tions of these lncRNAs differ to some extent [2, 8]. In
general, lncRNAs have no coding potential; however,
Matsumoto et al. [9] showed that a small polypeptide
encoded by the lncRNA LINC00961 could inhibit the
amino acid-induced activation of skeletal muscle mam-
malian target of rapamycin complex 1 in SPAR-
polypeptide-specific-knockout mice, demonstrating that
lncRNAs could encode short peptides under exceptional
circumstances.

Regulatory mechanisms of lncRNAs in osteogenic
differentiation
The regulatory mechanisms of lncRNAs are highly
complex. The mechanisms of action of lncRNAs can be
summarized into four levels: epigenetic, transcriptional,

Fig. 1 Synergistic effects of MSC-derived osteoblasts and hematopoietic stem cell-derived osteoclasts. (a) Damaged bone will release cytokines to
induce osteoblastic matrix secretion and calcium mineralization. (b) MSCs differentiate into osteoblasts. (c) Osteoblasts start to synthesize and
secrete matrix, repair the tissue microenvironment, and induce bone regeneration. (d) Hematopoietic stem cells differentiate into osteoclasts. (e)
Osteoclasts absorb organic and inorganic compounds released by damaged bone. (f) Ca2+, (PO4)

3−, and other degradation products enter the
blood circulation system
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post-transcriptional, and other regulatory mechanisms.
In osteogenic differentiation, lncRNAs show three gen-
eral functional roles, as follows: (1) they mediate epigen-
etic modification to regulate osteogenic differentiation;
(2) they regulate osteogenic differentiation through the
modulation of signaling pathways; and (3) they regulate
osteogenic differentiation by serving as miRNA sponges
or precursor structures.

Roles of lncRNAs in mediating epigenetic modifications to
regulate osteogenic differentiation
Epigenetics refers to heritable genetic phenotypes and
gene expression changes through DNA methylation, his-
tone modification, and chromatin remodeling without
changes in the DNA sequences. DNA methylation can
directly regulate the expression of Runt-related tran-
scription factor 2 (Runx2) and osterix (Osx), which affect
bone formation [10]. Kino et al. [11] showed that during
osteogenic differentiation, the lncRNA Gas5 could bind
to the glucocorticoid receptor gene binding domain as
bait and inhibit receptor function. As negative regulators
of bone formation, glucocorticoids cannot bind to gluco-
corticoid receptors.

Roles of lncRNAs in regulating osteogenic differentiation
through modulation of signaling pathways
A series of regulatory factors and cells are involved in
osteogenesis and osteogenic differentiation. These regu-
lators play important roles by activating or inhibiting
relevant signaling pathways. The Wnt/β-catenin,
mitogen-activated protein kinase (MAPK), and BMP/
Smad pathways have been extensively studied [12–14].
The core transcription factor of osteogenic differenti-
ation, Runx2, can be modulated by BMPs, Wnt protein,
estrogen, and glucocorticoids, resulting in alterations in
the phosphorylation or expression of downstream
elements, such as β-catenin and Smads [15, 16]. SiRNAs
have inhibitory effects on the activity of the lncRNA
AK045490, which can promote osteoblastic differenti-
ation in the context of osteoporosis. Moreover,
experimental results have shown that AK045490 down-
regulates T cell factor 1 (TCF1), lymphoid enhancer-
binding factor 1 (LEF1), and Runx2 by inhibiting the
nuclear translocation of β-catenin, blocking the β-
catenin/TCF1/Runx2 signaling pathway, and ultimately
suppressing the differentiation and bone formation of
osteoblasts [15]. Additionally, HOX transcript antisense
RNA (HOTAIR) can directly reduce Wnt inhibitory fac-
tor 1 (WIF-1) expression by promoting histone H3K27
methylation in the promoter region, thereby regulating
the Wnt/β-catenin signaling pathway and activating
matrix metalloproteinase-13 (MMP-13) expression in
chondrocytes to block cartilage damage [17–19]. Inflam-
matory signals play essential roles in inducing osteogenic

differentiation through the matrix microenvironment. In
the osteogenic differentiation of human MSCs, the
lncRNA differentiation antagonizing non-protein-coding
RNA (DANCR) induces the expression of interleukin
(IL)-6 and tumor necrosis factor-α (TNF-α) in mono-
nuclear cells, thereby enhancing the osteoclastic activity
of bone resorption [20]. IL-1β can also activate osteo-
genic differentiation via upregulation of the extracellular
signal-regulated kinase (ERK) 1/2 signaling pathway.
However, IL-1β eventually inhibits osteoblast differenti-
ation via the strong activation of p38 signaling. Matrix
stiffness can also regulate osteogenic differentiation by
modulating the MAPK pathway [21, 22]. However, no
reports have described the modulation of osteogenic dif-
ferentiation through lncRNA-dependent inflammatory
signals.

Roles of lncRNAs as miRNA sponges or precursors to
regulate osteogenic differentiation
miRNAs, which cause translational repression or degrad-
ation of target mRNAs, regulate the expression of genes
involved in the osteogenic differentiation of MSCs. For
example, miR-138 inhibits osteoblast differentiation in
bone marrow mesenchymal stem cells (BMSCs) and
phosphorylation of focal adhesion kinase (FAK), ERK1/2,
and Runx2. Moreover, miR-138-dependent downregula-
tion of Runx2 is also essential for the platelet-derived
growth factor (PDGF)-mediated inhibition of BMSC
osteogenic differentiation [23], and miR-705, miR-124,
miR-204, miR-30a, and miR-705 regulate the balance
between lipid formation and osteogenic differentiation
in BMSCs by modulating Runx2 and Osx expression
[24–28]. Studies have shown that lncRNAs can com-
petitively associate to limited miRNA-specific sites
and regulate miRNA levels. The lncRNA KCNQ1OT1
interacts directly with miR-214 to form an miRNA
sponge during the regulation of BMSC osteogenic dif-
ferentiation, and miR-214 can bind to the 3′-untrans-
lated region (UTR) of BMP-2 to inhibit the
expression of this protein [29, 30].
Notably, some miRNAs can be transcribed from gen-

omic regions of lncRNA gene sequences. As miRNA
precursors, these molecules regulate downstream targets
after being cleaved [31]. Additionally, lncRNAs can also
facilitate the cleavage of pri-miRNAs, modulate the
production of mature miRNAs, and play important
regulatory role [32]. In one study using RNA-seq to elu-
cidate the involvement of lncRNAs in the osteogenic
differentiation of immortalized mesenchymal stem cells
(iMSC#3), 32 new lncRNAs were screened out as
miRNA precursors (including miR-689, miR-640, miR-
601, and miR-544) [33]. Thus, further studies are ex-
pected to identify more functions of lncRNAs as miRNA
sponges or precursors.
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Types and mechanisms of lncRNAs in osteogenic
differentiation
Many lncRNAs have been shown to be involved in
tumor growth, immune system diseases, and other dis-
eases. For example, Luan et al. [34] knocked down the
lncRNA NPPA-AS1 in human normal cervical epithelial
cells (H8 cells) and human cervical cancer cells (C33A,
CaSki, HeLa, and SiHa cells) and showed that this
lncRNA impaired cell proliferation and migration. More-
over, lncRNAs are known to participate in the progres-
sion of lung cancer, breast cancer, and cervical cancer
[34–37]. Additionally, various lncRNAs can affect dis-
ease occurrence and outcomes through multiple molecu-
lar pathways. The various molecular mechanisms
through which lncRNAs regulate osteogenic differenti-
ation in disease are summarized in Table 1.

DANCR
The lncRNA DANCR was the first lncRNA shown to
regulate progenitor differentiation [38]. The function of
DANCR in chondrogenic differentiation of human
synovium-derived MSCs and osteogenic differentiation
of periodontal ligament stem cells (PDLSCs) has been
reported [39, 40]. Additionally, Lin et al. [41] evaluated
the expression of lncRNAs in hFOB1.19 human fetal
osteoblastic cells and found that DANCR targets EZH2
and regulates the expression of Runx2 in osteogenic dif-
ferentiation. During osteogenic differentiation, the ca-
nonical Wnt signaling pathway can be activated via
ANCR-RNAi in PDLSCs during proliferation and osteo-
genic induction [42]. Moreover, DANCR has been shown
to regulate the proliferation and osteogenic differenti-
ation of human bone marrow-derived MSCs (PTA-1058
cells) via the p38/MAPK pathway [43].

HOTAIR
HOTAIR is an lncRNA formed by HOXC gene transcrip-
tion. HOTAIR can inhibit the activity of HOX and other
target genes by chromatin remodeling [44]. In the osteo-
genic differentiation of BMSCs, HOTAIR mediates the
Wnt/β-catenin pathway, and downregulation of HOTAIR
results in the increased expression of Wnt/β-catenin
pathway-related proteins [45]. Furthermore, during
osteogenic differentiation and proliferation in nontrau-
matic osteonecrosis of the femoral head (ONFH),
HOTAIR regulates osteogenic differentiation and prolif-
eration by modulating the activity of the miR-17-5p and
its target gene Smad7 [46].

Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1)
MALAT1 is a highly abundant and conserved imprinted
gene. By investigating the function of MALAT1 in cal-
cific aortic valve disease, Xiao et al. [27] demonstrated
that MALAT1 could promote osteogenic differentiation.
Additionally, Smad4 can be regulated by the MALAT1/
miR-204 sponge, promoting the osteogenic differenti-
ation of calcific valves after osteogenic induction in hu-
man aortic valve interstitial cells. In another study,
researchers found that MALAT1 could regulate Osx ex-
pression by sponging miR-143 to promote the osteo-
genic differentiation of human bone marrow-derived
MSCs [47]. MALAT1 can also promote osteogenic dif-
ferentiation by sponging miR-30, miR-214, miR-124, and
miR-34c [48–51].

Maternally expressed gene 3 (MEG3)
The lncRNA MEG3 is associated with various bone dis-
eases, such as bone tumors, osteoporosis, and rheuma-
toid arthritis [52]. Zhao et al. [53] showed that MEG3

Table 1 The different types and roles of lncRNAs in osteogenic differentiation

Approved symbol Gene locus Change in expression Target(s) Stem cell types Refs.

DANCR 4q12 Downregulated miR-1305-Smad 4 axis
EZH2, Runx2, OCN
p38/MAPK pathway

PDLSCs
hBMSCs

[36–41]

HOTAIR 12q13.13 Downregulated Wnt/β-catenin pathway
miR-17-5p
Histone modification

BMSCs [42–44]

MALAT1 11q13.1 Upregulated Sponging for miR-30
Sponging for miR-214
Sponging for miR-124
Sponging for miR-34c
Sponging for miR-204

hBMSCs
VICs

[27, 45–49]

MEG3 14q32.2 Upregulated
Downregulated

miRNA-543/SMURF1/RUNX2 axis
miR-27a-3p/IGF1 axis
BMP4 signaling pathway

hDPSCs
PDLSCs

[50–53]

GAS5 1q21 Upregulated
Downregulated

miRNA-498/ RUNX2 axis
miR-26-5p/PTEN axis
miR-135a-5p/FOXO1 pathway
GDF5 and p38/JNK signaling pathway

MSCs
HASMCs

[1, 54–56]
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could inhibit the osteogenic differentiation of human den-
tal pulp stem cells via the miR-543/Smad ubiquitin regula-
tory factor 1/Runx2 axis. Similarly, downregulation of
MEG3 suppresses the osteogenic differentiation of PDLS
Cs through the miR-27a-3p/insulin-like growth factor
(IGF) 1 axis in periodontitis [54]. In one study, researchers
showed that the upregulation of MEG3 suppresses osteo-
genic differentiation by downregulating BMP-2 expression
in PDLSCs [55]. Furthermore, Chen et al. suggested that
MEG3-mediated activation of BMP-4 signaling may pro-
mote the osteogenic differentiation of BMSCs. This
process is regulated by the DEP domain-containing mam-
malian target of rapamycin-interacting protein.

GAS5
In recent studies, many diseases have been shown to be
associated with GAS5 [1]. However, few studies have de-
scribed the roles of GAS5 in bone diseases. Feng et al. [1]
showed that GAS5 overexpression prevents the develop-
ment of osteoporosis by promoting the osteogenic differ-
entiation of MSCs via targeting miR-498 to regulate
Runx2. As a direct target of phosphatase and tensin
homolog, miR-26-5p was shown to bind to GAS5 [56].
GAS5 can also promote osteogenic differentiation via the
miR-135a-5p/FOXO1, growth differentiation factor 5, and
p38/c-Jun N-terminal kinase signaling pathways [57, 58].

Roles of the lncRNA H19 in osteogenic
differentiation
The lncRNA H19 is transcribed from the H19/IGF2 gene
located on human chromosome 11p15.5 and has a mo-
lecular weight of 2.3 kilobase [59, 60]. Several studies
have shown that H19 is related to the development of
cancer [61–64], and the H19 locus can show tumor-
suppressive effects in some cancers [65]. However, in
oral squamous cell carcinoma, hepatocellular carcinoma,
breast cancer, and bladder cancer, H19 is aberrantly up-
regulated and can act as a biomarker [63].
H19 is upregulated during the osteogenic induction of

primitive stem cells and plays important functional roles
in regulating osteogenic differentiation. The expression of
H19 varies during different stages of osteogenic
differentiation. In some in vitro studies, the osteogenic dif-
ferentiation of human adipogenic stem cells (hASCs) is in-
duced by the inhibition of H19 expression, resulting in the
upregulation of the expression of pro-osteogenic genes.
Additionally, overexpression of H19 downregulates the ex-
pression of pro-osteogenic genes [66]. Liao et al. [67]
firstly reported a method for the generation of functional
H19 using the AdEasy system and identified the biphasic
effects of H19 on MSC osteogenic differentiation in im-
mortalized mouse adipose-derived progenitors.
Functionally, H19 can participate in the regulation of

osteogenic differentiation as an miRNA precursor.

Moreover, H19 can act as a competitive endogenous
RNA by adsorbing and inhibiting the expression of miR-
NAs. Inhibition of miR-22 and miR-141 by H19 results
in the upregulation of Wnt/β-catenin/Runx2, thereby
promoting the osteogenic differentiation of MSCs. The
miR-138 sponge, through competitive binding with H19,
reduces the inhibition of PTK2 gene expression to
promote FAK expression and induce the osteogenic dif-
ferentiation of MSCs [68]. Similarly, H19 mediates
ligand-dependent nuclear receptor corepressor to affect
the osteogenic and adipogenic differentiation of BMSCs
through sponging miR-188 [69]. Additionally, H19 also
regulates osteogenic differentiation through various
other signaling pathways. The TP53 gene blocks cell
cycle progression and inhibits cell proliferation by en-
hancing the transcription of different genes. During the
osteogenic differentiation of MSCs, H19 binds directly
to the p53 protein, inhibits the activity of p53, and pro-
motes the proliferation of osteoblasts from MSCs [70,
71]. In a C57/BL6 mouse strain and A2lox-miR-675
cells, Keniry et al. [60] showed that H19 downregulates
transforming growth factor (TGF)-1 expression through
miR-675/TGF-1, inhibits the phosphorylation of Smad3,
and downregulates histone deacetylase (HDAC) 4/5, en-
abling HDACs to target the promoter of Runx2. Other
studies have also shown that H19 can act as a precursor
of miR-675 and produce two mature miRNAs (miR-675-
5p and miR-675-3p) by shearing, thereby regulating
osteogenic differentiation through the Wnt/β-catenin
signaling pathway [2, 72] (Fig. 2).

Conclusions
Compared with coding RNAs and miRNAs, many
lncRNAs have still not been extensively studied, and the
mechanisms and functions of these lncRNAs have not
been clarified. Importantly, various lncRNAs have been
shown to play roles in bone regeneration and osteogenic
differentiation. Additionally, advancements in technology
have facilitated the study of lncRNAs in different fields.
For example, RNA-binding protein immunoprecipitation
(RIP) has been widely used to explore the interactions
between proteins and lncRNAs in vivo. Then, after con-
firming the target protein, quantitative reverse transcrip-
tion polymerase chain reaction can be used to isolate
and quantify the lncRNA [73]. Wang et al. [74] used RIP
to identify the association between the lncRNA MIAT
and miR-200a in the differentiation of bone marrow-
derived MSCs into endothelial cells in a rat model of
erectile dysfunction [75]. Although the interactions of
RNA-binding proteins with different RNAs are critical
for RNA regulation, these interactions are difficult to de-
tect. Crosslinking immunoprecipitation (CLIP) can also
be used to solve this problem of identifying RNA/protein
interactions in vivo [76, 77]. In CLIP, cells are irradiated
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with ultraviolet light to generate covalent bonds between
the target RNA and protein when RNA/protein
complexes come in close contact. After this step, RNA-
binding proteins can be purified [75]. Moreover, RNA-
pulldown assays and chromatin isolation by RNA
purification can also be used to evaluate, identify, and
test lncRNAs. However, the differential expression of
many lncRNAs in various disease states and cell types
has still not been clarified. Accordingly, bioinformatics
studies, such as microarray analyses, are expected to
have important applications in functional studies of
lncRNAs. For example, Wang et al. [78] explored the po-
tential roles of lncRNAs in ONFH via microarray and
bioinformatics analyses of the lncRNA expression pro-
files of BMSCs isolated from patients with steroid-
induced ONFH.
Overall, in this review, we summarized the functions

and mechanisms of H19, which plays important roles in
osteogenic differentiation. Many studies of H19 regula-
tion have been reported, including the regulatory effects
of H19 on gene expression, signaling pathways, lncRNA/
miRNA sponging, and miRNA precursors. These mecha-
nisms and potential biomarkers are expected to guide
diagnoses, clinical treatments, and prognostic judgments
in the future. However, the regulatory mechanisms of

H19 have not been fully elucidated. For example, there
is still a lack of information regarding the microarray
expression profiles of H19-overexpressing or H19-
knockdown cells during osteogenic differentiation; thus,
the effects of H19 on the expression of downstream fac-
tors has not been determined. Such studies may improve
our understanding of this important lncRNA. Studies of
H19 are still in the primary research stage, and the po-
tential clinical applications of this lncRNA are unclear.
However, the biological potential of lncRNAs is obvious,
and further studies of the clinical importance of
lncRNAs, including H19, in bone diseases, such as osteo-
porosis, fracture, and other diseases, may lead to im-
provements in therapeutic strategies for, and outcomes
of, bone-associated diseases.
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Fig. 2 Roles of the lncRNA H19 in osteogenic differentiation. H19 regulates the osteogenesis of MSCs through different regulatory mechanisms,
including classical mechanisms and signal pathways in the presence or absence of external stimuli. (a) H19 downregulates TGF-β1 through miR-
675 and inhibits the phosphorylation of Smad3, suppressing the targeting of HDAC4/5 to the promoter of Runx2. (b) H19, as a precursor of miR-
675, produces two mature miRNAs (miR-675-5p and miR-675-3p), which regulate osteogenic differentiation through the Wnt/β-catenin signaling
pathway. (c) H19 sponges with miR-22 and miR-141 to promote Wnt/β-catenin/Runx2 expression, thereby enhancing the osteogenic
differentiation of MSCs. (d) H19 binds directly to p53 protein, inhibits the activity of downstream targets of p53, and promotes the proliferation of
MSCs. (e) The miR-138 sponge, through competitive binding with H19, reduces the inhibition of the PTK2 gene to promote FAK expression and
induce the osteogenic differentiation of MSCs
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