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Secreted factors from dental pulp stem
cells improve Sjögren’s syndrome via
regulatory T cell-mediated
immunosuppression
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Abstract

Background: Sjögren’s syndrome (SS) is a chronic autoimmune disease primarily characterized by inflammation in
the salivary and lacrimal glands. Activated T cells contribute to disease pathogenesis by producing proinflammatory
cytokines, which leads to a positive feedback loop establishment. The study aimed to evaluate the effects of
secreted factors derived from dental pulp stem cells (DPSCs) or bone marrow mesenchymal stem cells (BMMSCs)
on hyposalivation in SS and to investigate the mechanism involved.

Methods: Eighty percent confluent stem cells were replenished with serum-free Dulbecco’s modified Eagle’s
medium and incubated for 48 h; following which, conditioned media from DPSCs (DPSC-CM) and BMMSCs
(BMMSC-CM) were collected. Cytokine array analysis was performed to assess the types of cytokines present in the
media. Flow cytometric analysis was performed to evaluate the number of activated T cells cultured in DPSC-CM or
BMMSC-CM. Subsequently, DPSC-CM or BMMSC-CM was administered to an SS mouse model. The mice were
categorized into the following groups (n = 6 each): non-treatment, Dulbecco’s modified Eagle’s medium (−),
BMMSC-CM, and DPSC-CM. Histological analysis of the salivary glands was performed. The gene and protein
expression levels of cytokines associated with T helper subsets in the submandibular glands (SMGs) were evaluated.
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Results: DPSC-CM contained more secreted factors with tissue-regenerating mechanisms, such as cell proliferation,
anti-inflammatory effects, and immunomodulatory effects. DPSC-CM was more effective in suppressing the
activated T cells than other groups in the flow cytometric analysis. The stimulated salivary flow rate increased in SS
mice with DPSC-CM compared with that in the other groups. In addition, the number of inflammation sites in
SMGs of the mice administered with DPSC-CM was lower than that in the other groups. The expression levels of
interleukin (Il)-10 and transforming growth factor-β1 were upregulated in the DPSC-CM group, whereas those of Il-4
and Il-17a were downregulated. The DPSC-CM-administered group presented with a significantly increased
percentage of regulatory T (Treg) cells and a significantly decreased percentage of type 17 Th (Th17) cells
compared with the other groups.

Conclusions: These results indicated that DPSC-CM ameliorated SS by promoting Treg cell differentiation and
inhibiting Th17 cell differentiation in the mouse spleen.
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Background
Sjögren’s syndrome (SS) is a chronic, systemic auto-
immune disorder characterized by the inflammation of
exocrine glands and functional impairment of the saliv-
ary and lacrimal glands [1]. T cells (mostly CD4-
expressing T helper [Th] cells) form a large part of the
lymphocytic infiltrate observed in the salivary and lacri-
mal gland tissues of SS patients, particularly during the
earlier stages of the disease [1, 2]. Furthermore, a re-
markable reduction in the numbers of regulatory T
(Treg) cells in the salivary glands and CD4+CD25+ T
cells in the peripheral blood have been observed in these
patients [2]. The inflammatory tissues in the salivary
glands of patients with SS consist predominantly of T
cells, particularly, the type 1 Th (Th1) cells [3]; however,
type 2 (Th2) and type 17 (Th17) cells have also been ob-
served in the tissues [4], demonstrating the complexity
of the pathogenesis of SS. Th1 cells mainly produce
interleukin (IL)-2 and interferon gamma (IFN-γ) and are
involved in cellular immunity [5]. Th2 cells are mainly
responsible for humoral immunity via the activation of B
cells and mast cells, and the production of immuno-
globulin E; they primarily produce IL-4, IL-5, and IL-13
[6]. IL-2 modulates the expression levels of the receptors
of other cytokines and transcription factors during Th
cell differentiation, thereby either promoting or inhi-
biting the cytokine cascades associated with Th cell
development state [7]. Thus, IL-2 promotes the differ-
entiation of naïve T cells into Th1 cells. These sub-
sets are then controlled mutually by their cytokines.
Furthermore, Th17 cells have been shown to play a
crucial role in inducing autoimmunity and allergic in-
flammation [5]. Several studies have reported that
Th17 cell is characterized by the production of IL-17,
a cytokine that is not produced by Th1 and Th2 cells
[8, 9]. In addition, Th17 cells and their associated cy-
tokines have been implicated in the pathogenesis of
SS [10–12]. On the other hand, Treg cells suppress

autoreactive lymphocytes via cell–cell contact or the
release of soluble mediators, such as IL-10 and trans-
forming growth factor-β1 (TGF-β1) [13].
The treatment of SS is challenging owing to the effect

of SS on the immune system. Traditional pharmaco-
logical therapies, such as pilocarpine, which is used to
stimulate residual acinar cells, are not aimed at the cause
of the disease; therefore, they cannot repair the damaged
gland and restore its secretory function [14].
Stem cells, such as bone marrow mesenchymal stem

cells (BMMSCs) and dental pulp stem cells (DPSCs),
have been reported to exert immunomodulatory effects
on various activated lymphoid cells, including T cells, B
cells, natural killer cells, and dendritic cells [15, 16].
Their low immunogenicity and immunoregulatory po-
tentials offer a promising new treatment for severe re-
fractory autoimmune diseases [17–19]. The therapeutic
effects of BMMSC or DPSC infusion have been demon-
strated in experimental and clinical SS [20, 21]. How-
ever, mesenchymal stem cells (MSCs) have several
drawbacks, such as a high capital investment, expensive
cell culture, complicated safety, and quality management
issues with regard to cell handling, and patient discom-
fort due to the invasive procedure required for cell col-
lection [22]. Moreover, the implanted MSCs do not
survive for long and disappear several weeks after trans-
plantation [23].
It was recently revealed that implanted MSCs secrete a

variety of paracrine factors such as growth factors and
chemokines that have immunomodulatory effects [23,
24] and can accumulate in conditioned media during cell
culture [25]. We previously reported that serum-free
conditioned media from MSCs contain numerous cyto-
kines [26–28]. However, studies examining the effects of
factors secreted from BMMSCs or DPSCs on inflamma-
tory autoimmune diseases, including SS, are lacking;
moreover, the underlying mechanisms involved in these
immunomodulatory effects remain unclear.
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The treatment of SS is difficult and challenging [14].
In contrast to other inflammatory autoimmune diseases,
including rheumatoid arthritis, the blocking of TNF-α
had very little effect in patients with SS [3]. The aim of
the present study was to evaluate whether secreted fac-
tors derived from DPSCs or BMMSCs (DPSCs condi-
tioned media [DPSC-CM] or BMMSCs conditioned
media [BMMSC-CM]) exert therapeutic effects in mouse
models of SS.

Methods
Cell preparation
Three different lots of human DPSCs and BMMSCs
were purchased from Lonza, Inc. (Walkersville, MD,
USA). DPSCs were cultured in DPSCs basal medium
(Lonza, Inc.) containing DPSC SingleQuots (Lonza, Inc.)
at 37 °C in 5% CO2/95% air. BMMSCs were cultured in
MSCs basal medium (Lonza, Inc.) containing MSC-GM
SingleQuots (Lonza, Inc.) at 37 °C in 5% CO2/95% air.
After primary culture, the cells were sub-cultured at a
density of approximately 1 × 104 cells/cm2. Cells from
the third to sixth passages were used for the
experiments.
Peripheral blood mononuclear cells (PBMCs) were ob-

tained from six healthy volunteers (two men and four
women; age, 61.1 ± 11.6 years) according to the ethics
statement.

Preparation of conditioned media
After achieving 80% confluence, DPSCs or BMMSCs
were replenished with serum-free Dulbecco’s modified
Eagle’s medium (DMEM [−]; Gibco, Rockville, MD,
USA) containing antibiotic–antimycotic solution. The
cell-cultured conditioned media were collected after
48 h of incubation. Subsequently, the conditioned
media were centrifuged at 440×g for 5 min at 4 °C.
The supernatant was collected, centrifuged at 17,
400×g for 3 min at 4 °C, and filtered using 0.22-μm
pore filters (Millex®-GP; Merck Millipore Ltd., Biller-
ica, MA, USA). DPSC-CM or BMMSC-CM was
stored at − 80 °C before use for the experiments de-
tailed as follows.

Cytokine antibody array
A cytokine array analysis was performed via laser scan-
ning using 174 human cytokine array plates to assess the
types of cytokines present in DPSC-CM and BMMSC-
CM (Quantibody® Human Cytokine Array 6000; RayBio-
tech, Inc., Norcross, GA, USA). Each scan was per-
formed in duplicate, and data were calculated as the
ratio of the cytokine level in DPSC-CM to that in
BMMSC-CM.

Isolation and culture of PBMCs
Blood samples (8 mL) from six healthy volunteers were
collected in BD Vacutainer® CPT™ (Nippon Becton Dick-
inson Company, Ltd., Tokyo, Japan). PBMCs were iso-
lated by Ficoll-Paque gradient centrifugation, as
described previously [29]. Briefly, immediately following
blood collection, the tubes were inverted 10 times and
centrifuged in a swinging-bucket rotor at 800×g for 30
min at room temperature. After centrifugation, 3 mL of
plasma was removed from the uppermost layer. The
PBMCs layer was gently suspended in the remaining
plasma and transferred to 15 mL conical tubes and
washed with phosphate-buffered saline (PBS) by centri-
fugation at 400×g for 10 min. PBMCs were washed with
PBS and cultured in RPMI 1640 (Gibco, Rockville, MD,
USA) containing an antibiotic–antimycotic solution
(100 units/mL penicillin G, 100 mg/mL streptomycin,
0.25 mg/mL amphotericin B; Gibco), and 10% heated-
inactivated fetal bovine serum (FBS; Sigma-Aldrich, St.
Louis, MO, USA).

Flow cytometric analysis
The collected PBMCs (5 × 105 cells/mL) were incubated
with phytohemagglutinin (PHA, 5 μg/mL) for 4 days to
activate T cells. The culture medium was aspirated and
gently washed with PBS (3 times). The T cells were in-
cubated for 72 h in the following media: DPSC-CM,
BMMSC-CM, and DMEM. Subsequently, they were col-
lected, washed with eBioscience Flow Cytometry Stain-
ing Buffer (Thermo Fisher Scientific, Waltham, MA,
USA), rinsed, and incubated at normal temperature for
20 min in the dark with APC anti-human CD25 (Milte-
nyi Biotec, Bergisch, Gladbach, Germany) or APC anti-
human CD69 (Miltenyi Biotec). The cells were fixed and
permeabilized in Fixation Buffer (BioLegend, San Diego,
CA, USA) and Intercellular Staining Perm Wash Buffer
(10X) (BioLegend), followed by staining with FITC anti-
human CD4 (BioLegend). APC mouse IgG2A (R&D Sys-
tem, Minneapolis, MN, USA), FITC mouse IgG isotype
control (Abcam, Cambridge, UK), and mouse IgG1

PerCP-conjugated antibody (R&D System) served as
negative controls. The BD FACSVerse™ Flow Cytometer
(Becton, Dickinson and Company, Franklin Lake, NJ,
USA) and BD FACSuite™ software were used to acquire
and analyze the FACS data.

Mice model and injection of DPSC-CM or BMMSC-CM
Nonobese diabetic (NOD) female mice (13 weeks old)
purchased from the Charles River Laboratories Japan
(Yokohama, Japan) were used as the primary SS model
[30, 31]. The mice were categorized into the following
groups based on the material performing an intravenous
injection twice a week (n = 6 per group): (1) non-
treatment group, not administered anything; (2) DMEM
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(−) group (500 μL at a time), DMEM (−) administered;
(3) BMMSC-CM group (500 μL at a time), BMMSC-CM
administered; and (4) DPSC-CM group (500 μL at a
time), DPSC-CM administered. The mice were eutha-
nized at 2 weeks after intravenous injection.

Measurement of stimulated saliva flow
The NOD mice were anesthetized with chloral hydrate
(0.4 g/kg body weight), and the stimulated saliva flow
was measured as described previously [21, 32]. At 3 min
after pilocarpine intraperitoneal injection (0.05 mg/100 g
body weight), a micropipette was used to collect the
whole saliva from the oral cavity for 10 min; following
which, the amount of saliva collected was calculated.

Histological analysis
Hematoxylin and eosin (H&E) staining and immunohis-
tochemistry were performed as described previously
[26]. Briefly, dissected submandibular glands (SMGs)
were fixed in 4% PFA, dehydrated in graded ethanol,
cleared in xylene, and embedded in paraffin. The sam-
ples were cut to create 5-μm-thick histological sections,
stained with H&E, and analyzed under a light
microscope.

Terminal deoxynucleotidyl transferase-mediated dUTP
nick-end labeling staining
Terminal deoxynucleotidyl transferase-mediated dUTP
nick-end labeling (TUNEL) staining was performed
(Click-iT Plus TUNEL Assay with Alexa Fluor 647,
Thermo Fisher Scientific Inc., Waltham, MA, USA) to
detect apoptotic cells, according to the manufacturer’s
instructions. Images of the sections were taken with a
fluorescence microscope (BZ-X810, KEYENCE, Osaka,
Japan; n = 8 per group). The percentage of TUNEL-
positive cells per total number of cells was calculated in
SMGs of each group.

Enzyme-linked immunosorbent assay analyses (ELISA)
The concentrations of anti-double-stranded DNA
(dsDNA) and anti-SSA in the mice were measured using
mouse anti-dsDNA and mouse anti-Ro52/SSA ELISA
kits (Signosis Inc., Santa Clara, CA, USA), according to
the manufacturer’s protocols. The serum samples were
diluted at 1:50. Furthermore, ELISA for Th1/Th2/Th17/
Treg-related markers (IL-2, IFN-γ, IL-4, IL-17A, IL-10,
and TGF-β1) was performed using a mouse SMG (20
mg per group) according to the manufacturer’s protocol
(multi-analyte ELISA kit; MEM-003A; QIAGEN).

Extraction of RNA and synthesis of complementary DNA
Total RNAs isolated from SMGs (n = 6 per group) were
dissected with a QIAshredder and RNeasy mini extrac-
tion kit (QIAGEN) as described previously [33]. One

microgram of total RNA was prepared and used for the
synthesis of cDNA. The RNA was incubated for 1 h at
42 °C with 20 units of RNase inhibitor (Promega Japan,
Tokyo, Japan), 0.5 μg of Oligo (dT)12–18 primer (Thermo
Fisher Scientific Inc., Waltham, MA, USA), 0.5 mM de-
oxyribonucleotide triphosphate (AB0196; Thermo Fisher
Scientific Inc., Waltham, MA, USA), 10 mM of dithio-
threitol, and 100 units of RNA reverse transcriptase (Life
Technologies Japan Ltd., Tokyo, Japan).

Quantitative reverse transcriptase-polymerase chain
reaction
Quantitative reverse transcriptase-polymerase chain re-
action (PCR) was used to determine the mRNA levels of
the cytokines. The resulting cDNA was amplified using
the PowerUp™ SYBR® Green Master Mix (Thermo Fisher
Scientific Inc., Waltham, MA, USA) in the AriaMX
Real-Time PCR instrument (version 1.7; Agilent Tech-
nologies, Inc.). The levels of mRNA for Il-2, Inf-γ, Il-10,
Il-4, Il-6, Il-17a, and Tgf-β1 were analyzed. Target
mRNA levels were expressed relative to that for β-actin
(housekeeping gene). The ΔΔ-CT method was applied
for the analyses. All analyses were performed in tripli-
cate. The following PCR primers were used for further
specific analysis: Il-2, 5′-ACTGTTGTAAAACTAAAG
GGCTCTG-3′ and 5′-GCAGGAGGTACATAGTTA
TTGAGGG-3′; Inf-γ, 5′-CTTGGCTTTGCAGCTCTT
CC-3′ and 5′-CACATCTATGCCACTTGAGTTAAAA-
3′; Il-4, 5′-TCTTTCTCGAATGTACCAGGAGC-3′ and
5′-TGTGAGGACGTTTGGCACATC-3′; Il-6, 5′-AGTT
CCTCTCTGCAAGAGACTTC-3′ and 5′-TTTCCACG
ATTTCCCAGAGAAC-3′; Il-17a, 5′-CAGGGAGAGC
TTCATCTGTGTCTC-3′ and 5′-TGCGCCAAGG
GAGTTAAAGAC-3′; Il-10, 5′-GGTAGAAGTGATGC
CCCAGG-3′ and 5′-AATCGATGACAGCGCCTCAG-
3′; Tgf-β1, 5′-CAGGGAGAGCTTCATCTGTGTCTC-
3′ and 5′-TGCGCCAAGGGAGTTAAAGAC-3′; and β-
actin, 5′-CACTCCTAAGAGGAGGATGGTCG-3′ and
5′-CAGACCTGGGCCATTCAGAAA-3′.

Isolation of lymphocytes from the spleen
Splenic lymphocytes were isolated from the NOD mice
as described previously [34]. Briefly, the spleens were
dissected and carefully placed in a 60-mm dish contain-
ing 3mL of RPMI 1640 (Gibco) with 2% FBS. A square
piece of sterile 70-μm nylon mesh (Corning Incorpo-
rated, New York, USA) was placed over the tissue using
sterilized forceps. The spleens were gently smashed
against the mesh, and almost all of it was suspended in
the medium. The suspension was pipetted up and down
a few times to break up the remaining soluble clumps. A
new square piece of nylon mesh was placed over the
opening of a 15-mL conical tube, and the suspension
was filtered through to remove the debris. Once the
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suspension was filtered into the 15-mL tube, the remain-
der of the tube was filled with RPMI 1640 and inverted
a few times. The cells were centrifuged at 300×g for 5
min at 4 °C. Then, one volume of the cell suspension
was diluted with 10 volumes of 1 × Red Blood Cell Lysis
Solution (pluriSelect, San Diego, CA, USA) and vortexed
for 5 s. The cells were centrifuged at 300×g for 10 min at
room temperature. The supernatant was aspirated after
centrifugation and resuspended in 10mL of cold PBS.
For the intracellular and extracellular staining, the

lymphocytes (1 × 106) were stained using the PerFix-nc
Kit (BEKMAN COULTER, Inc., Brea, CA, USA)
according to the manufacturer’s instructions. After stain-
ing with FITC anti-mouse CD4 (BioLegend), the
lymphocytes were stained with PE anti-CD25 (BioLe-
gend) and PerCP-Cy™5.5 anti-T box gene expressed in T
cells (T-bet; BD Biosciences), PE anti-CD25 and APC
anti-GATA3 (BioLegend), PE anti-CD25 and APC anti-
forkhead box protein P3 (Foxp3; Sigma-Aldrich), or PE
anti-CD25 and APC anti-retinoic acid-related orphan re-
ceptor γ (RORγ; Miltenyi Biotec). Thereafter, the BD
FACSVerse™ Flow Cytometer (Becton, Dickinson and
Company, Franklin Lake, NJ, USA) and BD FACSuite™
software were used to acquire and analyze the FACS
data.

Immunohistochemical analysis
Immunohistochemical staining was performed for T-bet
(1:500; sc-21763, SANTA CRUZ BIOTECHNOLOGY,
INC., Dallas, TX, USA) to evaluate the Th1 cells,
GATA3 (1:500; sc-268, SANTA CRUZ BIOTECHNOL-
OGY, INC., Dallas, TX, USA) to evaluate Th2 cells,
Foxp3 (1:200; NB100-39002, Novus Biologicals, Centen-
nial, CO, USA) to evaluate Treg cells, and RORγ (1:
1000; ab207082, Abcam, Cambridge, UK) to evaluate
Th17 cells. The sections were rehydrated, subjected to
antigen retrieval using Dako Target Retrieval Solution
(pH 9.0; Dako North America Inc., Carpinteria, CA,
USA) for 10 min at 121 °C, blocked for endogenous per-
oxidase with 0.3% H2O2 in methanol, and incubated for
30 min. After washing with PBS, the sections were
blocked for non-specific binding using Blocking One
Histo (Nakalai Tesque, Inc., Kyoto, Japan) for 15 min at
room temperature and then incubated with the primary
antibody overnight at 4 °C. Subsequently, the sections
were reacted with Peroxidase Stain DAB Kit (Nakalai
Tesque, Inc., Kyoto, Japan) for 1 h and developed with 3,
3′-diaminobenzidine (DAB) solution. Hematoxylin
counterstaining was performed following the DAB
reaction.

Immunoblotting
Mouse spleen was lysed in T-PER™ Tissue Protein Ex-
traction Reagent (Thermo Fisher Scientific). Equal

amounts of protein were analyzed using SDS-PAGE
followed by electrophoretic transfer to polyvinylidene
difluoride (PVDF) membranes (Millipore Ltd.), which
were blocked for 1 h with blocking buffer (5% skim milk
in TBS) and incubated overnight at 4 °C with a primary
antibody. Antibodies used for immunoblotting were as
follows: mouse polyclonal anti-nuclear factor of activated
T cells (NFAT) (Abcam), rabbit polyclonal anti-nuclear
factor kappa-light-chain-enhancer of activated B cells
(NF-κB) (Abcam), rabbit monoclonal anti-Foxp3
(Abcam), rabbit polyclonal anti-phospholylation-Smad2/
3 (p-Smad2/3) (Cell Signaling Technology, Kyoto,
Japan), rabbit polyclonal anti-Smad2/3 (Cell Signaling
Technology), rabbit polyclonal anti-extracellular signal-
regulated kinase (ERK) 1/2 (Cell Signaling Technology),
anti-phosphorylation-ERK (p-ERK) 1/2 (Cell Signaling
Technology), and rabbit monoclonal anti-β-actin (Cell
Signaling Technology).

Statistical analyses
All experiments were conducted in triplicate and re-
peated at least twice. Group means and standard devia-
tions were calculated for each measured parameter.
Statistical differences were evaluated using Student’s t
test, Mann–Whitney U test, and Tukey’s honest signifi-
cant difference test. A p value of < 0.05 was considered
statistically significant, and a p value of < 0.01 was con-
sidered highly significant.

Results
DPSC-CM and BMMSC-CM analyses
After performing the cytokine array (Quantibody® Hu-
man Cytokine Array 6000; RayBiotech), which compared
DPSC-CM with BMMSC-CM, 55 representative growth
factors, anti-inflammatory cytokines, and tissue regener-
ation factors were detected (Fig. 1). DPSC-CM contained
more anti-inflammatory cytokines than BMMSC-CM
(IL-10, 34 times; IL-13, 63 times; and follistatin, 15
times) (Table 1). Furthermore, hepatocyte growth factor
(HGF), sialic acid-binding Ig-like lectin 9, neural cell ad-
hesion molecule-1, neurotrophin-3, and brain-derived
neurotrophic factor were detected only in DPSC-CM
(Table 1).
TIMP-2 tissue inhibitor of metalloproteinase-2, TIMP-

1 tissue inhibitor of metalloproteinase-1, B2M β-2 mi-
croglobulin, TGF-β1 transforming growth factor-β1, IL-
10 interleukin-10, IL-13 interleukin-13, PAI-1 plasmino-
gen activator inhibitor-1, IGFBP-6 insulin-like growth
factor-binding protein-6, SDF-1α stromal cell-derived
factor 1α, VEGF vascular endothelial growth factor, IGF-
1 insulin-like growth factor-1, GDF-15 growth and dif-
ferentiation factor 15, OPG osteoprotegerin, IL-6
interleukin-6, MIP-3b macrophage inflammatory
protein-3β, HGF hepatocyte growth factor, TECK
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thymus-expressed chemokine, IL-17R interleukin-17 re-
ceptor, IGFBP-4 insulin-like growth factor-binding
protein-4, IL-29 interleukin-29, ANG-1 angiopoietin-1,
OSM oncostatin M, MMP-1 matrix metalloproteinase-1,
FAP fibroblast activation protein, NCAM-1 neural cell
adhesion molecule-1, NSE neuron-specific enolase,
TACE tumor necrosis factor-α convertase, MMP-13
matrix metalloproteinase-13, TIMP-4 tissue inhibitor of
metalloproteinase-4, IGFBP-2 insulin-like growth factor-
binding protein-2, EGF-R epidermal growth factor re-
ceptor, NT-3 neurotrophin-3, IL-23 interleukin-23,
BDNF brain-derived neurotrophic factor, GM-CSF gran-
ulocyte macrophage colony-stimulating factor, MMP-9
matrix metalloproteinase-9, Siglec-9 sialic acid-binding
immunoglobulin-type lectin-9, ANG-2 angiopoietin-2,
PD-1 programmed cell death-1, IGFBP-3 insulin-like
growth factor-binding protein-3, AgRP agouti-related
protein, FGF-7 fibroblast growth factor-7

Flow cytometric analysis for activated T cells
The presence of activated T cells (CD3+CD25+ or
CD3+CD69+ cells) and Th cells (CD4+CD25+ or
CD4+CD69+ cells) was investigated as described previ-
ously [35, 36]. Moreover, RORγ-transgenic mice, an
established SS-like sialadenitis mice model, were re-
ported to induce the expression of IL-2-mediated CD25
and CD69 on CD4+ T cells [37].
In the present study, flow cytometric analysis sug-

gested that the addition of DPSC-CM could decrease the
proportion of CD3+CD25+ or CD3+CD69+ cells (Fig. 2a)
and CD4+CD25+ or CD4+CD69+ cells (Fig. 2b) and that
DPSC-CM was more effective in suppressing T cell

activation than BMMSC-CM. On the contrary, no
changes were observed in the proportion of
CD8+CD25+, CD8+CD69+, or CD19+CD25+ (activated B
cells) cells, as observed in all the groups (Supplementary
Figure 1).

DPSC-CM alleviates the decrease in the secretion of saliva
and inhibits the increase in inflammation in SMGs
NOD mice are used as a primary SS model, which
uniquely exhibits salivary and lacrimal gland dysfunction
concomitant with the appearance of leukocyte infiltra-
tions in the exocrine glands and the many congenic
strains with known genetic differences [38–40].
The stimulated saliva flow rate was increased in the

15-week-old mice injected with DPSC-CM when com-
pared with that in the other groups (Fig. 3b). On the
other hand, the salivary secretion was slightly increased
in the BMMSC-CM group compared with that in the
non-treatment or DMEM (−) group (Fig. 3b). Import-
antly, anti-nuclear antibodies, such as anti-Ro52/SSA
antibodies, which are detected in approximately 60%
cases of SS [41], were highly detected in serum collected
from the non-treatment, DMEM (−), or BMMSC-CM-
administered mice when compared with those in the
DPSC-CM group; anti-dsDNA did not have a change for
each group (Fig. 3c). These results suggest that DPSC-
CM injection was effective in alleviating the decrease in
fluid secretion and maintaining normal secretory
function.
As shown in Fig. 3d, DPSC-CM alleviated inflamma-

tion in SMGs of the mice. The focus scores were de-
creased in the DPSC-CM group compared with those in

Fig. 1 DPSC-CM contains more anti-inflammatory factors and immunomodulatory factors than BMMSC-CM. Graph showing the factors expressed
in DPSC-CM and BMSC-CM (n = 3 each). The y-axis indicates the relative intensity
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the non-treatment, DMEM (−), and BMMSC-CM
groups, indicating that DPSC-CM alleviated the inflam-
mation of SMGs. Consequently, after 2 weeks, we
assessed the safety of BMMSC-CM and DPSC-CM injec-
tions. Major organs, such as the brain, lungs, heart, liver,
spleen, kidneys, and bladder, had no tumors at least 2
weeks after injection (Supplementary Figure 2A). More-
over, we assessed the mouse kidney and pancreas tissues
by H&E staining (Supplementary Figure 2B). Renal dis-
orders, such as nephritis with glomerular basal mem-
brane defects and mesangial cell overgrowth, were not
observed in the DPSC-CM group in contrast with the
other groups. Pancreatic islet inflammation was also not
observed in the DPSC-CM group unlike the other
groups.

mRNA expression levels of cytokines are associated with
Th subsets in SMGs
The relative mRNA expression levels of the Th1-
associated subsets markers, Il-2 and Ifn-γ, were

significantly downregulated in SMGs of the DPSC-CM-
administered group compared with those in the other
groups (Fig. 4a). Similarly, the expression levels of Il-4
and Il-17a, which are associated with the Th2 and Th17
subsets, were significantly downregulated in the DPSC-
CM group (Fig. 4a). The expression level of Il-6 was sig-
nificantly downregulated in the DPSC-CM group (Fig.
4a). On the other hand, Il-10 and Tgf-β1 expression
levels were significantly upregulated in the DPSC-CM
group compared with those in the other groups (Fig. 4a).
Similar results were obtained at the protein level (Fig.
4b). These results suggest that DPSC-CM readily in-
duces differentiation into Treg cells compared with the
other treatments.

DPSC-CM decreases apoptosis in SMGs
IFN-γ secreted by infiltrating lymphocytes induces
ductal apoptosis in sialoadenitis associated with SS,
which are responsible for the impairment of gland
secretory function [42]. As shown in Fig. 4b, IFN-γ was
elevated in both the non-treatment and DMEM (−)
groups. Therefore, we investigated whether the numbers
of apoptotic cells were increased in SMGs of the NOD
mice. The numbers of apoptotic cells were increased in
the non-treatment and DMEM (−) groups when com-
pared with those in the BMMSC-CM and DPSC-CM
groups (Fig. 5ab). Furthermore, the number of apoptotic
cells was significantly decreased in the DPSC-CM-
administered group compared with that in the BMMSC-
CM-administered group (Fig. 5ab). These results suggest
that DPSC-CM has powerful anti-apoptotic effects in
SMGs.

DPSC-CM favors Tregs while suppressing the Th1 and
Th17 responses
Next, we investigated whether and how DPSC-CM dir-
ectly induced the Th subset in the mouse spleen tissue.
First, we isolated spleen lymphocytes from the NOD
mice. We focused on CD4+ T cells in the spleen because
DPSC-CM specifically decreased the population of
CD4+CD25+ T cells in the flow cytometric analysis of
PBMCs (Fig. 1b).
The CD4+ T cell proportions were not changed in the

mice in each group (data not shown). The Th1
(CD4+CD25+T-bet+) cell proportion was increased in
the splenic lymphocytes of the animals in the non-
treatment and DMEM (−) groups (Fig. 6a). Furthermore,
the percentage of Th1 cells was significantly decreased
in the DPSC-CM group when compared with that in the
other groups (p < 0.01, Fig. 6a). However, the proportion
of Th2 cells (CD4+CD25+GATA3+) was not altered in
the groups (Fig. 6b). The percentage of Treg cells
(CD4+CD25+Foxp3+) was significantly increased in the
DPSC-CM group (Fig. 6c), whereas that of Th17 cells

Table 1 Classification of DPSC-CM factors vs. MSC-CM factors

Anti-inflammatory factors (Intensity)

DPSC-CM BMMSC-CM

TGF-β1 11,623 2186

IL-10 7989 234

IL-13 5098 80

IGF-1 3521 3324

TECK 1609 1513

IL-29 943 1019

Adiponectin 502 0

Siglec-9 396 0

GM-CSF 159 188

Nerve regeneration-related factors (intensity)

DPSC-CM BMMSC-CM

HGF 1857 0

NCAM-1 573 0

NSE 556 150

NT-3 250 0

BDNF 179 0

Anti-fibrotic factors (intensity)

DPSC-CM BMMSC-CM

Follistatin 36,241 2328

HGF 1857 0

Angiogenesis-related factors (intensity)

DPSC-CM BMMSC-CM

Angiogenin 4622 3025

VEGF 3549 1249

ANG-1 895 459
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(CD4+CD25+RORγ+) was significantly decreased when
compared with that in the other groups (Fig. 6d). In
addition, we investigated the proportion of B cells in
mouse spleens. The proportion of regulatory B (Breg)
cells (CD19+IL-10+) was not altered in the groups, while
the proportion of plasma cells (CD20+CD138+) was sig-
nificantly decreased in the DPSC-CM group (Supple-
mentary Figure 2). Similar results were obtained from
the H&E staining of Th subsets in the spleen (Fig. 7a).
Taken together, these results suggested that DPSC-CM

induces Treg cell differentiation and suppresses Th1 and
Th17 cells in splenic lymphocytes.

DPSC-CM downregulates NFAT and regulates the TGF-β/
Smad pathway in the spleen
We finally performed immunoblotting in mouse spleens
to understand the molecular mechanisms that mediate
changes in the proportion of T cell types. As shown in
Fig. 7b, NFAT expression was decreased in the spleens
of animals in the DPSC-CM group compared with those

Fig. 2 Addition of DPSC-CM regulates the activated T cells. Graphs showing the proportions of activated T cells in the form of CD3+CD25+ cells
or CD3+CD69+ cells (a) and Th cells in the form of CD4+CD25+ cells or CD4+CD69+ cells (b) were detected. Data are represented as mean ±
standard deviation. n = 6. **p < 0.01; *p < 0.05
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in other groups. However, Foxp3 expression was in-
creased in the spleens of animals in the DPSC-CM
group compared with those in other groups. The up-
stream molecule p-Smad2/3 was significantly increased
after DPSC-CM treatment, while ERK1/2 and p-ERK1/2
expression did not differ among the groups. These re-
sults indicate that NFAT inhibition barely impairs Treg

activity and that the primary working mechanism of
DPSC-CM treatment was the Treg cell induction
through the TGF-β/Smad pathway in mouse spleens.

Discussion
In this study, we evaluated the therapeutic effects of se-
creted factors derived from DPSC-CM or BMMSC-CM

Fig. 3 Evaluation of inflammatory infiltration in SMGs of NOD mice. a Outline of the experimental protocol. b The salivary flow rate in each group
at 15 weeks of age. n = 6 per group. ***p < 0.001. c Quantification of anti-dsDNA (top) and anti-SSA/Ro-52 (bottom) antibodies in the NOD mice
at 15 weeks of age. Data represent the mean ± standard deviation. n = 6. *p < 0.05. d Representative histological images of the submandibular
glands for H&E staining in 15-week-old NOD mice. The number of inflammatory cell foci in the DPSC-CM group was lower than that in the other
groups. Higher magnifications are displayed in the lower left of each H&E-stained image. Lower magnification bars are 500 μm, while higher
magnification bars are 200 μm. e The degree of inflammatory infiltration in the submandibular gland was evaluated using the focus score. Data
are representative of the mean ± standard deviation. n = 6. ***p < 0.001; **p < 0.01
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in a mouse model of SS. DPSC-CM presented with nu-
merous immunosuppressive factors (e.g., TGF-β1, IL-10,
and IL-13) compared with BMMSC-CM. Furthermore,
quantitative analyses of the cytokines indicated that ex-
pression levels of TGF-β1, HGF, IL-10, and IL-13 were
significantly higher in DPSC-CM than those in
BMMSC-CM (Fig. 1).
NOD mice, the most commonly used animal model of

SS, consist of a chronic lymphocytic infiltration in the
endocrine and exocrine glands [30, 31]. Severe inflam-
matory lesions appear in mice at 12–16 weeks of age
(the early stage of the clinical phase). A previous study

reported that inflammatory lesions appear in 7-week-old
mice and have been observed in 14-week-old mice [21].
Moreover, the salivary flow rate declines by 14 weeks in
NOD mice [43]. Therefore, we used 14-week-old NOD
mice in the current study.
The therapeutic effects of MSCs on tissue engineering

and regenerative medicine are attributable, in part, to
the paracrine pathways [23, 24] triggered by several fac-
tors secreted into the culture media [44]. In a previous
study, we reported that BMMSC-CM contains many cy-
tokines, such as the vascular endothelial growth factor,
monocyte chemoattractant protein (MCP)-1, MCP-3,

Fig. 4 mRNA expression and protein levels of cytokines associated with Th subsets in SMGs. a Quantitative RT-PCR analyses of Il-2, Ifn-γ, Il-4, Il-6, Il-
17a, Il-10, and Tgf-β1 in SMGs. n = 6 per group. ***p < 0.001; **p < 0.01; *p < 0.05. b Amount of Th subset markers in SMGs of the 15-week-old
NOD mice. n = 6 per group. **p < 0.01; *p < 0.05
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and HGF. Recently, many types of biomaterials and stem
cell transplantation therapies have been proposed to en-
hance the anti-inflammatory effects and functional re-
covery [18, 21]. However, transplanted stem cells exhibit
poor differentiation and survival [23]. Furthermore, it
has been established that stem cells secrete a variety of
growth factors and cytokines [25, 45–47]. The paracrine
effects of growth factors and cytokines secreted from im-
planted stem cells may have anti-inflammatory effects
[25, 45–47]. In addition, the paracrine factors secreted
by stem cells can accumulate in conditioned media dur-
ing cell culture [25, 45–47]. Serum-free conditioned
media from stem cells have been reported to serve mul-
tiple positive functions [25, 45–47]. Yamada et al. re-
ported that the cytokine profiles of stem cells derived
from the dental pulp and bone marrow are different;
hence, they may have characteristics that are specific to
the cells [48]. DPSC-CM has immunoregulatory proper-
ties that contribute to tissue repair compared with
BMMSC-CM. TGF-β1 plays a critical role in the gener-
ation of Th17 cells and immunosuppressive function,
thereby contributing to the induction of Treg cells [49].
HGF was originally identified as a potent mitogen for
mature hepatocytes. It stimulates the proliferation and
proteoglycan synthesis of some mesenchymal cells. Fur-
thermore, it has been indicated that HGF can stimulate
the proliferation and differentiation of progenitor cells
[50]. IL-13, a known immunosuppressive cytokine, in-
creased IL-10 production in T cells, which attenuated

the expression of IL-17A in vitro [51]. It has been re-
ported that TGF-β1 and HGF play important roles in
the inhibitory effect of stem cells [48], and TGF-β1 and
HGF have been shown to regulate the suppression of
SMG inflammation [52]. In the current study, because
DPSC-CM contained more secreted factors associated
with tissue-regenerating properties, including cell prolif-
eration, anti-inflammatory effects, and immunomodula-
tory effects (e.g., TGF-β1, IL-10, IL-13, HGF) (Fig. 1), it
was speculated that DPSC-CM was more effective than
BMMSC-CM in SS.
MSCs have been shown to suppress the immune re-

sponse by inhibiting T cell proliferation and activation
in a mitogen- or allergen-stimulated culture system [53].
In the present study, DPSC-CM strongly inhibited the
activation of the CD3+CD25+T, CD3+CD69+T,
CD4+CD25+T, and CD3+CD69+T cells compared with
BMMSC-CM (Fig. 2). In addition, the decrease in IL-4,
IL-17A, and IFN-γ levels and the increase in IL-10 and
TGF-β1 levels in SMGs suggested that DPSC-CM could
rectify the immune imbalance in the SS mice model.
Furthermore, IFN-γ is secreted mainly by cytotoxic or
Th1 T cells and natural killer cells [54]. Zhang et al. re-
ported that desiccating stress and exogenous administra-
tion of IFN-γ with desiccating stress exposure increased
epithelial apoptosis, indicating that IFN-γ promotes epi-
thelial apoptosis through the extrinsic apoptosis pathway
in SS [55]. In the present study, DPSC-CM decreased
the expression levels of Ifn-γ, Il-6, and Il-17a and

Fig. 5 DPSC-CM decreases apoptosis in SMGs. a TUNEL assays in SMGs of the NOD mice reveal that the nuclei were stained with DAPI (blue).
Bars = 50 μm. b Percentage of TUNEL-positive cells per total number of cells in SMGs. Data are representative of the mean ± standard deviation.
n = 6. **p < 0.01; *p < 0.05
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increased those of Il-10 and Tgf-β1 in SMGs (Fig. 4). In
addition, DPSC-CM injection controlled the apoptosis of
ductal cells (Fig. 5).
CD4+ T cells are the predominant cells that infiltrate

the salivary glands affected by SS [56]. Both Th1 and
Th2 cytokine levels are increased in the salivary glands
of patients with SS [57, 58]. By contrast, the Th17/Treg
ratio in patients with SS was reported to be higher than
that in healthy controls but was still lower than that in
patients in the experimental group, which indicates a
low level of imbalance and an abnormality in the initial

differentiation of T cells in the body [59]. This might be
due to increases in levels of the specific transcription
factor Foxp3 in Treg cells, which inhibits RORγ secre-
tion [60] and leads to a decline in the number of Th17
cells. Th17 cells can secrete the proinflammatory factor
IL-17 during immune cell development. Treg cells can
also exert an immunoregulatory effect by releasing IL-10
and TGF-β1 to suppress the inflammatory immune re-
sponse [61]. TGF-β1 induces the differentiation of initial
T cells to Treg cells, whereas the combined actions of
TGT-β1 and IL-6 induce the differentiation of initial T

Fig. 6 DPSC-CM directly induced the Treg cells in the splenic lymphocytes of the mice. The proportion of CD4+CD25+T-bet+ (Th1) cells (a),
CD4+CD25+GATA3+ (Th2) cells (b), CD4+CD25+Foxp3+ (Treg) cells (c), and CD4+CD25+RORγ+ (Th17) cells (d) in NOD mice spleen. Each graph on
the right side shows the percentage of each T cell subsets. The data represent the mean ± standard deviation. n = 6. **p < 0.01; *p < 0.05
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cells into Th17 cells [62]. In the present study, DPSC-
CM induced the differentiation of T cells into Treg cells
and suppressed the numbers of Th1 and Th17 cells in
the spleen (Figs. 6 and 7a).
We finally investigated the molecular pathways that fa-

cilitated Treg cell differentiation in mouse spleens. Sev-
eral transcription factors, including NFAT and NF-κB,
have been identified as interaction partners of Foxp3
[63, 64]. Of note, these transcription factors have also
been reported to regulate Foxp3 expression. As shown
in Fig. 7b, NFAT expression was decreased in mouse
spleens, while NF-κB expression was either unchanged
or was slightly decreased in the DPSC-CM group com-
pared with the other groups. Vaeth et al. reported that
once T cells differentiate into Treg cells, in vitro and
in vivo, they can exert their suppressor functions when

the NFAT levels are severely reduced [65]. In accord-
ance, Foxp3+ Treg cells express less NFAT and activate
NFAT to a lesser extent [66]. These results are in agree-
ment with our results. Moreover, to investigate upstream
molecules, we performed immunoblotting for Smad2/3
and ERK1/2, which are believed to be responsible for the
Treg cell generation. The results showed that p-Smad2/
3 expression was significantly increased in the DPSC-
CM group, while ERK1/2 and p-ERK1/2 expression did
not differ among the groups (Fig. 7b). Taken together,
our data suggest that DPSC-CM participated in the
TGF-β/Smad pathway and that cells readily differenti-
ated into Treg cells when the TGF-β/Smad pathway was
activated. However, further research is needed to under-
stand the detailed mechanism of this interaction because
various pathways participate in Treg differentiation.

Fig. 7 Location of each Th subset in the spleens of NOD mice and immunoblots of the indicated molecules. a Immunohistochemical staining for
T-bet (Th1 cells), GATA3 (Th2 cells), Foxp3 (Treg cells), and RORγ (Th17 cells). The panels on the upper side show the higher magnifications (bar =
100 μm.) of the spleens. b The detection of NFAT, NF-κB, Foxp3, p-Smad2/3, Smad2/3, p-ERK, and ERK protein expression levels was conducted
using western blot analysis. β-actin was used as the internal control
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Conclusions
DPSC-CM exerts a protective effect on the secretory
function of SMGs. In addition, DPSC-CM alleviates
hyposalivation due to SS by decreasing the inflammatory
cytokine expression, inducing Tregs in the spleen via the
TGF-β/Smad pathway, regulating the local inflammatory
microenvironment, and decreasing apoptosis in SMGs.
Regulation of the differentiation of T cells by DPSC-CM
might be responsible for its immunomodulatory effects.
Therefore, this study reveals a new effect of DPSC-CM
and provides a therapeutic strategy for SS.
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