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Abstract

Background: Mesenchymal stromal cells (MSCs) have been studied with increasing intensity as clinicians and
researchers strive to understand the ability of MSCs to modulate disease progression and promote tissue
regeneration. As MSCs are used for diverse applications, it is important to appreciate how specific physiological
environments may stimulate changes that alter the phenotype of the cells. One need for neuroregenerative
applications is to characterize the spectrum of MSC responses to the cerebrospinal fluid (CSF) environment after
their injection into the intrathecal space. Mechanistic understanding of cellular biology in response to the CSF
environment may predict the ability of MSCs to promote injury repair or provide neuroprotection in
neurodegenerative diseases.

Methods: In this study, we characterized changes in morphology, metabolism, and gene expression occurring in
human adipose-derived MSCs cultured in human (hCSF) or artificial CSF (@aCSF) as well as examined relevant protein
levels in the CSF of subjects treated with MSCs for amyotrophic lateral sclerosis (ALS).

Results: Our results demonstrated that, under intrathecal-like conditions, MSCs retained their morphology, though
they became quiescent. Large-scale transcriptomic analysis of MSCs revealed a distinct gene expression profile for
cells cultured in aCSF. The aCSF culture environment induced expression of genes related to angiogenesis and
immunomodulation. In addition, MSCs in aCSF expressed genes encoding nutritional growth factors to expression
levels at or above those of control cells. Furthermore, we observed a dose-dependent increase in growth factors
and immunomodulatory cytokines in CSF from subjects with ALS treated intrathecally with autologous MSCs.

Conclusions: Overall, our results suggest that MSCs injected into the intrathecal space in ongoing clinical trials
remain viable and may provide a therapeutic benefit to patients.
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Introduction

Mesenchymal stromal cells (MSCs) are increasingly be-
ing employed in clinical trials to treat neurodegenerative
diseases despite a lack of mechanistic investigations into
the phenotypes of MSCs when injected into the central
nervous system (CNS) compartment. For many current
trials for neurological diseases, MSCs are extracted from
adipose tissues or bone marrow, expanded in vitro, and
then injected into the intrathecal cerebrospinal fluid
(CSF) of the CNS to bypass the blood-brain barrier. The
hypothesis, based on pre-clinical in vitro and animal
models, is that MSCs will secrete factors that have a
therapeutic effect on neurons and the surrounding
microenvironment. MSC-based therapy is attractive be-
cause most neurodegenerative diseases involve multi-
faceted pathologies, and MSCs have been shown to fa-
vorably modulate the majority of these pathological pro-
cesses. However, pre-clinical models often recapitulate
neither the intrathecal microenvironment nor the prep-
aration of MSCs that would be administered to a clinical
trial patient, hampering responsible translation of MSCs
into clinical use.

Intrathecal CSF represents a uniquely challenging en-
vironment for cultured MSCs: it has a lower partial pres-
sure of oxygen than media in culture conditions (~ 70—
80 mmHg in CSF) [1], undergoes age- and disease-
related changes in protein composition [2—4], and con-
tains less protein compared to plasma, with CSF con-
taining primarily albumin and brain-derived factors [5].
When MSCs are cultured in vitro, cells are grown at
normoxia and the growth media must be supplemented
with nutrient-rich human platelet lysate (hPL) to sup-
port healthy proliferation prior to their harvest and im-
plantation. When cultured without serum or hPL, or in
hypoxic conditions, MSCs have been shown to rapidly
undergo apoptosis and risk chromosomal instability [6—
8]. However, previous studies—albeit utilizing diluted
CSF formulations—have shown that MSCs can remain
viable and increase the presence of nutritional factors
within CSF [9-11]. So how are researchers and clinicians
to harmonize this data to balance the risks with the pur-
ported benefits of MSC therapy?

In addition to the above-mentioned weaknesses of
pre-clinical models, they often also fail to account for
the preparation of MSCs for clinical use, which has the
potential to drastically impact the phenotype of MSCs.
The field of cell therapy is becoming increasingly
cognizant of how culture conditions affect MSCs.
Understandably, most preclinical research to date has
been conducted using research-grade reagents, such as
media supplemented with fetal bovine serum, that are
not permitted for cells destined for human use. This dis-
tinction is important to note as numerous studies dem-
onstrated that MSCs grown in compliance with current
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good manufacturing practices (GMP) versus non-
GMP conditions (and even within varying GMP-
compliant conditions) display disparate phenotypes
characterized by different proliferation rates, differen-
tiation potentials, and immunomodulatory potentials
[12-15]. At present, it is unclear how in vitro manu-
facturing conditions ultimately influence the response
of MSCs to the CSF environment. Furthermore, how
the CSF microenvironment, with its lower oxygen and
nutrient levels, impacts MSCs cultured for clinical use
is also unknown.

To address these gaps in understanding, and to guide
stakeholders in MSC-based treatment of neurodegenera-
tive diseases, we aimed to characterize the morpho-
logical, metabolic, and transcriptomic changes observed
when MSCs are incubated in undiluted human (hCSF)
or artificial CSF (aCSF) as compared to control media
(CM; containing GMP-grade hPL) and platelet lysate-
free (PLF) media. We hypothesized that the phenotype
of MSCs cultured in undiluted CSF formulations would
mimic that of MSCs cultured in conditions devoid of
platelet lysate, which are known to be stressful for
MSCs. To extend prior work and to most accurately re-
flect the clinical application, our studies emphasized the
use of clinical-grade MSCs cultured in GMP-grade re-
agents to recapitulate the phenotype of cells that are
currently used to treat patients [16—18].

To supplement our in vitro results, we undertook a
secondary set of experiments in which we analyzed CSF
collected from subjects in a phase I clinical trial at the
Mayo Clinic investigating the use of intrathecal MSCs to
treat amyotrophic lateral sclerosis (ALS) [17], a neurode-
generative disorder that leads to a progressive and fatal
paralysis. These secondary experiments were designed to
examine the protein levels of therapeutically-relevant
growth and immunomodulatory factors within the CSF
of patients treated with MSCs for additional evidence to
support the potential therapeutic mechanism of action
of MSCs within the intrathecal space.

Materials and methods

Mesenchymal stromal cells and cerebrospinal fluid

With approval from the Mayo Clinic Institutional Re-
view Board (IRB), MSCs were obtained from four con-
senting, healthy patients who underwent elective
removal of subcutaneous adipose tissue either by lipoas-
piration [male/41 years (M1), female/32 years (F1), male/
54 years (M2)] or by surgical biopsy [a female (F2) bar-
iatric patient who donated cells as medical waste so age
was not collected]. Samples were processed to isolate
and expand MSCs as previously described [7, 19, 20].
Cells were stored in liquid nitrogen until use. All patient
information was kept confidential and all identifiers re-
moved prior to any studies.
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hCSF that otherwise would be disposed as medical
waste was obtained from consenting patients treated with
lumbar puncture in the Hydrocephalus Clinic at the Mayo
Clinic with approval from the Mayo Clinic IRB.

Solutions

CM used for studies consisted of Advanced Minimal Es-
sential Medium (MEM) standard culture medium with
5% PLTmax (platelet lysate solution, Mill Creek Life Sci-
ences), 2U/mL heparin (hospital pharmacy), 2mM L-
glutamine (Invitrogen), and antibiotics (100 U/ml peni-
cillin, 100 g/ml streptomycin). The PLF media was made
using Advanced MEM with 2 mM L-glutamine and anti-
biotics. The aCSF formulation comprised the following:
distilled water with NaCl (124 mM), KCl (2.5 mM),
NaHCO; (26 mM), NaH,PO4-H,O (1.25 mM), MgSO,
(I mM), CaCl, (2 mM), D-glucose (60 mg/dL), and hu-
man albumin (30 mg/dL). The aCSF had a pH of 7.4 and
was warmed along with the other solutions before use.

Immunocytochemistry on MSCs cultured in human CSF
MSCs were seeded in CM at 3000 cells/cm® in 6-well
plates for 24 h on glass coverslips prior to introduction
of fresh CM, PLF media, or hCSF for 24—48 h. Upon re-
moval of the media, cells were stained with pre-warmed
100nM MitoTracker CMX-Ros solution (Invitrogen,
Carlsbad, CA) for 20 min at 37 °C. Cells were then fixed
for 10 min in a pre-warmed solution of 4% paraformal-
dehyde in Dulbecco’s phosphate buffer solution (D-PBS).
Following fixation, cells were washed 3x for 5 min in 1x
D-PBS, permeabilized for 10 min with phosphate buff-
ered solution with Triton X-100 (PBS-T—0.1% Triton
X-100 in 1x PBS), and washed again 3x for 5min in D-
PBS. Cells were blocked for 30 min with 1% bovine
serum albumin in 1x D-PBS. Cells were incubated for
60 min with Alexa Fluor 488 phalloidin (1:100, Invitro-
gen, Carlsbad, CA). After washing in 1x D-PBS and re-
moval of excess liquid, the cover slips were mounted
onto slides using ProLong Gold antifade reagent with
DAPI (Invitrogen, Carlsbad, CA) and left to cure over-
night. Slides were imaged with an AxioScope fluorescent
microscope at x 40 magnification.

Metabolic activity of MSCs in aCSF

MSCs were seeded in CM at 2500 cells/cm? in 12-well
plates and grown to about 80% confluency prior to
introduction of fresh CM, PLF media, or aCSF for 24—
96 h. At each time point, culture solutions were collected
and cell viability analyzed using an MTS assay following
the manufacturer’s instructions (Promega, Madison,
WI). Absorbance of each sample was read at 490 nm
using a plate reader and corrected using absorbance
values of empty control wells. Metabolic activity for PLF
media- and aCSF-treated cells was assessed in
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comparison to the absorbance of wells containing con-
trol CM-treated cells.

Transcriptomic analyses

MSCs were seeded with about 3000 cells/cm?® in 6-well
plates and monitored until approximately 80% confluent.
Cells were incubated in with fresh CM, PLF media, or
aCSF for 24 or 48 h before harvesting. Cells from each
line were plated in three replicate wells per condition
per time point to yield 18 wells total per line—6 treated
with CM, 6 treated with PLF media, 6 treated with
aCSF—with half the wells treated for 24h and half
treated for 48 h. Total RNA was isolated per the manu-
facturer’s instructions using the miRNeasy Mini Plus Kit
(Qiagen, Germantown, MD). RNA libraries were pre-
pared according to the manufacturer’s instructions for
the TruSeq RNA Sample Prep Kit v2 (Illumina, San
Diego, CA) that uses oligo dT magnetic beads to enrich
poly-A mRNA. Polymerase chain reaction (PCR) was
used to enrich the resulting cDNA fragments using Illu-
mina TruSeq PCR primers. The concentration and size
distribution of the completed library was determined
using a Fragment Analyzer (AATI, Ankeny, IA) and
Qubit fluorometry (Invitrogen, Carlsbad, CA). The
c¢DNA library was sequenced at 30—50 million fragment
reads per sample following Illumina’s standard protocol
using the Illumina cBot and HiSeq 3000/4000 PE Cluster
Kit. The flow cells were sequenced as 100 X 2 paired-
end reads on an Illumina HiSeq 4000 using the HiSeq
3000/4000 sequencing kit and HD 3.4.0.38 collection
software. Base-calling was performed using Illumina’s
RTA version 2.7.7. In order to validate the transcrip-
tomic PCR data, an independent set of experiments were
performed using conventional real-time qPCR and were
confirmatory (Supplemental Figure 3).

Bioinformatics analysis

Gene expression counts were obtained using the MAP-
RSeq v.1.2.1.5 workflow [21], the Mayo Bioinformatics
Core pipeline. MAP-RSeq consists of alignment with
TopHat 2.0.6 [22] against the human hgl9 genome build
and gene counts with the HTSeq software (http://www-
huber.embl.de/users/anders/HT Seq/doc/overview.html).
Gene annotation files were obtained from Illumina
(https://support.illumina.com/sequencing/sequencing_
software/igenome.html). Normalized gene counts were
obtained from MAP-RSeq, where expression levels for
each gene were normalized to one million reads and cor-
rected for gene length (fragments per kilobase pair per
million mapped reads [FPKM]). For heatmap and princi-
pal component analysis (PCA) visualizations, significant
genes were selected based on an average FPKM > 1, a
log-fold-change >or < absolute value of 1, and a p value
<0.05, when comparing aCSF-treated to PLF media-
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treated MSCs. Gene expression values (FPKM) were log
transformed and z-scaled by gene prior to plotting. Visu-
alizations were constructed in R using the Complex-
Heatmap [23] and factoextra (https://github.com/
kassambara/factoextra) packages. A heatmap of genes
expressed at FPKM > 1 on average and significantly up-
or down-regulated (fold change > 2 or < 0.5, p < 0.05) be-
tween aCSF-treated and PLF media-treated MSCs was
generated using the Broad Institute’s Morpheus tool
(https://software.broadinstitute.org/morpheus). ~ Func-
tional annotation analysis was performed using DAVID
Bioinformatics Resources 6.8 [24, 25]. Pathway enrich-
ment analysis of MSCs cultured in aCSF and CM was
completed using GSEA software (version 4.1.0) [26, 27].
Human_MSigdb_January_13_2021_symbol.gmt and Hu-
man_GOALL_no_GO_iea_January_13_2021_symbol.gmt
from [http://baderlab.org/Genesets] enabled identifica-
tion of canonical pathways (hallmark gene sets, BIO-
CARTA, PID Pathways) and GO gene sets that were
enriched in aCSF-treated MSCs [28]. Gene sets with
FDR < 0.25 (canonical pathways) or FDR < 0.1 (GO) were
considered significant.

VEGF ELISA

To measure the concentration of VEGF protein se-
creted in vitro from patient adMSCs, cells were again
seeded at a density of 3000 cells/cm® in triplicate,
and the media was changed upon reaching ~ 80%
confluence to fresh CM, PLF, or aCSF media. The
supernatant media was collected and the underlying
monolayer was harvested at 24 or 48h time points.
Media and cell pellets were flash frozen on dry ice
and stored at -80C for DNA or RNA isolation. VEGF
within supernatant media was measured using the
Quantikine ELISA kit (R&D Systems, Minneapolis
MN USA) according to the manufacturer’s instruc-
tions using a two-parameter logistical standard curve.
VEGEF levels were normalized to total DNA following
extraction using DNEasy Blood & Tissue Kit (Qiagen,
Valencia, CA, USA) and nanodrop quantification.

Measurement of analyte concentrations in human CSF

ALS patients enrolled in a previously completed clinical
trial (ClinicalTrials.gov #NCT01609283) received a dose
of autologous adipose-derived MSCs, and CSF was ob-
tained before treatment and 1 week after treatment for
analysis [17]. Analytes in CSF were measured in dupli-
cate using commercially available immunoassays from
Meso Scale Discovery according to their protocols. Sam-
ples were diluted with assay-specific diluents using rec-
ommended dilutions for CSF. If no recommendation
was provided, the appropriate dilution was determined
through linearity of dilution tests. MMP-1 and GDEF-15
concentrations were measured with R-PLEX assays using
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CSF diluted 1 in 10 or 1 in 50, respectively. MCP-1 con-
centrations were measured with singleplex V-PLEX as-
says using CSF diluted 1 in 16. VEGF, PIGF, and bFGF
concentrations were measured using a multiplex V-
PLEX assay using CSF diluted 1 in 2. Each assay plate
contained interplate control samples; interplate coeffi-
cient of variations for each assay type ranged from 1.79
to 8.84%. Response values corresponding to the intensity
of emitted light upon electrochemical stimulation of the
assay plate using the Meso Scale Discovery QUICKPLEX
SQ120 were acquired, and analyte concentrations were
interpolated using MSD Discovery Workbench software.

Statistical analysis

GraphPad Prism software was used for statistical ana-
lysis. Where appropriate, non-parametric data were ana-
lyzed by the Kruskal-Wallis test with Dunn’s test to
correct for multiple comparisons.

Results

MSCs cultured in 100% human CSF for 24 or 48 h remain
morphologically unchanged

To analyze the morphological changes of adipose-
derived MSCs in CSF, all four lines of MSCs were cul-
tured in CM, PLF media, or hCSF for 24 or 48 h. At each
time point, cells were stained with DAPI, phalloidin, and
MitoTracker Red CMX Ros to image the nucleus, cyto-
skeleton, and mitochondria distribution. All of the sur-
viving cells in each condition showed a fibroid-like
morphology, with cells spread out in flat monolayers
(Fig. 1a). Cells displayed branched cytoplasms and intact
cytoskeletons. Mitochondrial distribution was normal,
with most mitochondria being concentrated around the
nuclei and filopodia. Nuclei appeared elliptical and
speckled as expected. Overall, we detected no alterations
in cellular morphology between cells cultured in each of
the three conditions.

MSCs exhibit decreased metabolic activity in PLF media
and aCSF

We cultured the four lines of MSCs in CM, PLF media,
or aCSF for 24-96 h to assess cellular proliferation and
compare metabolic activity over time. As expected, cells
in CM showed a normal increase in cellular activity, de-
noting a normal proliferation rate (Fig. 1b). In contrast,
cells in nutrient-deprived PLF and aCSF showed a pro-
gressive decrease in metabolic activity, most likely due
to decreased proliferation and viability (Fig. 1c, d). Rates
of metabolic activity loss varied between cell lines, and it
is unclear whether the cells remaining after 96 h in aCSF
had undergone replication during that time.
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Fig. 1 Morphology and viability of MSCs cultured in CM, PLF media, and human or artificial CSF. a Morphology of MSCs imaged after 24 h in CM,
PLF media, or hCSF. Cells were stained with phalloidin AF488 (green), DAPI (blue), and MitoTracker CMX-Ros (red). Images were taken at 40x
magnification. b Metabolic activity of MSCs via MTS assay after 24-96 h in CM. ¢ Metabolic activity of MSCs via MTS assay after 24-96 h in PLF
media. d Metabolic activity of MSCs via MTS assay after 24-96 h in aCSF (n = 3, mean + standard deviation)
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Consistent transcriptomic patterns are dependent on
culture condition

To determine how the transcriptomes of MSCs change
in response to CSF, we examined gene expression pro-
files in the four lines of MSCs cultured in CM, PLF
media, and aCSF for 24 or 48 h using high-throughput
RNASeq analysis. Unbiased transcriptomic analysis re-
vealed homogeneity of both biological and technical rep-
licates of MSCs cultured in CM, PLF media, or aCSF.
Hierarchical clustering produced well-defined clusters of
replicates, with the first order of separation being dic-
tated by the treatment group and then by time in each
condition (Fig. 2a). Principal components analysis identi-
fied culture condition and the time in each condition as
accounting for over 50% of the variability between MSCs
cultured in each condition (Fig. 2b). The number of an-
notated genes mapped from RNA reads totaled 23,398
for all conditions. Of these genes, in all conditions al-
most half of the genes were expressed at levels greater

than 1 FPKM, about 10% were not appreciably
expressed, and almost 50% were expressed at levels less
than 1 FPKM (Fig. 2c).

MSCs cultured in aCSF maintain gene expression of MSC
cell surface markers

MSCs cultured in aCSF express mRNAs for cell surface
markers that have been well-defined for MSCs [20, 29—
31]. Standard cell surface markers for MSCs include
CD44, CD73/NT5E, CD90/THY1, CD105/ENG, and
MHC class 1 molecules. MSCs cultured in aCSF exhibit
robust expression of the genes encoding these markers,
albeit at varying levels as compared to cells cultured in
CM or PLF media (Fig. 3a). Conversely, MSCs cultured
in aCSF demonstrate an absence of expression of genes
for hematopoietic, stem cell, or endothelial markers
(CD11B, CDI14, CD31, CD45, CD253A, HLA-DRA) ex-
cept for CD34, which was expressed at very low levels
(data not shown).
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MSCs cultured in aCSF decrease expression of genes
involved in proliferation and increase expression of genes
involved in promoting the non-canonical Wnt signaling
pathway

As recommended by the IFATS/ISCT panel [29], we
examined expression of genes encoding factors in-
volved in viability and fibroblastoid colony-forming
units (CFU-Fs). As compared to cells in CM, cells
cultured in PLF media and aCSF do not exhibit ex-
pression of MKI67, which encodes the proliferation
marker Ki67, but retain expression of PCNA (Fig. 3b).
We also found variable expression of extracellular
matrix-associated genes that are reported to be up-
regulated in post-proliferative cells (COL21A1, MGP,
OGN, PODN), suggesting that cells incubated in
aCSF are in a unique post-proliferative state [20]
(Fig. 3b).

MSC:s cultured in all three conditions expressed mRNAs
for genes encoding reprogramming factors (MYC, KLF4,
and KDMS5B) to varying degrees (Fig. 3b). None of the
cells cultured expressed genes for markers of pluripotency
(e.g., NANOG, POUSF1, SOX2, LIN28A/B), corroborating
previous observations [20, 32]. Likewise, assessment of ex-
pression of lineage-specific genes revealed low-level ex-
pression of few genes for adipogenesis (PPARG),
chondrogenesis (SOX9), and osteogenesis (ALPL, RUNX?2),
with these genes hypothesized to be playing an alternative
role in driving matrix mineralization and cell survival in a
post-proliferative state (Supp. Figure 1).

Human primary cell quiescence, in addition to being sig-
naled by cell cycle exit, is also promoted by suppression of
the canonical Wnt signaling pathway [33]. Notably, cells in-
cubated in aCSF showed marked increases in genes associ-
ated with suppressing the canonical Wnt pathway (LRP4,
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RAPGEFI1, AXIN1, DKKI1, DKK3, TLEI-4) and a decrease
in WNT2 expression (Supp. Fig. 2). Interestingly, aCSF-
treated cells retained expression of genes encoding Wnt5A,
Wnt5B, Wnt7B, and Wnt9A, which activate the non-
canonical Wnt pathway to promote osteoblast differenti-
ation and influence synaptic plasticity, which could impact
the regenerative effects of MSCs in the CNS [34, 35].

Expression of genes for secreted factors suggests the
response by MSCs to aCSF is immunomodulatory and
enriched for growth factors

It is important to assess changes in the expression of
genes encoding secreted factors by MSCs in response to

aCSF. Secreted factors potentially could serve as bio-
markers of MSC activity in vivo, and the expression of
genes for secreted growth factors specifically have mech-
anistic relevance to clinical trials that likely depend on
the trophic functions of secreted factors.

In examining the expression of immune-related cytokines,
we found elevated expression of several factors in aCSF-
treated MSCs as compared to PLF media-treated MSCs, in-
cluding 16 and CCL2 (encodes MCP-1) to levels compar-
able to CM-treated cells. MSCs lacked expression of pro-
inflammatory factors. No expression was seen of TNFu,
IFNy, or IL33 in any MSC culture condition, and IL32 was
reduced in aCSF (Fig. 4a; non-expressed factors not shown).
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indicates p < 0.001; **** indicates p < 0.0001)

Fig. 4 Expression levels of detectable transcripts of genes encoding key immunomodulatory, angiogenic, and neurotrophic factors by MSCs
cultured in CM, PLF, and aCSF. a Detectable expression levels (FPKM) of genes encoding immunosuppressive and inflammatory factors (n=12). b
Expression levels (FPKM) of genes encoding select angioneurins and growth factors that are highly expressed by aCSF-treated MSCs (n=12). ¢ In
vitro levels of VEGF protein in MSC cultures in CM, PLF, and aCSF. Data presented with mean + standard deviation. The Kruskal-Wallis test with
Dunn’s test to correct for multiple comparisons were performed to determine statistical significance (* indicates p < 0.05; ** indicates p < 0.01; ***

When we looked at the 281 and 392 genes that are sig-
nificantly upregulated by aCSF-treated MSCs compared
with PLF media-treated and CM-treated MSCs, respect-
ively, we identified genes for several growth factors, in-
cluding BDNF, FGF1, FGF2, GDNF, NGF, PGF, VEGFA,
and VEGFEB (Fig. 4b). Many of these factors promote
angiogenesis, which was identified by functional annota-
tion analysis as a top category of genes up-regulated in
aCSF. Several of these factors are identified as angio-
neurins that have an effect on both angiogenesis and
neuroprotection, such as VEGFA, NGF, and FGF [36].

ELISA assays were performed for VEGF on a separate
set of MSC cultures exposed to CM, PLF, and aCSF.
MSCs exposed to PLF had reduction in VEGF secretion
when compared with CM. When exposed to aCSF, there
was an initial drop in VEGF secretion at 24 h in culture,
which recovered at 48 h (Fig. 4c).

CSF growth factor protein levels are increased in humans
after intrathecal MSC injection

To further assess MSC behavior in CSF, protein quanti-
tation was performed on CSF samples from subjects
with ALS before and after intrathecal MSC administra-
tion. Subjects received an intrathecal dose of 1 x 107, 5 x
107, or 10 x 107 autologous adipose-derived MSCs. The
fold change in protein level comparing the 1 week time
point to baseline levels was calculated for each patient
and used for statistical analysis. A dose-dependent re-
sponse trend was observed in VEGF protein levels for
each group, with a 1.2+ 0.14 fold change with 1 x 10
MSCs, 3.8 +2.9 fold change with 5x 10" MSCs, and a
significant 25.3 + 18.1 fold change with 10 x 10’ MSCs
(p = 0.006; Fig. 5). For PIGF and GDF-15, the 10 x 10’
MSC dose again correlates with a significant increase
in protein levels compared to the 1x 10’ and 5 x 10’
doses (p <0.03 for all; Fig. 5). Statistical analysis dem-
onstrated that the 5x 107 dose did not correlate with
significantly increased growth factor protein expres-
sion compared to the 1x10” dose for VEGF, PIGF,
or GDF-15. There was a trend for dose-dependent in-
creases in MCP-1 and MMP-1, but this did not reach
statistical significance. Altogether, high-dose intra-
thecal MSC injections resulted in increased levels of
growth factors in the CNS compartment measured 1
week after treatment.

Discussion

Our work expands the growing body of knowledge re-
garding the response characteristics of MSCs to novel
stimuli or challenging environmental conditions, which,
in turn, informs the use of MSCs in clinical applications
[37]. While previous human in vivo studies have pro-
vided early evidence of therapeutic benefits in ALS fol-
lowing intrathecal MSC treatment [17, 38, 39], the long-
term viability and mechanism of action of MSCs in the
CSF environment remain unclear [40—42]. To determine
how MSCs fare in the intrathecal space, we conducted a
comprehensive investigation of the effects of CSF on hu-
man adipose-derived MSCs (manufactured with GMP-
grade reagents) that examined changes in morphology,
metabolism, and gene expression. Despite no clear gross
morphological changes in MSCs cultured in CSF, there
was a significant reduction in metabolic activity and a dra-
matically altered gene expression profile. Transcriptomic
analyses revealed that MSCs increase expression of genes
for growth factors and immune-modulating factors fol-
lowing culture in CSF. VEGF secretion was likewise main-
tained in aCSF. Remarkably, the transcriptomic analysis
mirrored the protein changes in CSF from subjects with
ALS that were treated with intrathecal MSCs.

The unbiased transcriptomic analysis also revealed
that MSCs demonstrate a distinct, robust profile of gene
expression when cultured in aCSF, PLF media, or CM.
MSCs in aCSF and PLF retain the expression of genes
encoding cell surface markers and reprogramming fac-
tors characteristic of MSCs in CM [20, 43], but lack ex-
pression of markers of active cellular proliferation.
However, mRNA levels for markers of post-proliferative
cells were differentially expressed to varying degrees in
aCSF-treated MSCs as compared to PLF media-treated
and CM-treated cells. The differential expression of Wnt
ligands and pathway modulators suggests that aCSF-
treated cells are quiescent, yet retain the ability to differ-
entiate and promote synaptic plasticity, in part due to
the expression of factors along the non-canonical Wnt
pathway and the conserved expression of reprogram-
ming factors [34, 35]. This expression pattern likely re-
flects that aCSF-treated MSCs—which decrease
proliferation while sustaining trophic factor expression—
are in a post-proliferative state that is distinct from that
of hPL-deprived MSCs cultured in PLF media or conflu-
ent cells in CM.
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When we examined genes that were significantly up-
regulated in aCSF compared to PLF media and CM, nu-
merous genes for immune-modulating factors that are
expressed at more than twice the levels seen in PLF
media were identified. The expression of anti-
inflammatory factors and lack of expression of pro-
inflammatory genes by MSCs in aCSF suggests that
these cells would suppress, rather than promote, inflam-
mation in the CNS, consistent with previous reports sug-
gesting this anti-inflammatory effect is therapeutic in
disease models [41, 44]. Immune system abnormalities
[45—-47] and neuroinflammation [48, 49] are increasingly
recognized as contributors to disease pathology in ALS
and are being explored as therapeutic targets in clinical
trials.

Strikingly, aCSF exposure augmented the expression of
angiogenic and growth factor genes over and above ex-
pression levels seen in PLF media. Previous studies have
reported that human MSCs, even under serum
deprivation conditions, are highly angiogenic [50-53],
and express growth factors that promote neuroprotec-
tion, remyelination, and therapeutic effects in animal
models of neurological diseases [54-57]. In support of
these prior studies, we found that cells incubated in
aCSF express genes for angiogenic and growth factors
(e.g., GDNF, MCP-1I) at levels seen in CM-treated MSCs.
Increased MCP-1 and GDNF expression by MSCs deliv-
ered intrathecally or intramuscularly into a rat model of
ALS has been shown to delay motor function loss and to
increase survival [41, 56]. In addition, this study found
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that aCSF caused expression of several genes for growth
factors above the expression levels seen in CM (BDNF,
FGF2, NGF, PGF, VEGFA, VEGFB).

This study identified that MSCs upregulate VEGF expres-
sion in both in vitro and in vivo conditions, giving insight
to the probable mechanism of action of MSCs. Notably, up-
regulation of VEGF protein can regulate both angiogenesis
and neurodegeneration, including degeneration of moto-
neurons [36]. For instance, studies have found that mice
had reduced VEGEF levels prior to developing symptoms of
spinal and bulbar muscular atrophy and adult-onset moto-
neuron degeneration that resembled the degeneration seen
in ALS [58, 59]. Conversely, overexpression of VEGF im-
proves motor performance and prolongs survival in rodent
models of ALS, particularly when paired with enhanced
GDNF expression [60]. Likewise, expression of VEGF pro-
motes neurogenesis and neural stem cell differentiation
post-injury [61, 62]. By increasing neural perfusion around
sites of neurodegeneration and ischemia, VEGF could pro-
mote neuroprotection for surviving motoneurons in the
spinal cord and stimulate neuroregeneration. This hypoth-
esis is further supported by the early success of clinical tri-
als using MSCs with enhanced VEGF secretion to treat
neurodegenerative disorders [11, 38]. We measured a dose-
dependent increase in CSF VEGF in patients with ALS fol-
lowing intrathecal treatment of autologous adipose-derived
MSCs. The combination of increased gene expression in
in vitro conditions and increased protein levels in in vivo
conditions support the claim that MSCs within the intra-
thecal space produce significant quantities of thera-
peutic growth factors. Alternatively, MSCs could
induce CNS cells to upregulate growth factor produc-
tion. Regardless of the source of growth factors, their
increased quantities confirm that MSCs are exerting
therapeutic effects within the CNS compartment. Fur-
thermore, high doses of MSCs (10 x 10”) were re-
quired to elicit significant increases in protein
expression of beneficial growth factors. These data
are critical for researchers using MSC-based treat-
ments as there are very few studies comparing MSC
doses on therapeutic effect [16, 17].

There are now several completed human clinical trials
that have utilized intrathecal autologous MSC therapy
for ALS [17, 38, 39, 63]. While there are signs of efficacy
of MSC treatment in ALS, it is also becoming clear that
some patients are more or less likely to respond to this
therapy. Understanding this variability in response to
MSC therapy will be critical for understanding ALS
pathogenesis, MSC therapies, and how best to translate
this therapy to clinical practice. Berry et al. reported that
higher CSF VEGF was correlated with lower CSF MCP-
1 in patients treated with modified bone-marrow-
derived MSCs [38]. They also reported that lower post-
MSC treatment MCP-1 correlated with better outcomes,
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which was also seen in Oh et al. [39]. Our phase I study
did not have clinical outcomes to correlate with the CSF
findings; however, we are now pursuing these hypoth-
eses as part of an active phase II clinical trial of MSCs in
ALS (ClinicalTrials #NCT03268603).

To our knowledge, this is the first reported large-scale
transcriptomic analysis of multiple lines of human
adipose-derived MSCs exposed to undiluted aCSF or
hCSF. Unbiased examination of the differential expres-
sion of over 23,000 genes provided the most detailed un-
derstanding to date of how the transcriptomic profile of
clinical-grade MSCs varies between normal, hPL-
deprived, and intrathecal-like culture conditions. By un-
derstanding how the response of MSCs to CSF resem-
bles—and is distinct from—the response to CM or PLF
media, the field gains an appreciation for the scope of
the phenotypic responses of MSCs. We further have
shown that intrathecal injection of adipose-derived au-
tologous MSCs in subjects with ALS leads to a dose-
dependent increase in CSF growth factors. From a thera-
peutic standpoint, if MSCs respond to individual culture
conditions with unique gene expression profiles, then
proper preparation of MSCs could impact the secretion
of therapeutic factors and biomarkers pertinent to the
response of patients to MSC treatment.

Conclusion
Our results demonstrate that MSCs can remain viable and
morphologically normal in CSF. Under intrathecal condi-
tions, the cells will decrease metabolic activity and will alter
their gene expression to adapt to the novel environment
while maintaining high-level expression of supportive factors
that can be measured in the CSF of subjects treated with
intrathecal MSCs for ALS. Overall, our results identify po-
tential modes of therapeutic efficacy as well as candidate
biomarkers of MSC potency to guide clinical translation of
MSC-based therapies for neurodegenerative diseases.

This work validates the continued use MSCs in clinical
trials, and also supports using the 10x 10’ dose to
maximize therapeutic benefit.
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