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Adipose-derived mesenchymal stem cells
attenuate dialysis-induced peritoneal
fibrosis by modulating macrophage
polarization via interleukin-6
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Abstract

Background: Life-long peritoneal dialysis (PD) as a renal replacement therapy is limited by peritoneal fibrosis. Previous
studies showed immunomodulatory and antifibrotic effects of adipose-derived mesenchymal stem cells (ADSCs) on
peritoneal fibrosis. However, the role of the peritoneal macrophage in this process remains uninvestigated.

Methods: We examined the therapeutic effects of ADSC and bone marrow-derived mesenchymal stem cells (BM-MSC)
in the rat model of dialysis-induced peritoneal fibrosis using methylglyoxal. In addition, treatment of macrophages with
the conditioned medium of ADSC and BM-MSC was performed individually to identify the beneficial component of
the stem cell secretome.

Results: In the in vivo experiments, we found dialysis-induced rat peritoneal fibrosis was attenuated by both ADSC and
BM-MSC. Interestingly, ADSC possessed a more prominent therapeutic effect than BM-MSC in ameliorating peritoneal
membrane thickening while also upregulating epithelial cell markers in rat peritoneal tissues. The therapeutic effects of
ADSC were positively associated with M2 macrophage polarization. In the in vitro experiments, we confirmed that
interleukin-6 (IL-6) secreted by MSCs upon transforming growth factor-β1 stimulation promotes M2 macrophage
polarization.

Conclusions: In dialysis-induced peritoneal fibrosis, MSCs are situated in an inflammatory environment of TGF-β1 and
secrete IL-6 to polarize macrophages into the M2 phenotype. Our findings reveal a previously unidentified role of tissue
macrophage in this antifibrotic process. ADSC has the advantage of abundance and accessibility, making the
application values extremely promising.
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Introduction
Life-long peritoneal dialysis (PD) as a renal replacement ther-
apy is limited by peritoneal fibrosis. Several studies have
shown that hypertonic glucose solution is not only toxic to
mesothelial cells [1, 2] but also promotes immune cell apop-
tosis [3]. The components of a healthy peritoneal tissue in-
clude a single layer of mesothelial cells and a submesothelial
compact collagenous zone composing of fibroblasts, macro-
phages, vessels, and extracellular matrix [4, 5]. Peritoneal fi-
brosis (PF) is characterized by fibrotic changes in the
peritoneal membrane, the dedifferentiation of peritoneal
mesothelial cells, accumulation of submesothelial extracellu-
lar matrix, and submesothelial vasculopathy [6, 7]. TGF-β1,
as a critical fibrogenic factor, is induced in peritoneal meso-
thelial cells by exposing them to PD dialysate containing high
concentrations of glucose [8].
Emerging evidence demonstrates that inflammatory

macrophages (M1) and the alternatively activated mac-
rophages (M2) participate in the pathogenesis of various
fibrotic diseases [9–11]. The M1 macrophage population
participates in fibrogenesis, suggesting a requirement for
inflammation in fibrosis development. In contrast, M2
macrophage secretes IL-10 and arginase-1 and exerts its
anti-inflammatory properties [12, 13]. Therefore, tissue
macrophage polarization is the key to regulate tissue fi-
brosis [14, 15].
However, therapeutic strategies targeting these patho-

genic processes have not been fully developed [4]. Mes-
enchymal stem cell (MSC) therapies are plausible as
MSCs can be isolated and propagated with ease in vitro
while also with strong immunomodulatory properties
[16–18]. Accumulating evidence has indicated the thera-
peutic potentials of MSCs in rebuilding damaged or dis-
eased tissues as well as in the treatment of
neurodegenerative disorders [19]. MSCs obtained from
the bone marrow (BM-MSC) and adipose tissue (ADSC)
are different in terms of their differentiation potentials,
gene expression, proteomic profiles, and immunological
properties [20–22].
MSCs have been shown to possess antifibrotic effects,

but very few studies targeted peritoneal fibrosis [23–27].
On the other hand, ADSC facilitates chlorhexidine
gluconate-induced peritoneal fibrosis repair by suppress-
ing the dedifferentiation process of the peritoneal meso-
thelial cells [23]. A recent paper demonstrated that
ADSC reduces leukocyte infiltration and ameliorates
peritoneal fibrosis [27]. However, the role of the periton-
eal macrophage in this process remains unknown.
Adipose tissue is easier to access than the bone mar-

row, thus a promising source for autologous cell-based
therapy [28]. We aim to elucidate the therapeutic mech-
anisms of these two kinds of stem cells in dialysis-
induced peritoneal fibrosis, with a focus on peritoneal
macrophages.

Methods
Cell culture
Commercially available human ADSCs were purchased
from Steminent Biotherapeutics Inc., Taipei, Taiwan [29,
30]. Human BM-MSCs were purchased from Cell Appli-
cations, Inc., San Diego, CA, USA [31]. Osteogenesis,
chondrogenesis, and adipogenesis were confirmed in both
cells by alkaline phosphatase and von Kossa stainings, type
II collagen staining, and Oil Red staining. ADSC and BM-
MSC were maintained in Iscovis modified Dulbecco’s
medium (IMDM, Sigma-Aldrich, MO, USA) with 10%
fetal bovine serum (FBS). The NR8383 rat macrophage
cell line was purchased from the Bioresource Collection
and Research Center, Hsinchu, Taiwan. The NR8383 cul-
ture medium consisted of Ham’s F12K medium with 15%
FBS. These two media were also supplemented with 100
units/mL of penicillin, 1000 units/mL of streptomycin,
and 2mM of L-glutamine (Sigma-Aldrich, St. Louis, MO,
USA). All cells were incubated at 37 °C, 5% CO2, and 95%
relative humidity.

The rat model of dialysis-induced peritoneal fibrosis
All animal experiments were performed following the
guidelines of the Institutional Committee for Animal
Experimentation of Taipei Veterans General Hospital.
Male Sprague-Dawley (SD) rats were purchased from
the National Laboratory Animal Center, Taipei, Taiwan.
As shown in Fig. 1, we established the dialysis-induced
peritoneal fibrosis by intraperitoneal injection of methyl-
glyoxal (MGO, 6 mM) in 50mL/kg of PDF for 10 days in
8-week-old male SD rats as previously reported [8]. PD
fluid was prepared according to the literature [32, 33].
Before MGO injection, we treated the experimental rats
with intraperitoneal human MSCs, including ADSC and
BM-MSC. For the “MGO only” group, sterile PBS was
injected into the peritoneal cavity instead. After a 10-day
injection of MGO, we sacrificed the rats for peritoneal
tissue and blood sample collection. The peritoneal tis-
sues were both preserved in formalin and frozen for
pathological examinations.

Histopathological examination
At the end of the experiments, the rats were euthanized.
Peritoneal tissues were taken from each rat. Peritoneal
tissue was fixed in 4% formaldehyde for hematoxylin
and eosin (H&E) staining according to standard proto-
col; samples were embedded in paraffin and cut into 4-
μm-thick sections. One section from each tissue sample
was stained with H&E. The H&E-stained sections were
digitalized using a histological evaluation and were per-
formed with a Panoramic MIDI digital slide scanner
(3DHISTECH, Budapest, Hungary) at its highest reso-
lution. Images were captured with Pannoramic viewer
software (3DHISTECH, Budapest, Hungary).
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Masson’s trichrome staining and thickness quantification
For peritoneal thickness quantification, parietal periton-
eum sized 1.0 × 0.5 cm were sampled from four separate
peritoneal sites of each rat, including right ventral, left
ventral, right lateral, and left lateral abdomen. For each
sampling site, the peritoneal thickness was averaged
from 15 evenly measured points. Tissue sections were
stained with Masson’s trichrome to quantify peritoneal
fibrosis. The stained sections were digitalized using a
Panoramic MIDI digital slide scanner at its highest reso-
lution. Images were captured, and peritoneal thickness
was measured with Pannoramic viewer software.

Immunohistochemical staining
We performed immunohistochemical (IHC) staining on
4-μm formalin-fixed and paraffin-embedded rat periton-
eal tissue sections following routine procedures. Briefly,
after incubating with primary antibody against rat cyto-
keratin, N-cadherin, α-smooth muscle actin (α-SMA),
inducible nitric oxide synthase (iNOS), Arginine-1
(ARG-1), or human nucleoli (Table S1), all sections were
labeled using a polymer-HRP staining kit (EnVision,
Dako, Glostrup, Denmark). Subsequently, immunoreac-
tivity was detected with diaminobenzidine chromogen,

and cell nuclei were counterstained with hematoxylin.
The stained sections were digitalized using the Pano-
ramic MIDI digital slide scanner at its highest resolution.
Total images were captured with Pannoramic viewer
software, and five microscopic focal fields (at × 200 mag-
nification) were captured from each slide, and positive
staining cells of the peritoneal abdomen layer (fibrosis
occurred) were evaluated with ImageJ software with IHC
toolbox plug-in (National Institutes of Health, Bethesda,
MD, USA) [34].

Immunofluorescent (IF) staining
Rat peritoneal tissue sections were prepared as aforemen-
tioned. In brief, after treated with primary antibodies
(Table S1) for 2 h at room temperature, sections were
washed and allowed to react with secondary antibody goat
anti-mouse IgG conjugated with Alexa 546 or donkey
anti-goat conjugated with Alexa 488 (Invitrogen, Carlsbad,
CA) or goat anti-rabbit IgG conjugated with Cy3 (Sigma-
Aldrich) for 45min at room temperature. The slides were
visualized with an anti-fading reagent containing DAPI
(4′,6-diamidino-2-phenylindole) (Nakarai Tesque, Kyoto,
Japan) for nuclear staining. They were digitalized using

Fig. 1 Experimental design of the peritoneal fibrosis animal model. Abbreviations: PBS phosphate buffer saline, MSC mesenchymal stem cells, I.P.
inj. intraperitoneal injection, MGO methylglyoxal, SD Sprague Dawley
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the Panoramic MIDI digital slide scanner at its highest
resolution.

Reagents
Recombinant human transforming growth factor-beta 1
(rhTGF-β1) (Cat No.: 240-B-002), recombinant human
interleukin-6 (rhIL-6) (Cat No.: 206-IL-010), and recom-
binant human tumor necrosis factor-alpha (rhTNF-α)
(Cat No.: 210-TA) were purchased from R&D Systems
(R&D Systems, MN, USA). Rat monoclonal antibody (Cat
No.: 501125) for neutralization of human IL-6 bioactivity
was purchased from BioLegend (BioLegend, CA, USA).

Collection of ADSC-CM and BM-MSC-CM
For the collection of conditioned media (CM), ADSC or
BM-MSC were seeded in a 100 mm dish (Corning Life
Sciences, MA, USA) at a density of 1 × 106 cells in a cul-
ture medium. After 24 h of recombinant human TGF-β1
treatment, the supernatant was removed and replaced
with a fresh culture medium. After another 24-h incuba-
tion, the CM was collected and was centrifuged for 10
min at 1500 g. The pellet containing cellular debris was
discarded, and the supernatant (CM) sterile filtered
(0.2 μm) before being stored at − 80 °C. For treating
NR8383 cells with CM, the CM or control medium
(IMDM) was mixed with the NR8383 culture medium
(F12K), and the ratio of CM: F12K was 1: 2.

Enzyme-linked immunosorbent assay (ELISA) assay of IL-6
concentration
The cytokine concentration within the CM was analyzed
using a human IL-6 DuoSet ELISA kit (DY206, R&D
Systems, MN, USA) with DuoSet Ancillary Reagent kit2
(DY008, R&D Systems, MN, USA) according to manu-
facturer’s instructions, and IL-6 concentration was nor-
malized with the cell total protein. Cells were lysed with
RIPA buffer, and the total protein was quantified with
the BCA method.

Quantitative real-time polymerase chain reaction
Cells were collected, and total RNA was isolated using
TRIzol Reagent (Invitrogen, CA, USA). Up to 1.0 μg of
total RNA was reversely transcribed to complementary
DNA by MMLV high-performance reverse transcriptase
according to the manufacturer’s instructions (Epicenter,
UK). Quantitative real-time PCR (qPCR) was performed
with Fast SYBR Green master mix (2×, Thermo Fisher
Scientific, MA, USA) by QuantStudio 3 real-time PCR
system (Applied Biosystems, MA, USA) to determine the
relative gene expression profiles. The sequences of
primers (Tri-I Biotech, Taiwan) for qPCR are listed in
Table S2.

Statistical analysis
All data for statistical analysis were presented as the
mean ± standard error of the mean (SEM). One-way
ANOVA and Fisher’s LSD multiple comparisons test
were used to compare data from every two groups by
the GraphPad Prism software (GraphPad Software, CA,
USA). A p value of less than 0.05 was considered statisti-
cally significant.

Results
MGO-induced rat peritoneal fibrosis was attenuated by
both ADSC and BM-MSC
After 10 days of intraperitoneal injection of peritoneal dia-
lysis buffer with MGO, we found that the rat peritoneum
had a pallid appearance upon gross examination. The
dialysis-related peritoneal thickening was induced by in-
traperitoneal MGO injection (Fig. 2, MGO vs. CtrL, p <
0.05). MGO-induced peritoneal thickening was attenuated
by intraperitoneal injections of BM-MSC (Fig. 2, BM-
MSC vs. MGO, p < 0.05) and ADSC (Fig. 2, ADSC vs.
MGO, p < 0.05), respectively. Additionally, ADSC treat-
ment showed a greater rescuing effect in terms of periton-
eal thickness (Fig. 2, ADSC vs. CtrL, p > 0.05). The local
injection of human stem cells, which appeared in the peri-
toneal mesothelial layer, was confirmed by human nucleoli
IHC staining (Fig. 3).

ADSC possessed more therapeutic effects than BM-MSC
In our animal experiment, ADSC showed more effective-
ness than BM-MSC in attenuating dialysis-induced peri-
toneal thickening (Fig. 2, BM-MSC vs. ADSC, p < 0.05).
The antifibrotic effect of ADSC was also more promin-
ent than that of BM-MSC. The antifibrotic effect was
assessed by Masson trichrome staining, IHC staining of
mesothelial marker cytokeratin 18 (Fig. 3, BM-MSC vs.
ADSC, p < 0.05) and myofibroblast marker α-SMA (Fig.
3, BM-MSC vs. ADSC, p < 0.05). As for N-cadherin, a
mesenchymal cell marker, ADSC and BM-MSC showed
a similar therapeutic effect (Fig. 3). The IF stains were
consistent with the IHC results (Fig. S1).

The therapeutic effect of ADSC was associated with
peritoneal M2 macrophage polarization
The ratio of M2/M1 macrophage polarization (ARG-1/
iNOS represented M2/M1 phenotype) in the peritoneal
membrane was reduced in the MGO group, therefore
peritoneal tissue M1 macrophage polarization (Fig. 4,
MGO vs. CtrL, p < 0.05). ADSC treatment significantly re-
versed this process (Fig. 4, ADSC vs. MGO, p < 0.05;
ADSC vs. CtrL, p > 0.05). BM-MSC treatment also showed
a trend in reversing the peritoneal tissue ARG-1/iNOS ra-
tio, but the difference did not achieve statistical signifi-
cance (Fig. 5, BM-MSC vs. MGO, p > 0.05). The IF stains
were consistent with the IHC results (Fig. S2).
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Fig. 2 BM-MSC and ADSC reduced peritoneal fibrosis. Represented H&E stain and Masson’s trichrome stain photographs of four experimental
groups include PBS controls (CtrL), peritoneal fibrosis induced by intraperitoneal injection of MGO, intraperitoneal MGO with intraperitoneal BM-
MSC therapy (MGO+BM-MSC), and intraperitoneal MGO with intraperitoneal ADSC therapy (MGO+ADSC). Peritoneal thickness quantification was
assessed from Masson’s trichrome stain. Data were presented as mean ± SEM. n = 6 for each groups. ANOVA, p < 0.05, different characters
represent different levels of significance. Scale bar = 100 μm. Abbreviations: H&E hematoxylin and eosin, CtrL control, MGO methylglyoxal, BM-
MSC bone marrow-derived mesenchymal stem cell, ADSC adipose-derived mesenchymal stem cell

Fig. 3 The dedifferentiation process of peritoneal mesothelial cells was reduced by intraperitoneal stem cell treatment. Represented IHC staining
photographs were human nucleoli staining, to confirm the injection of human stem cells going to peritoneal abdomen layer; cytokeratin 18
staining, to indicate mesothelial cells of the peritoneal layer; N-cadherin staining, a mesenchymal cell marker of the peritoneal layer; α-SMA
staining, to assess myofibroblast of the peritoneal layer. Cell nuclei were counterstained with hematoxylin. Data were presented as mean ± SEM.
Control group n = 3 and the others n = 6. ANOVA, p < 0.05, different characters represent different levels of significance. Scale bar=50 μm.
Abbreviations: CtrL control, MGO methylglyoxal, BM-MSC bone marrow-derived mesenchymal stem cell, ADSC adipose-derived mesenchymal
stem cell, IHC immunohistochemistry, α-SMA alpha-smooth muscle actin
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ADSC-CM upregulated more Arg-1 gene expression of
macrophages than BM-MSC-CM did
According to our in vivo results, we hypothesized that
ADSC-conditioned medium (ADSC-CM) upregulates
Arg-1 and/or downregulates iNOS gene expression of
macrophages to a greater extent compared to BM-MSC-
CM. Therefore, we cultured NR8383 rat macrophage
cells in the mixed medium, consisting of 2/3 F12K
medium and 1/3 ADSC-CM or BM-MSC-CM, following
determined the macrophage gene expression. In our
in vitro experiments, we used lipopolysaccharides (LPS)
to induce M1 macrophage polarization (Fig. 6A, LPS vs.
no treatment, p < 0.05), which resembles MGO induced
Arg-1/iNOS ratio reduction in the rat peritoneal tissue
IHC images. The addition of IMDM, BM-MSC-CM, or
ADSC-CM after LPS induction all downregulated iNOS
expression (Fig. 6a, TGF-β1 vs. LPS, p < 0.05) and upreg-
ulated Arg-1 expression (Fig. 6b, IMDM vs. LPS, p <
0.05). BM-MSC-CM induced more Arg-1 expression
than IMDM (Fig. 6b, BM-MSC-CM v.s IMDM, p < 0.05),
and ADSC-CM induced even more Arg-1 expression
than BM-MSC-CM (Fig. 6b, ADSC vs. BM-MSC-CM,

p < 0.05). Intriguingly, BM-MSC-CM and ADSC-CM did
not further downregulate iNOS expression as compared
to IMDM (Fig. 6a).

ADSC secreted more IL-6 upon TGF-β1 treatment
It has been reported that IL-6 secreted by MSC is cap-
able of modulating macrophage polarization [35–39]. To
address the superior effect of ADSC on peritoneal tissue
macrophage polarization, a possible explanation is the
higher level of IL-6 secreted by ADSC compared to BM-
MSC under the same peritoneal inflammation environ-
ment. We treated both ADSC and BM-MSC with TGF-
β1, a pleiotropic cytokine released in the peritoneal cav-
ity and the main mediator of peritoneal fibrosis [40, 41],
then measured IL-6 in the medium. These two stem
cells were stimulated with 1.0 ng/mL TGF-β1 for 24 h,
then cultured for another 24 h under the refreshed
medium without TGF-β1. Lastly, and the supernatant
was collected as the stem cell-CM. As shown in Fig. 5,
both BM-MSC and ADSC secreted IL-6 upon TGF-β1
treatment (1.0 ng/mL vs. 0.0 ng/mL, p < 0.05). Further-
more, ADSC secreted more IL-6 than BM-MSC did after

Fig. 4 ADSC reversed macrophages M2/M1 ratio decreasing. a Represented IHC photographs were shown iNOS (M1 macrophage marker)
staining and Arg-1 (M2 macrophage marker) staining. Cell nuclei were counterstained with hematoxylin. b The iNOS and Arg-1 stained cells were
counted from IHC staining. Data were presented as mean ± SEM. Control group n = 3 and the others n = 6. ANOVA, p < 0.05, different characters
represent different levels of significance. Scale bar = 50 μm. Abbreviations: CtrL control, MGO methylglyoxal, BM-MSC bone marrow-derived
mesenchymal stem cell, ADSC adipose-derived mesenchymal stem cell, iNOS inducible nitric oxide synthase, Arg-1 arginase 1
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Fig. 5 ADSC secreted more IL-6 upon TGF-β1 treatment. TGF-β1 treated with ADSC and BM-MSC for 24 h, then replaced with fresh medium
without TGF-β1 and incubated for an additional 24 h. The conditioned medium (CM) of BM-MSC and ADSC was collected and analyzed with IL-6
ELISA. Data were presented as mean ± SEM. ANOVA, p < 0.05, different characters represent different levels of significance. Abbreviations: BM-
MSC bone marrow-derived mesenchymal stem cell, ADSC adipose-derived mesenchymal stem cell, IL-6 interleukin-6, rhTGF-β1 recombinant
human transforming growth factor-beta 1

Fig. 6 The conditioned medium (CM) of ADSC and BM-MSC induced Arg-1 gene expression of macrophage. NR8383 macrophages were treated with LPS
(10.0 ng/mL) for 24 h and were then cultured with IMDM, ADSC-CM, or BM-MSC-CM for another 2 days. The cells iNOS (a) and Arg-1 (b) mRNA were analyzed
by qPCR. Data were presented as mean ± SEM. ANOVA, p < 0.05, different characters represent different levels of significance. Abbreviations: BM-MSC bone
marrow-derived mesenchymal stem cell, ADSC adipose-derived mesenchymal stem cell, iNOS inducible nitric oxide synthase, Arg-1 arginase 1, TGF-β1
transforming growth factor-beta 1, LPS lipopolysaccharides
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TGF-β1 treatment (ADSC vs. BM-MSC, p < 0.05). Fig.
S3 shows that ADSC secreted more IL-6 than BM-MSC
did (ADSC vs. BM-MSC, p < 0.05) upon various concen-
trations of TGF-β1 exposure (0–10 ng/mL). Next, IL-6
was then examined at the tissue level, and we found that
rat peritoneal tissue IL-6 seems to be slightly higher in
stem cell treatment groups. On the other hand, IF stains
showed that tissue TGF-β1 was upregulated in the
MGO-treated group as compared to the control. Both
MSC-treated groups showed an attenuated TGF-β1 level
in the mesothelial cell layer (Fig. S4).

IL-6, as a key component of stem cell-conditioned media,
promoted M2 macrophage polarization
As mentioned above, ADSC-CM secreted more IL-6 and
was more competent to up-regulate macrophage Arg-1
expression as compared to BM-MSC-CM. We theorized
that IL-6 is a key component of the MSC secretome that
alters the behavior of macrophages. We neutralized IL-6
in stem cell-CM, and Arg-1 expression was downregu-
lated to the greatest extent in ADSC-CM (Fig. 7b, BM-
MSC-CM vs. IMDM, p < 0.05; ADSC-CM vs. IMDM,
p < 0.05). Besides, ADSC-CM plus rhIL-6 upregulated
Arg-1 expression to a greater extent than BM-MSC-CM
plus rhIL-6 did (Fig. S5B, ADSC-CM vs. BM-MSC-CM,
p < 0.05; BM-MSC-CM vs. CtrL, p < 0.05) in a dose-
dependent manner (Fig. S5D). We also examined the
control medium, IMDM. Neutralizing IL-6 in IMDM
showed no effect on these two macrophage marker

genes (Fig. S6, anti-IL-6 Ab vs. CtrL, p > 0.05). Next, we
added different doses of TNF-α in ADSC-CM, which
showed a trend to induce macrophage M1 polarization
but not M2 (Fig. S7).

Discussion
In this study, dialysis-related peritoneal thickening in-
duced by intraperitoneal MGO injection could be rescued
by intraperitoneal injection of either BM-MSC or ADSC.
The antifibrotic effect of ADSC was significantly more
prominent than that of BM-MSC. Previous studies have
shown an interaction between ADSC and its niche signal-
ing [42, 43]. Since peritoneal mesothelial cells are embed-
ded in the adipose tissue of the abdominal cavity, the
adipose-derived cells may be the more physiological and
rational choice to provide cell signaling for peritoneal
mesothelial cells and their surrounding immune cells.
TGF-β1, as a key fibrogenic factor, is induced in peri-

toneal mesothelial cells by exposing them to PD dialys-
ate containing high concentrations of glucose [44]. To
elucidate the molecular mechanism of our findings, we
conducted in vitro experiments to investigate the benefi-
cial component of the stem cell secretome. We found
that upon TGF-β1 treatment, ADSC secreted more IL-6
than BM-MSC did. Furthermore, we found that IL-6, as
a critical component of stem cell-CM, promotes M2
macrophage polarization. This observation is partly sup-
ported by previous studies focusing on tissue regener-
ation. In the mouse model of hindlimb ischemia and

Fig. 7 IL-6 neutralization downregulated macrophage iNOS and Arg-1 gene expression. NR8383 macrophages were treated with LPS plus ADSC-
CM or BM-MSC-CM with/without IL-6 neutralizing antibody (1.0 μg/mL) for 3 days. The cells were analyzed by qPCR for iNOS (a) and Arg-1 (b)
mRNA. Data were presented as mean ± SEM. ANOVA, p < 0.05, different characters represent different levels of significance. Abbreviations: BM-
MSC bone marrow-derived mesenchymal stem cell, ADSC adipose-derived mesenchymal stem cell, iNOS inducible nitric oxide synthase, Arg-1
arginase-1, TGF-β1 transforming growth factor-beta 1, LPS lipopolysaccharides, IL-6 Ab interleukin-6 neutralizing antibody
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myocardial infarction, human MSC activates M2 macro-
phages through IL-6 secretion [38, 39]. Such IL-6-
dependent M2 macrophage polarization is also seen in
MSC-treated skin wound and ischemia-reperfusion kid-
ney models [37, 45]. When placed in an inflammatory
microenvironment, MSC immunomodulatory effect is
enhanced partially through secretory factors [46–48].
Our dialysis-induced peritoneal inflammation model
exerted immunomodulatory effects via IL-6 secretion
after MSCs were injected into the peritoneal cavity. A
study had demonstrated that, in contrast to the systemic
effect of IL-6, local administration of IL-6 exerts an anti-
inflammatory effect, provide evidence of the binary effect
of IL-6 [49]. Besides, previous literature showed that,
upon IL-6 exposure, the expression and response of IL-4
receptors in macrophages were upregulated, leading to
STAT6 phosphorylation in a cell-autonomous manner
[35, 50]. Macrophages were then polarized into the M2
phenotype and exerted anti-inflammatory properties [35,
50]. This article, to the best of our knowledge, is the first
to reveal that under an inflammatory environment of
TGF-β1, MSCs secrete more IL-6 to modulate peritoneal
tissue M2 macrophage polarization.
We believe that the prominent M2 polarization effect

of ADSC is the result of more IL-6 secretion. This infer-
ence was proved by M1 and M2 macrophage marker
gene expression difference upon two stem cell-CM treat-
ment (Fig. 6) as well as IL-6 neutralization (Fig. 7). Figs. 5
and 6 together show that amount of IL-6 in ADSC-CM
is higher than that in BM-MSC-CM when accounting
for the superior M2 polarizing ability of ADSC-CM.
Meanwhile, IL-6 neutralizing experiments further con-
firmed that IL-6 was responsible for the ADSC-CM and
MSC-CM-induced M2 polarization (Fig. 7b). As for the
reduced iNOS expression upon IL-6 neutralization (Fig.
7a), it might reflect that macrophages require a basal IL-
6 level to maintain iNOS expression.
Although IL-6 addition induced both iNOS and Arg-1

expression in control medium IMDM (Figs. S2 and S3),
the iNOS expression did not increase in both stem cell-
CMs as compared to IMDM alone (Fig. S2A). The
addition of IL-6 in ADSC-CM even suppressed iNOS
when compared with BM-MSC-CM and IMDM. This
raised an interesting question about whether a higher
dose of IL-6 in the CMs suppressed iNOS expression.
Previous studies indicate that chronic low dose IL-6
tends to pro-inflammatory, whereas short-term/pulsatile
high dose IL-6 tends to be anti-inflammatory [49, 51],
which might explain our results.
The pathogenesis of dialysis-induced PF is a complex

process. A combination of dedifferentiation of peritoneal
mesothelial cells and chronic inflammation initiate and
advance PF formation [8, 52–54]. Inflammatory macro-
phage (M1) populations participate in fibrosis, which

suggests a requirement for inflammation in fibrosis de-
velopment [55–58]. Our data showed a reduced M2/M1
ratio in MGO-induced peritoneal inflammation, consist-
ent with more M1-like macrophage accumulation and/
or M2-like macrophage reduction. Moreover, our data
showed MSCs alleviated MGO-induced dedifferentiation
of mesothelial cells to maintain epithelial integrity.
ADSC and BM-MSC-induced functional improvement
of injured tissues is mostly related to a paracrine effect
rather than direct engraftment and differentiation [23,
59]. Besides, Shi et al. demonstrated that M1 macro-
phages induced dedifferentiation of peritoneal mesothe-
lial cells in the in vitro co-culture experiment [60]. The
present study further provides in vivo evidence showing
that M2 macrophage polarization is associated with the
inhibition of mesothelial cell dedifferentiation, support-
ing the antifibrotic effects of MSCs.
Macrophage phenotype switch has been observed in

the past. MSCs cultured under both normoxic and hyp-
oxic conditions release extracellular vesicles (EVs)
endowed with anti-inflammatory effects [61]. When co-
cultured with responding bone marrow-derived macro-
phages, both types of EVs were efficiently internalized by
responding to bone marrow-derived macrophages, elicit-
ing their switch from an M1 to an M2 phenotype [61].
Similarly, our data showed that ADSC reversed the
lower M2/M1 ratio induced by MGO, and the effect of
ADSC protected peritoneum from MGO damage.
Whether this is caused by cytokines other than IL-6
and/or EVs is unclear and may require more studies.
This effect was not seen on the BM-MSC we used.
In conclusion, our findings reveal a previously uniden-

tified role of tissue macrophage in this antifibrotic
process. ADSCs boost the M2-polarizing IL-6 secretion
when situated in an inflammatory environment of TGF-
β1, explaining the therapeutic mechanism of dialysis-
induced peritoneal fibrosis. For a catastrophic and med-
ical intractable illness such as encapsulating peritoneal
sclerosis, local administration of autologous ADSC may
be an alternative therapeutic path. Further studies are
warranted, but the application values of ADSC are ex-
tremely promising.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13287-021-02270-4.

Additional file 1: Figure S1. The dedifferentiation process of peritoneal
mesothelial cells was shown as represented immunofluorescence
staining: human nucleoli, cytokeratin 18, N-cadherin staining, and α-SMA
staining (red color). Cell nuclei were counterstained with DAPI (blue
color). Scale bar = 50 μm. Abbreviations: CtrL, control; MGO, methyl-
glyoxal; BM-MSC, bone marrow-derived mesenchymal stem cell; ADSC,
adipose-derived mesenchymal stem cell; α-SMA, alpha-smooth muscle
actin; DAPI, 4',6-diamidino-2-phenylindole. Figure S2. Macrophage
polarization was shown as represented immunofluorescence staining:
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iNOS (M1 macrophage marker), Arg-1and CD163 (M2 macrophage
markers) staining (red color). Cell nuclei were counterstained with DAPI
(blue color). Scale bar = 50 μm. Abbreviations: CtrL, control; MGO, methyl-
glyoxal; BM-MSC, bone marrow-derived mesenchymal stem cell; ADSC,
adipose-derived mesenchymal stem cell; iNOS, inducible nitric oxide syn-
thase; Arg-1, arginase 1; DAPI, 4',6-diamidino-2-phenylindole. Figure S3.
ADSC secreted more IL-6 by TGF-β1 treatment. Different concentration of
TGF-β1 was treated with BM-MSC and ADSC for 24 h, and the super-
natant medium was analyzed with IL-6 ELISA. Data were presented as
mean ± SEM. ANOVA, p < 0.05, different characters represent different
levels of significance. Abbreviations: BM-MSC, bone marrow-derived mes-
enchymal stem cell; ADSC, adipose-derived mesenchymal stem cell; IL-6,
interleukin-6; rhTGF-β1, recombinant human transforming growth factor-
beta 1. Figure S4. The cytokines of the peritoneal mesothelial cell layer
were shown as represented immunofluorescence staining: IL-6 (green
color) and TGF-β1 (red color). Cell nuclei were counterstained with DAPI
(blue color). Scale bar = 50 μm. Abbreviations: CtrL, control; MGO, methyl-
glyoxal; BM-MSC, bone marrow-derived mesenchymal stem cell; ADSC,
adipose-derived mesenchymal stem cell; IL-6, interleukin-6; TGF-β1, trans-
forming growth factor-beta 1; DAPI, 4′,6-diamidino-2-phenylindole. Fig-
ure S5. Dose-dependent effect of IL-6 in ADSC-CM induced M2
polarization. NR8383 macrophages were treated with LPS plus ADSC-CM
or BM-MSC-CM with/without IL-6 for three days. The cells were analyzed
by qPCR for iNOS (A and C) and Arg-1 (B and D) mRNA. Data were pre-
sented as mean ± SEM. ANOVA, p < 0.05, different characters represent
different levels of significance. Abbreviations: BM-MSC, bone marrow-
derived mesenchymal stem cell; ADSC, adipose-derived mesenchymal
stem cell; iNOS, inducible nitric oxide synthase; Arg-1, arginase-1; TGF-β1,
transforming growth factor-beta 1; LPS, lipopolysaccharides; rhIL-6, re-
combinant human interleukin-6. Figure S6. Additional IL-6 induced iNOS
and Arg-1 gene expression. NR8383 macrophages were treated with LPS
plus IMDM with/without IL-6 (1.0 ng/mL) or IL-6 neutralizing antibody
(1.0 μg/mL) for three days. The cells were analyzed by qPCR for iNOS (A)
and Arg-1 (B) mRNA. Data were presented as mean ± SEM. ANOVA, p <
0.05, different characters represent different levels of significance. Abbre-
viations: iNOS, inducible nitric oxide synthase; Arg-1, arginase 1; LPS, lipo-
polysaccharides; IL-6, interleukin-6; anti-IL-6 Ab, IL-6 neutralizing antibody.
Figure S7. Additional TNF-α did not up-regulate macrophage iNOS and
Arg-1 gene expression. NR8383 macrophages were treated with LPS plus
ADSC-CM with/without TNF-α for three days. The cells were analyzed by
qPCR for iNOS (A) and Arg-1 (B) mRNA. Data were presented as mean ±
SEM. ANOVA, p < 0.05, different characters represent different levels of sig-
nificance. Abbreviations: ADSC, adipose-derived mesenchymal stem cell;
iNOS, inducible nitric oxide synthase; Arg-1, arginase-1; LPS, lipopolysac-
charides; rhTNF-α, recombinant human tumor necrosis factor-alpha.
Table S1. Primary antibodies used for immunohistochemical and im-
munofluorescence staining. Table S2. Sequences of RT-PCR primers for
macrophage marker genes.
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