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Human acellular amniotic membrane
incorporating exosomes from adipose-
derived mesenchymal stem cells promotes
diabetic wound healing
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Abstract

Background:Diabetic wounds threaten the health and quality of life of patients and their treatment remains
challenging. ADSC-derived exosomes have shown encouraging results in enhancing diabetic wound healing.
However, how to use exosomes in wound treatment effectively is a problem that needs to be addressed at
present.
Methods: A diabetic mouse skin wound model was established. ADSC-derived exosomes (ADSC-Exos) were
isolated, and in vitro application of exosomes was evaluated using human umbilical vein endothelial cells (HUVECs)
and human dermal fibroblasts (HDFs). After preparation and characterization of a scaffold of human acellular
amniotic membrane (hAAM) loaded with ADSC-Exos in vitro, they were transplanted into wounds in vivo and
wound healing phenomena were observed by histological and immunohistochemical analyses to identify the
wound healing mechanism of the exosome-hAAM composites.
Results:The hAAM scaffold dressing was very suitable for the delivery of exosomes. ADSC-Exos enhanced the
proliferation and migration of HDFs and promoted proliferation and tube formation of HUVECs in vitro. In vivo
results from a diabetic skin wound model showed that the hAAM-Exos dressing accelerated wound healing by
regulating inflammation, stimulating vascularization, and promoting the production of extracellular matrix.
Conclusion:Exosome-incorporated hAAM scaffolds showed great potential in promoting diabetic skin wound
healing, while also providing strong evidence for the future clinical applications of ADSC-derived exosomes.
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Introduction
With the high prevalence of diabetes around the world,
complications such as diabetic wounds have become a
serious threat to the health and quality of life of patients
[1]. Traditional clinical therapies for diabetic wounds in-
clude control of blood glucose, surgical debridement,
negative pressure therapy, and graft transplantation [2–
4]. However, these therapies are ineffective in many
cases due to the particular impaired pathological condi-
tions of the wound sites [5]. Therefore, new therapeutic
approaches that will facilitate diabetic wound healing are
urgently needed. In recent years, mesenchymal stem
cells (MSCs) have been demonstrated to be a promising
new therapy for diabetic wound healing [6–8], yet many
challenges remain, such as immunological rejection and
chromosomal variation, as well as ethical issues, which
limit their clinical utility [9, 10]. It was once thought that
transplanted MSCs could reside in damaged tissues and
play a role in cell replacement through direct differenti-
ation [11]. However, recently, emerging studies have
shown that the beneficial effects of MSCs in vivo can be
attributed to their paracrine action that regulates the
functions of host cells and tissues [12–14]. Exosomes are
nanosized membrane vesicles of endocytic origin, with a
diameter of 30–150 nm, that are secreted by most cells
[14]. It is well established that exosomes carry mRNAs,
microRNAs, and proteins and are involved in cell-to-cell
communication, cell signaling, and altering cell metabol-
ism in vivo [15]. Many studies demonstrated that MSC-
derived exosomes have similar biological functions to
MSCs themselves and can be used as a possible therapy
[16]. Recent studies of the application of MSC-derived
exosomes for promotion of healing of chronic diabetic
wounds have shown encouraging results [17–19]. Rela-
tive to other types of MSCs, adipose-derived mesenchy-
mal stem cells (ADSCs) have special advantages such as
their easy availability and rich supply [20]. Various stud-
ies indicated that ADSC-derived exosomes enhanced
wound healing by regulating inflammatory responses, ac-
celerating angiogenesis, increasing migration and prolif-
eration of keratinocytes and fibroblasts, and activating
collagen and elastin synthesis by fibroblasts [21–24].
Moreover, ADSC-derived exosomes (ADSC-Exos) also
reduced scarring by regulating extracellular matrix
(ECM) remodeling [25]. However, how to use exosomes
in wound treatment effectively is a problem that needs
to be addressed at present. In order to make the use of
exosomes more realistic for clinical applications, a sim-
ple, effective, and noninvasive method is needed.
Wound dressings based on decellularized biomaterials,

which, as natural materials, have received considerable
research interest, are gaining popularity in regenerative
medicine [26]. Specifically, human amniotic membrane
is easily accessible and without ethical restrictions.

Human acellular amniotic membrane (hAAM) has
shown great potential as a scaffold for the repair of tis-
sues and organs [27–29]. There have been many reports
regarding the use of hAAM for wound coverage and use
of composite hAAM combined with stem cells for the
treatment of skin defects and functional repair [30–33].
Therefore, we hypothesized that hAAM may be one of
the options to achieve delivery of exosomes directly to
skin wounds, which may be more realistic for clinical
application.
In this study, we aimed to improve wound healing in

diabetic mice by externally applying a constructed com-
bination of ADSC-Exos and hAAM (Scheme 1). After
preparation and characterization of a scaffold of hAAM
loaded with ADSC-Exos in vitro, they were transplanted
onto wounds in vivo and wound healing phenomena
were observed to identify the wound-healing mechanism
of the exosome-hAAM composites.

Materials and methods
Animals and ethical approval
Eight-week-old BABL/C male mice were provided by the
Experimental Animal Centre of Southern Medical
University (Guangzhou, China). Human subcutaneous
adipose tissue was obtained during liposuction procedures,
and human amniotic membranes were obtained from
healthy women undergoing a cesarean section in Nan Fang
Hospital of Southern Medical University, after obtaining
written informed consent. All protocols were approved by
the Ethics Committee of Nan Fang Hospital of Southern
Medical University. All animal experiments were approved
by the Institutional Animal Care and Use Committee of
Nan Fang Hospital of Southern Medical University and
conducted according to the guidelines of the National
Health and Medical Research Council (China).

Isolation and culture of human ADSCs
Isolation and culture of human ADSCs were performed
as previously described [20]. Briefly, the adipose tissue
was harvested from the lower abdomen during liposuc-
tion procedures and digested with 0.075% collagenase
type I (Sigma-Aldrich, St. Louis, MO, USA) for 45 min
in a shaker incubator at 37 °C. After digestion, the adi-
pose cell suspension was centrifuged at 800×g for 5 min,
then the cell pellet at the bottom was resuspended in
PBS and filtered through a 100-μm mesh cell strainer.
After further centrifugation at 800×g for 5 min, the cell
pellet was resuspended in Dulbecco’s modified Eagle’s
medium (DMEM; Gibco) and cultured in DMEM sup-
plemented with 10% fetal bovine serum (FBS; Gibco)
and 1% penicillin-streptomycin (Gibco) at 37 °C with 5%
CO2. At 80% confluence, ADSCs were subcultured and
cells at passage 3–5 were used in the present study.
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50 μg (0.5 μg/μL), or 100 μg (1 μg/μL) ADSC-Exos for
24 h, and the tube formation was observed with a re-
verse phase-contrast microscope (IX61 FL, Olympus,
Tokyo, Japan).

Streptozotocin-induced diabetic mice and wound closure
assay
After 3 weeks of hyperglycemia (glucose level no lower
than 16.8 mmol/L) induced by intraperitoneal injection
of streptozotocin (150 mg/kg), a full-thickness skin de-
fect model was generated. Diabetic BABL/C mice were
anesthetized by intraperitoneal injection of 10 g/L pento-
barbital sodium (0.4 mL/100 g), then the dorsum was
shaved and cleaned with betadine. A circular full-
thickness skin defect wound 1 cm in diameter was cre-
ated on the back, and the defect area was fixed with a
ring-shaped silicone. Mice were randomized into four
groups. Control group: the wound was covered with a
gauze circle (10 mm in diameter) containing 100 μL PBS
(n = 10); Exosome group: the wound was treated with
100 μL PBS containing 100 μg exosome externally (n =
10); hAAM group: the wound was covered by a circular
hAAM patch (10 mm in diameter) containing 100 μL
PBS (n = 10); hAAM-Exos group: the wound was cov-
ered by a circular hAAM patch (10 mm in diameter)
preloaded with 100 μL PBS containing 100 μg exosomes
(n = 10). Afterwards, a piece of Vaseline gauze was used
to cover the gauze (control group), the wound (exosome
group), or the hAAM (hAAM and hAAM-Exos groups).
Finally, Tegaderm™ (3 M, St. Paul, MN, USA) was used
to fix the wound and dressings. The wound dressings in
each group were changed every other day, three times in
total according to the above methods. The mice were
housed individually and wound healing was evaluated on
the basis of gross observation at days 1, 3, 7, and 14
post-operation. The wound healing rate was calculated
as follows: (primary wound size—residual wound size)/
original wound size × 100%.

Histological analysis
Wound areas including the surrounding skin were
collected at 5, 7, 14, and 21 days after operation. The
samples were fixed in 4% paraformaldehyde (Solarbio),
gradually dehydrated, embedded in paraffin, and cut into
4 μm sections. The sections were stained with
hematoxylin and eosin (H&E) or Masson’s trichrome
stain according to the manufacturer’s instructions
(Sigma-Aldrich). H&E staining was used to assess infil-
tration of inflammatory cells, and Masson’s staining was
used to determine the content and maturity of collagen
in the wound beds. The number of inflammatory cells
per field in each group at day 5 and day 14 post-
operation was calculated. Image-Pro Plus 6.0 software
was used to calculate the collagen deposition at days 7

and 14 post-operation. Statistical analysis was performed
based on five high-powered fields per sample.

Immunohistochemical analysis
In order to further observe the wound inflammation, M2
macrophages were identified by immunohistochemical
staining of CD206. To evaluate extracellular matrix
(ECM) production and remodeling during the wound
process, collagen expression was determined by immu-
nohistochemical staining of collagen III. Angiogenesis
was measured by immunohistochemical staining of
CD31 in the wound bed. For immunohistochemical
staining, the sections were treated with antigen retrieval
and then incubated with primary antibody: CD206 (1:
150, Abcam, Cambridge, MA, USA), collagen III (1:200,
Abcam), and CD31 (1:200, Abcam) at 4 °C overnight.
The sections were then incubated with secondary anti-
body (1:250, Abcam) for 30 min, stained with diamino-
benzidine (Invitrogen) and hematoxylin, dehydrated,
cleared, and mounted.

Statistical analysis
Experimental data are expressed as the mean ± standard
deviation. Comparisons between different groups were
assessed by one-way analysis of variance (ANOVA). Dif-
ferences with P < 0.05 were considered statistically
significant.

Results
Characterization of hAAM scaffold
After decellularization, the hAM tissue appeared translu-
cent and devoid of cells. The matrix structures of native
hAM and hAAM were visualized by H&E staining and
almost no residual cells were observed (Fig. 1a–d). The
morphology of hAM before and after decellularization
was observed by SEM. Native hAM includes epithelial
side and stromal side. The epithelial cells of hAM
arranged in a flat paving stone-like appearance (Fig. 1e
and f). On the stromal side of the hAM, intertwined
collagen fibers were observed, with a small amount of
stromal cells (Fig. 1g and h). After decellularization, the
hAAM revealed a three-dimensional porous structure
arranged by collagen fibers, with many cell niches, and
no obvious epithelial and stromal cells remained (Fig.
1i–l). After freeze-drying under vacuum, sterilization,
and swelling, the porous morphology of the hAAM
scaffold was also observed (Fig. 1m). After loading with
exosomes, exosome particles could be observed on the
hAAM (Fig. 1n).
The hAAM matrix exhibited good swelling properties

and moisture retention capacity. The swelling properties
of the hAAM in water or PBS at different time points
are shown in Fig. 1o. After immersion for 12 h, swelling
equilibrium was reached and the swelling ratio was 23
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and 20 in water and PBS, respectively. In addition, the
hAAM also exhibited good moisture retention capacity
(Fig. 1p). The water retention time was more than 12 h
and after 12 h the hydrogel contained 614% of its own
weight in water residue.

Characterization of ADSC-Exos
The obtained exosomes derived from ADSCs were
spherical with a closed membrane (Fig. 2a). The ADSC-
Exos were assayed by NTA, and the diameter of the exo-
somes was shown to range from 47.7 to 150.0 nm, with

an average diameter of 76.4 ± 16.48 nm (Fig. 2b).
Exosome-specific surface markers (CD9 and CD81) were
detected by western blotting (Fig. 2c).

Effects of ADSC-Exos on human dermal fibroblasts (HDFs)
and human umbilical vein endothelial cells (HUVECs)
in vitro
The proliferation of HUVECs and HDFs cultured for 1,
3, or 5 days in medium containing ADSC-Exos is shown
in Fig. 3a and b. Exosomes promoted the proliferation of
HUVECs and HDFs in a dose-dependent manner. Tube

Fig. 1 Characterization of human acellular amniotic membrane (hAAM). a The appearance of human amniotic membrane (hAM) tissue before
decellularization. b The appearance of hAM after decellularization when the tissue became translucent. c Hematoxylin & eosin (H&E) staining of
hAM before decellularization, showing the presence of a large number of nuclei (scale bar = 50 μm). d H&E staining of hAM after decellularization
showing almost no cell residue (scale bar = 50 μm). e, f Microstructures of the hAM before decellularization under SEM showed that epithelial
cells arranged in a flat paving stone-like appearance on the epithelial side (e: scale bar = 50 μm, f: scale bar = 10 μm). g, h Intertwined collagen
fibers with a small amount of stromal cells (red circle) were observed on the stromal side of the hAM (g: scale bar = 50 μm, h: scale bar = 10 μm).
i, j Microstructures of the hAAM after decellularization under SEM showed the epithelial cells were removed after decellularization, and cell niches
were observed on the epithelia side of the hAAM (i: scale bar = 50 μm, j: scale bar = 10 μm). k, l A porous structure arranged by collagen fibers
without stromal cells were observed on the stromal side of the hAAM (k: scale bar = 50 μm, l: scale bar = 10 μm). m SEM image of the swelling
hAAM surface (scale bar = 1 μm). n SEM image of the swelling hAAM surface after adding exosomes (scale bar = 1 μm). o Swelling degree of the
hAAM in different media at different time-points. p Moisture retention capacity of the hAAM
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and clear definitions of exosome-based therapeutic prod-
ucts. Wound healing in adult mammals results in scar
tissue lacking skin appendages. Although scar formation
can meet the basic functional requirements of the skin
in preventing infection and dehydration, it is undesirable
and unfavorable. The regeneration of skin appendages
and redevelopment of fully functional skin is the ultim-
ate goals of skin wound healing.

Conclusion
Our data showed that a hAAM scaffold dressing was
very suitable for the delivery of exosomes. ADSC-Exos
enhanced the proliferation and migration of HDFs and
promoted proliferation and tube formation by HUVECs
in vitro. In vivo, hAAM-Exos exerted effects of inflam-
mation regulation, stimulating vascularization, and
promoting the production of ECM, thereby accelerating
the healing of diabetic wounds. Thus, our exosome-
incorporated hAAM scaffold showed great potential for
promoting diabetic wound healing. The mechanistic in-
sights are insufficient is the limitation of the manuscript.
Although further investigation is necessary, our results
also provided strong evidence for the future clinical ap-
plications of ADSC-derived exosomes.
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