Jin et al. Stem Cell Research & Therapy (2021) 12:327
https://doi.org/10.1186/s13287-021-02400-y Stem Cell Research &Therapy

BMSC-derived extracellular vesicles ®

intervened the pathogenic changes of
scleroderma in mice through miRNAs
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Abstract

Background: Systemic sclerosis (SSc) is a disease that features severe fibrosis of the skin and lacks effective therapy.
Bone marrow mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) are potential stem cell-based tools
for the treatment of SSc.

Methods: BMSCs were isolated from the bone marrow of mice and identified with surface markers according to
multilineage differentiation. EVs were isolated from the BMSC culture medium by ultracentrifugation and identified
with a Nanosight NS300 particle size analyzer, transmission electron microscopy (TEM), and western blot. The
microRNAs (miRNAs) of BMSC-derived EVs (BMSC-EVs) were studied via miRNA sequencing (miRNA-seq) and
bioinformatic analysis. An SSc mouse model was established via subcutaneous bleomycin (BLM) injection, and the
mice were treated with BMSCs or BMSC-derived EVs. Skin tissues were dissociated and analyzed with H&E staining,
RNA sequencing (RNA-seq), western blot, and immunohistochemical staining.

Results: Evident pathological changes, like fibrosis and inflammation, were induced in the skin of BLM-treated mice.
BMSCs and BMSC-EVs effectively intervened such pathological manifestations and disease processes in a very similar
way. The effects of the BMSC-EVs were found to be caused by the miRNAs they carried, which were proven to be
involved in regulating the proliferation and differentiation of multiple cell types and in multiple EV-related

biological processes. Furthermore, TGF-B1-positive cells and a-SMA-positive myofibroblasts were significantly
increased in the scleroderma skin of BLM-treated mice but evidently reduced in the scleroderma skin of the EV-
treated SSc group. In addition, the numbers of mast cells and infiltrating macrophages and lymphocytes were
evidently increased in the skin of BLM-treated mice but significantly reduced by EV treatment. In line with these
observations, there were significantly higher mRNA levels of the inflammatory cytokines 116, 1110, and Tnf-a in SSc
mice than in control mice, but the levels decreased following EV treatment. Through bioinformatics analysis, the
TGF{3 and WNT signaling pathways were revealed to be closely involved in the pathogenic changes seen in mouse

. J

* Correspondence: lulixia@tongji.edu.cn; jincx@tongjiedu.cn;
gtxu@tongji.edu.cn; zhaojingjun2015@aliyun.com

"Jiahui Jin and Qingjian Ou are co-first authors

’Department of Ophthalmology of Shanghai Tenth People’s Hospital, and
Laboratory of Clinical Visual Science of Tongji Eye Institute, School of
Medicine, Tongji University, Shanghai 200072, China

'Department of Dermatology, Tongji Hospital, School of Medicine, Tongji
University, Shanghai 200065, China

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-021-02400-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lulixia@tongji.edu.cn
mailto:jincx@tongji.edu.cn
mailto:gtxu@tongji.edu.cn
mailto:zhaojingjun2015@aliyun.com

Jin et al. Stem Cell Research & Therapy (2021) 12:327

Page 2 of 16

SSc, and these pathways could be therapeutic targets for treating the disease.

Conclusions: BMSC-derived EVs could be developed as a potential therapy for treating skin dysfunction in SSc,
especially considering that they show similar efficacy to BMSCs but have fewer developmental regulatory
requirements than cell therapy. The effects of EVs are generated by the miRNAs they carry, which alleviate SSc
pathogenic changes by regulating the WNT and TGFf3 signaling pathways.

Keywords: Scleroderma, Fibrosis, Bone marrow mesenchymal stem cell, Extracellular vesicles

Introduction

Scleroderma (also known as systemic sclerosis, SSc) is
an autoimmune connective tissue disease with unknown
etiology and is characterized by three hallmark charac-
teristics (vasculopathy, immune dysfunction, and fibro-
blast dysfunction) that which results in excessive
accumulation of collagen and fibrosis in the skin and vis-
ceral organs [1, 2]. Since there is no effective therapy,
scleroderma often causes severe disability and even
death [3, 4]. Therefore, in-depth studies on the etiology
of and effective treatments for scleroderma are necessary
to improve the quality of life and life expectancy of
patients.

Inflammation and vascular injury are reported to drive
the autoimmune response and precede fibrosis in the
initial stages of SSc [5, 6]. This fibrosis is regulated by a
combination of autocrine and paracrine profibrotic me-
diators, such as transforming growth factor-fl1 (TGE-
B1), interleukin 4 (IL-4), interleukin 13 (IL-13), and
interleukin 10 (IL-10). These mediators secreted by mac-
rophages and monocytes promote tissue-resident fibro-
blasts to differentiate into myofibroblasts and enhance
the production of collagen and other extracellular matrix
(ECM) components by local fibroblasts and a-smooth
muscle actin (a-SMA)-positive myofibroblasts in the af-
fected organs [6—8]. Although SSc is considered an auto-
immunity disease, toxin exposure and viral infection can
also induce its occurrence and development. Subcutane-
ous injection of bleomycin (BLM) can induce skin fibro-
sis in mice that is similar to that seen in human SSc,
including dermal fibrosis and abnormalities in ECM de-
position, and this model is the most widely used preclin-
ical animal model in antifibrotic research [9, 10].

Many regenerative medical therapies, such as mesen-
chymal stem cell (MSC) transplantation, have been ex-
plored for relieving the symptoms of or curing this
difficult disease [11]. Alexandre et al. reported that
transplanted allogeneic or xenogeneic bone marrow
MSCs (BMSCs) demonstrated similar antifibrotic thera-
peutic effects in SSc [12]. Our previous report also
showed that transplanted BMSCs or genetically engi-
neered BMSCs attenuated skin fibrosis and reactive
oxygen species (ROS)-induced apoptosis in the BLM-

induced murine SSc model [10]. However, the number
of colony-forming units in and the differentiation effi-
ciency of the MSCs in the SSc injury site were relatively
low. MSCs may exert their effects not through their dif-
ferentiation but through paracrine mechanisms, such as
extracellular vesicles (EVs), which contain cytokines, sig-
naling lipids, and regulatory microRNAs (miRNAs) in-
volved in cellular communication [13-15]. Recently,
EVs, which are released by the outward budding of vari-
ous types of cells (including MSCs), have been identified
to contain major paracrine factors and thus could be ap-
pealing candidates as vectors for cell therapy [13, 14].
Intracellular delivery of EVs has been demonstrated for
a number of different cell types and allows the func-
tional utilization of the delivered miRNAs [16]. EVs have
been implicated in the regenerative effects of MSCs in a
wide variety of tissues, including skin, muscle, lung and
vascular tissues [17—-20]. MSC-derived EVs have also
shown therapeutic potential in fibrotic diseases, such
as renal fibrosis, corneal fibrosis, myocardial fibrosis,
and hepatic fibrosis [21-23]. However, it is still un-
clear whether BMSC-derived EVs can mediate skin fi-
brosis in SSc.

In the present study, as a continuation of previous
studies, we investigated the effects of subcutaneous in-
jection of BMSC-derived EVs as a treatment for BLM-
induced SSc mice and the underlying mechanism.
BMSC-derived EVs significantly relieved fibrosis and in-
flammation in the skin, similar to the effects of BMSC
transplantation. We also identified a group of specific
miRNAs in BMSC-derived EVs. Multidimensional bio-
informatics analysis suggested that these miRNAs con-
tribute to the inhibition of a-SMA expression and
collagen deposition, as well as fibroblast/myofibroblast
transition-induced fibrosis and inflammation. Therefore,
BMSC-derived EVs could be a potential therapeutic
strategy for alleviating inflammation and skin fibrosis in
patients with SSc.

Methods

Experimental animals

All procedures using animal subjects were performed in
accordance with the Guide for the Care and Use of
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Laboratory Animals, and the experiments were approved
and performed following the guidelines of the Institute
of Laboratory Animal Resources, Tongji University. Fe-
male C57BL/6 mice were obtained from Shanghai SLAC
Laboratory Animal Co., Ltd. (China) and used in this
study. Skin samples for molecular and histologic analyses
were obtained at the time of euthanasia.

BMSC isolation and culture

BMSCs were isolated from the bone marrow of the fe-
murs and tibias of mice (4 weeks old). The BMSCs were
cultured in a-MEM medium (SH30265.01, HyClone,
Thermo Fisher Scientific, USA) supplemented with 15%
fetal bovine serum (FBS; 10091148, Thermo Fisher
Scientific, USA) and 100 U/mL penicillin-streptomycin
solution (10378016, Thermo Fisher Scientific, USA). The
BMSCs were passaged when they reached 80% conflu-
ence. BMSCs in passage 3 were used in the analysis and
for the production of EVs.

Flow cytometry analysis

BMSCs in passage 3 were used for flow cytometry ana-
lysis. Flow cytometry analysis of BMSC surface markers
was performed as follows. BMSCs were suspended in
phosphate-buffered saline (PBS; E607008-0500, Sangon
Biotech, China) at a final concentration of 1 x 10%/mL.
Then, monoclonal antibodies and the isotype control
were added to 100 pL cell suspensions and incubated for
60 min at 4 °C. The cell suspensions were centrifuged at
2000rpm for 3 min to remove the antibodies and
washed with PBS 3 times. Finally, 500 pL. PBS was used
to resuspend the cell pellet, which was analyzed with the
CytoFLEX LX system (Beckman Coulter, USA). FlowJo
software (Leonard Herzenberg Laboratory, USA) was
used to analyze flow cytometry data.

Multilineage differentiation of BMSCs

Mouse BMSCs in passage 3 were cultured in differentiation
conditions to identify their capacity for multilineage differ-
entiation. To induce adipogenic differentiation of BMSCs,
when the cells reached 70 to 80% confluency, the complete
medium was replaced with adipogenic induction medium
(DMEM supplemented with 10% FBS, 10~ M dexametha-
sone (D1756, Sigma Aldrich, Germany), 10 mM (-glycerol
phosphate (G9422, Sigma Aldrich, Germany), 50 uM L-
ascorbic acid 2-phosphate (49752, Sigma Aldrich,
Germany), and 10 pg/mL insulin (10320000, Sigma Aldrich,
Germany)), and the cells were cultured for 3 weeks. Then,
Oil Red O staining was performed.

To induce osteoblastic differentiation of BMSCs, when
the cells reached 60 to 70% confluency, the complete
medium was replaced with osteogenic induction medium
(DMEM medium (SH300022.01, HyClone, USA) supple-
mented with 10% FBS, 10mM [-glycerol phosphate
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(G9422, Sigma Aldrich, Germany), 50 uM L-ascorbic acid
2-phosphate (49752, Sigma Aldrich, Germany), 100 ng/
mL recombinant human bone morphogenic protein-2
(120-02, Peprotech, USA), and 107" M dexamethasone
(D1756, Sigma Aldrich, Germany)), and the cells were
maintained in this medium for the next 21 days. Then, ali-
zarin red staining was performed.

To induce chondrogenic differentiation of BMSCs, when
the cells reached 70% confluency, the complete medium
was replaced with chondrogenic induction medium
(DMEM supplemented with 10% FBS, 50 pg/mL L-ascorbic
acid 2-phosphate (49752, Sigma Aldrich, Germany),
100 pg/mL  sodium pyruvate (P5280, Sigma Aldrich,
Germany), 40 pg/mL proline (P3350000, Sigma Aldrich,
Germany), 10ng/mL TGF-B1 (100-21, Peprotech, USA),
10" M dexamethasone (D1756, Sigma Aldrich, Germany),
and 100 ng/mL insulin-like growth factor-1 (IGF-1, 100-11,
Peprotech, USA)), and the cells were cultured for 3 weeks.
Then, toluidine blue staining was performed.

Isolation and identification of BMSC-derived EVs

The mouse BMSCs in passage 3 were cultured in o-
MEM (SH30265.01, HyClone, USA) supplemented with
EV-depleted FBS and 100 U/mL penicillin-streptomycin
solution (10378016, Thermo Fisher Scientific, USA). EV-
depleted FBS was depleted of EVs by ultracentrifugation
for 14h at 150,000g. Then, the supernatant was
separated and used as EV-depleted FBS. The BMSC cul-
ture medium was collected every 48 h. The collected cul-
ture medium was centrifuged at 300g for 10 min at 4 °C
to eliminate cell pellets. The supernatant was centrifuged
at 2000g for 20 min at 4 °C to further remove cell debris.
Then, the supernatant was again centrifuged at 10,000g
for 30 min at 4°C. The supernatant was then filtered
through a 022-um filter (GSWP04700, Merck,
Germany), and the flow through was transferred to new
tubes and ultracentrifuged at 150,000¢ for 2h at 4°C in
a SW70Ti rotor (Beckman Coulter, USA) to pellet the
EVs. The supernatant was immediately aspirated upon
completion of the first ultracentrifugation and then
ultracentrifuged again as described previously. For max-
imal EV retrieval, the EV-enriched pellet was resus-
pended in 200 puL cold PBS. The concentration of EVs
was measured according to the protein content using a
BCA protein assay kit (23227, Thermo Fisher Scientific,
USA). The presence of EVs was confirmed with a Nano-
Sight NS300 instrument (Malvern Instruments, UK).
Transmission electron microscopy (TEM; Tecnai 12,
FEI, USA) and western blot were employed to detect
morphology and surface markers.

Establishment and treatment of the SSc model
BLM (R25001, Thermo Fisher Scientific, USA) was di-
luted in PBS at a concentration of 1mg/mL and
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sterilized by filtration. To establish the murine fibrosis
model, 100puL BLM solution was subcutaneously
injected into the shaved backs (1 cm?) of mice using a
27-gauge needle. Injections were made once a day for 28
consecutive days. Mice in the control group received
100 pL PBS.

For the BMSC or BMSC-EV treatments, BLM-induced
SSc mice were randomly divided into 3 groups (6 mice
in each group) and treated with PBS (100 uL), BMSCs (1
x 10%/100 uL), or BMSC-derived EVs (15 pug/100 pL).
The numbers of BMSCs used in this study were deter-
mined according to our previous report [10]. BMSC-EVs
(15 pug) were produced from 2 x 10° BMSCs to ensure a
treatment effect. The mice were killed 14 days after
treatment, and skin tissue samples were collected from a
1 cm? shaved area.

Fibroblast cell culture and treatment

Mouse fibroblast cells were isolated from mouse skin
with 0.25% trypsin and cultured in DMEM/F12 (D8437,
Sigma Aldrich, Germany) with 10% FBS (10091148,
Thermo Fisher Scientific, USA). Fibroblasts were pas-
saged and treated with 10 ng/mL TGF-B1 or a combin-
ation of TGF-B1 (10 ng/mL) and BMSC-EVs (50 pg/ml).
After that, the cells were lysed with RIPA buffer
(PO013B, Beyotime, China) containing protease and
phosphatase inhibitor cocktails (C0001 and C0004, Tar-
getMol, USA) and collected for western blot analysis.

Histochemical analysis

Skin tissue samples from different groups were fixed in
4% paraformaldehyde (PFA; E672002-0500, Sangon Bio-
tech, China) solution for 24 h. Then, the tissues were
embedded in paraffin and cut into 10-pm sections. The
sections of the paraffin-embedded skin tissue were
deparaffinized using xylene and rehydrated using de-
creasing concentrations of ethanol (100, 95, 85, and
75%). Briefly, the sections were stained in hematoxylin
for 5min and further washed with cold running water.
After incubation with 1% hydrochloric acid-alcohol, the
sections were washed and stained with 0.5% eosin dye
solution. To analyze the extent of skin fibrosis, randomly
selected fields of the sections were captured. The sec-
tions were stained with Masson trichrome staining (BP-
DL023, SenBeiJia Biological Technology Co., Ltd, China)
according to the manufacturer’s instructions, and the
collagen fibers were evaluated under a light microscope.
For detection of mast cells, the sections were stained
with toluidine blue. Sections were examined and photo-
graphed using a microscope (TI2-E, Nikon, Japan).

For the inflammatory cell counts, the hematoxylin-
stained skin sections were examined with a light micro-
scope at x 200 magnification. We selected 3 views of
each stained skin section randomly and quantified the
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positive stained cells by carefully counting in 0.5 mm
broad, band-like area below and parallel with the der-
mal-epidermal junction.

Immunohistochemical analysis

The sections of paraffin-embedded skin tissue were
deparaffinized as previously described [24]. The sections
were incubated in 3% H,O, for 5min at room
temperature. Then, 5% goat serum (E510009, Sangon
Biotech, China) was used to block the sections for 60
min at room temperature. The primary antibodies listed
in Supplemental Table 1 were diluted in 5% goat serum
solution, added to the sections, and incubated overnight
at 4 °C. Horseradish peroxidase (HRP)-labeled secondary
antibodies were added and incubated for 60 min at room
temperature. Diaminobenzidine (DAB) solution was uti-
lized to show positive signaling.

Hydroxyproline measurement

The collagen content of skin samples was quantified
with a hydroxyproline test kit (A030-2-1, Nanjing Jian-
Cheng Bioengineering Institute, China) according to the
recommendations of the manufacturer. Hydroxyproline
content was determined with the following formula:
(tested OD value - blank OD value) / (standard OD
value — blank OD value) x standard sample concentra-
tion (5 pug/mL) x total hydrolysate volume (10 mL) / tis-
sue wet weight (mg).

Western blotting analysis

Samples were lysed with RIPA buffer (P0013B, Beyotime,
China) supplemented with protease and phosphatase in-
hibitor cocktails (C0001 and C0004, TargetMol, USA).
Total protein (20 pg) was separated by SDS-PAGE (10%)
and transferred to PVDF membranes (IPFL85R, Merck,
Germany). After being blocked in 5% nonfat milk for 1
h, the membranes were incubated with primary anti-
bodies (as listed in Supplemental Table 1) at 4°C
overnight. After being washed, the membranes were in-
cubated with HRP-conjugated secondary antibodies for
1h at room temperature. Signals were detected using a
Tanon chemiluminescence image detection system
(5200S, Tanon, China).

Quantitative real-time PCR

Total RNA was extracted and purified using TRIzol re-
agent (9109, Takara, Japan) according to the manufac-
turer’s instructions, and cDNA was synthesized using
PrimeScript RT Master Mix (RR036A, Takara, Japan) ac-
cording to the manufacturer’s instructions. Quantitative
real-time PCR was performed using SYBR Green Real-
time PCR Master Mix (FP205-03, Tiangen, China). The
oligonucleotide primers (Sangon Biotech, China) that
were used are listed in Supplemental Table 2. Gene



Jin et al. Stem Cell Research & Therapy (2021) 12:327

expression was normalized to the average value of
GAPDH, B-ACTIN, and 18S mRNA in each sample. The
fold change in expression was calculated using the 244
method.

RNA sequencing (RNA-seq) and bioinformatic analysis

For miRNA sequencing (miRNA-seq) of EVs, prepar-
ation of tagged miRNA-seq libraries, sequencing, and
next-generation sequencing (NGS) data analysis were
performed by LC Sciences (USA). The library was se-
quenced with the Illumina Hiseq 2500 SE50 platform.
Raw reads were subjected to an in-house program,
ACGT101-miR (LC Sciences, USA), to remove adapter
dimers, junk, low-complexity, and common RNA fam-
ilies (ribosomal RNAs, transfer RNAs, small nuclear
RNAs, and small nucleolar RNAs) and repeats. Subse-
quently, unique sequences with lengths of 18~26 nucleo-
tides were mapped to specific species precursors in
miRBase 22.0 via a BLAST search to identify known
miRNAs and novel 3p- and 5p-derived miRNAs. A cri-
terion that the number of reads was higher than the
average copy number of the dataset was used to filter
the high-level miRNAs. The R package multiMiR (ver-
sion 3.12) was used for miRNA target scanning and pre-
diction [25], while clustering analysis of the target genes
was performed using the R package clusterProfiler.

For RNA-seq of tissue samples, skin tissue was dis-
sected under a microscope and immediately placed in
TRIzol reagent. Total RNA was isolated with TRIzol re-
agent (9109, Takara, Japan). The library was sequenced
with an Illumina NovaSeq 6000 PE150. The criteria
|logFC| > 1 and P < 0.05 were applied to filter the differ-
entially expressed genes. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses
were performed with the R package clusterProfiler. The
results were visualized with GOplot.

Statistical analysis

All data are expressed as the standard error of the mean.
Data analysis was performed using GraphPad Prism soft-
ware (USA). One-way ANOVA was employed for the
statistical comparison. A value of P < 0.05 was consid-
ered statistically significant. In the figures, asterisks are
used to express the statistical significance of values: *: P
< 0.05, *: P < 0.01 and ***: P < 0.001. In the results, de-
tailed P values are provided unless P < 0.001.

Results

Identification of mouse BMSCs and BMSC-derived EVs
Following isolation and culture as described above,
mouse BMSCs were identified according to the criteria
of the International Society of Cellular Therapy [26]. As
shown in Fig. 1a, the isolated mouse BMSCs adhered to
the culture dish with fibroblast-like and spindle-shaped
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morphology. After adipogenic induction, small cytoplas-
mic lipid droplets in BMSCs were observed upon Oil
Red O staining (Fig. 1b). After osteoblast induction,
positive alizarin red staining could be seen (Fig. 1c).
After chondrogenic induction, toluidine blue staining
was observed (Fig. 1d). The surface markers of the
BMSCs were analyzed with flow cytometry, and the re-
sults are shown in Fig. le. BMSCs highly expressed
CD73 (100%), CD105 (100%), CD44 (97%), and CD90
(95%), while CD31 and CD45 were negatively expressed.
Thus, the mouse BMSCs exhibited typical mesenchymal
stem cell characteristics.

The EVs isolated from the mouse BMSC culture
media were analyzed with a NanoSight NS300 particle
size analyzer. As shown in Fig. 1f, most of these EVs
ranged from 90 to 230 nm in size, and they appeared as
round or elliptical vesicles of uneven size with intact
capsules under TEM (Fig. 1g). Moreover, the EV-specific
markers CD9, CD63, and ALIX were significantly
enriched in these EVs. CALNEXIN and GAPDH were
not expressed by the EVs (Fig. 1h). Taken together, these
data show that mouse BMSCs and BMSC-derived EVs
were isolated successfully.

Administration of BMSCs or BMSC-EVs reduces BLM-
induced dermal thickening and fibrosis

To confirm the effects of BMSCs in SSc that we previ-
ously reported and examine whether mouse BMSC-EVs
have any effects on BLM-induced SSc pathology, a
mouse model was established according to the following
protocol: daily subcutaneous injection of BLM for 4
weeks, followed by subcutaneous injections of mouse
BMSCs or BMSC-EVs (Fig. 2a). BLM, BMSCs, and
BMSC-EVs were subcutaneously injected into the cen-
ters of shaved skin areas for even distribution of the li-
quid and effects (Fig. 2b).

Two weeks after the BMSC and EV treatments, in
comparison with the respective layers of normal
mouse skin, the dermis layer of PBS-treated model
mice was thickened (P < 0.001), the subcutaneous
adipose layer of PBS-treated model mice was lost, and
the dermal architecture of PBS-treated model mice
was disrupted (Fig. 2c, d). Both the BMSC- and EV-
treated skin samples showed normal thickness of the
subcutaneous adipose layer, and in both cases, the
hypodermic adipose layer was significantly thicker
than that in the PBS-treated mice (P < 0.001) (Fig. 2c,
e). Furthermore, when inflammatory cell infiltration
was examined as another parameter to evaluate the
effects of the treatments in SSc, as shown in Fig. 2f,
the inflammatory cell counts in skin tissue sections in
both the BMSC and EV groups were significantly
lower than those in SSc mice (P < 0.001), indicating
attenuated leucocytic infiltration. These results
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can significantly improve dermal damage and abnor-  abnormal deposition of collagen in a mouse SSc model
malities in this SSc model, and their effects were as  Considering that abnormal ECM deposition in the der-
strong as those of mouse BMSCs. mis is an atypical characteristic of SSc, Masson’s
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Scleroderma

trichrome staining was used to evaluate the ability of
BMSCs and BMSC-EVs to ameliorate the deposition of
excess ECM components, including collagen. As shown
in Fig. 3a, BLM-induced scleroderma skin exhibited an
abundance of collagen and a dense ECM structure in the
dermis, but ECM deposition was significantly reduced
by treatment with BMSCs or BMSC-EVs. Consistently,
as shown in Fig. 3b, the BMSC (P < 0.001) and BMSC-
EV (P < 0.001) treatments significantly decreased the hy-
droxyproline content, which was increased in the BLM-
treated mice, and there was no significant difference be-
tween the BMSC group and BMSC-EV group (P =
0.499). Furthermore, the mRNA expression levels of
Coll and Fnl were significantly elevated in PBS-treated

SSc mice (P < 0.001) but were significantly reduced in
mice treated with either BMSCs (P < 0.001) or BMSC-
EVs (P = 0.0027) (Fig. 3¢, d). The protein expression re-
sults for COL1 and FN1 were consistent with the mRNA
expression results (Fig. 3e, f). However, for these two
markers, the effects of BMSC-EVs were not as strong as
those of BMSCs (Fig. 3c—f). These data indicate that
both BMSCs and BMSC-EVs can significantly reduce
BLM-induced abnormal deposition of ECM and collagen
density.

Analysis of BMSC-EVs and their specific miRNAs
Since both mouse BMSCs and their EVs attenuated the
generation of disordered dermis structure and ECM
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deposition in the skin of BLM-induced SSc mice to a
similar degree, we focused on BMSC-EVs and their
functional miRNAs in the experiments below to under-
stand the related mechanism and develop more conveni-
ent and efficient therapy. First, the global expression of
miRNAs in BMSC-EVs was analyzed via high-
throughput miRNA-seq approaches. As listed in Supple-
mental Table 3, BMSC-EVs highly expressed a cluster of
specific miRNAs, such as mir-21a, mir-143, mir-27b,
mir-29a, and let-7. The target genes of these highly
expressed miRNAs were then studied by miRNA target
scan analysis and GO functional clustering analysis to
predict their potential functions. As shown in Fig. 4a,
the results showed that these highly expressed miRNAs
were involved in regulating the proliferation and

differentiation of multiple cell types, including muscle
cells, T cells, and fat cells, and in multiple processes,
such as ECM generation (including processes related to
collagen and cell adhesion and junctions). In addition,
the WNT, TGEP, Notch, and T cell receptor signaling
pathways were also predicted to play certain roles in
regulating the homeostasis of skin (Fig. 4b—d).

To confirm the functional predictions for the BMSC-
EV-derived miRNAs in vivo, high-throughput RNA-seq
was performed to analyze the skin tissues of BLM-
treated mice with or without 7 days of BMSC-EV treat-
ment. As shown in Supplemental Fig. 1a, in comparison
with that of normal control mice, the skin of the SSc
mice highly expressed genes involved in the hedgehog
signaling pathway, the WNT pathway, the cell cycle and
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Fig. 4 High-throughput sequencing analysis of miRNAs in BMSC-EVs and the transcriptome of skin tissues. a—d Gene Ontology analysis of the
genes targeted by the highly expressed microRNAs in BMSC-EVs. e,f Gene Ontology and GO Chord analysis results showing the differentially
expressed genes between BMSC-EV-treated skin and PBS-treated skin. g Heatmap showing the relative mRNA expression of members of related

signaling pathways

cellular senescence signaling, but the skin of BMSC-EV-
treated SSc mice highly expressed genes related to focal
adhesion, the Hippo signaling pathway, and fatty acid
biosynthesis. Reasonably, following BMSC-EV treatment,
the genes that were hyperactivated by BLM stimulation
were significantly lowered, especially those in the WNT
pathway, or related to ECM-receptor interactions and
the cell cycle (Fig. 4e, g); however, genes related to fatty
acid synthesis were upregulated. There were only a few
genes that were differentially expressed between the
BMSC-EV-treated group and the normal control group
(Supplemental Fig. 1b).

These results suggest that the BMSC-EVs may func-
tion by regulating the WNT signaling pathway, TGFp
signaling, and inflammatory response during the treat-
ment of BLM-induced SSc.

BMSC-EV treatment decreases fibroblast differentiation
into myofibroblasts

Considering the important roles of the TGEp signaling
pathway in inducing fibroblast activation and myofibro-
blast differentiation, both are important characteristics
during the progression of BLM-induced animal models
of fibrosis. As such, TGF-B1-positive cells and TGF-p1
mRNA expression were examined in the skin samples of
the mice. As shown in Fig. 5a, ¢, there was significantly
more accumulation of TGF-B1-positive cells in the der-
mis layer in the SSc mice than in the normal mice (P <
0.001), but this accumulation was evidently reduced in
the EV-treated group to a level similar to that in the
normal group (P < 0.001). The mRNA and protein
levels of the groups showed similar trends (P < 0.001)
(Fig. 5d, g).

Another typical characteristic of SSc, increased a-
SMA-positive myofibroblasts in fibrotic skin [27, 28],
was also examined in the same model. As shown in
Fig. 5b, e, g, i, the number of a-SMA™ myofibroblasts
was evidently increased in the scleroderma skin of BLM-
treated mice (P < 0.001) but was reduced to normal
levels in the EV-treated mice (P < 0.001). Consistently,
the mRNA and protein levels of a-SMA in the SSc
model were significantly higher than those in control
mice (P < 0.001) and were reduced to normal levels after
BMSC-EV treatment (P < 0.001) (Fig. 5f, g, h). These re-
sults confirm that BMSC-EVs can inhibit fibroblast acti-
vation by downregulating the expression of TGF-B1 in
the dermis.

BMSC-EV treatment reduces inflammatory infiltration in
the dermis in scleroderma

To support our ideas above, more parameters related to
SSc, like degranulation of mast cells and accumulation
of macrophages and lymphocytes, were examined [29].
As shown in Fig. 6a, b, the number of mast cells in the
dermis of the BLM-treated mice was significantly in-
creased, as shown by toluidine blue staining, compared
to that in normal control mice (P < 0.001), and BMSC-
EV treatment significantly reduced the mast cell number
to a level comparable to that of the normal group (P <
0.001). Moreover, as shown in Fig. 6¢c—h, immunohisto-
chemical examination demonstrated that BMSC-EVs
significantly reduced the infiltration of F4/80" macro-
phages (P < 0.001) and CD4*/CD8" lymphocytes (P <
0.001), and both were significantly increased in BLM-
treated SSc mice.

To investigate the effects of BMSC-EVs on BLM-
induced inflammation, the mRNA expression of inflam-
matory cytokines, including II-10, 1I-6, and Tnf-q, in skin
samples was detected. The results showed that BLM-
treated mice had significantly higher mRNA levels of Il-
6 (P < 0.001), II-10 (P = 0.0056), and Tnf-a (P = 0.0024)
than normal control mice, while the levels of Il-6 (P <
0.001) and II-10 (P = 0.0067) in the EV-treated group
are significantly reduced (Fig. 6i, j). The levels of Tnf-a
in the EV-treated group were not significantly different
(Fig. 6k). The protein expression patterns for IL6, IL10,
and TNF-a were the same as the mRNA expression pat-
terns: the expression of IL6 and IL10 was higher in
BLM-treated mice, while it was significantly reduced in
the EV-treated group (Fig. 61-0). Thus, BMSC-EV treat-
ment can significantly reduce the infiltration of inflam-
matory cells and inhibit the release of inflammatory
factors in the skin of BLM-induced SSc mice.

Discussion

Curing scleroderma (SSc) is now a realistic clinical chal-
lenge [3, 4] since its etiology and pathogenesis are un-
clear. The key clues about its possible mechanisms are
limited to vasculopathy, immune dysfunction, and
fibroblast dysfunction [1, 2]. On the other hand, BMSC-
based therapies, including that used in our previous
work [10], have shown some therapeutic effects, like at-
tenuating skin fibrosis and apoptosis in the BLM-
induced SSc model. The observation that interested us
was that the colony-forming unit number and
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Fig. 6 BMSC-EV treatment reduces inflammatory infiltration in the dermis in scleroderma. a~h Representative images of the mast cell
degranulation detected by toluidine blue staining (a, b), F4/80" positive macrophages (¢, d), CD8" and CD4" positive lymphocyte (e, f, g, h)
infiltration in the skin detected by immunostaining and their corresponding quantification. Scale bar 100 um. i-k Quantification of 16, 1110, and
Tnf-a mRNA. l-o Protein expression of IL-6, IL-10, and TNF-a in the skin as detected by western blot. EVs: BMSC-derived EVs; BLM: bleomycin; ll6:

interleukin-6; 1110: interleukin-10; Tnf-a: tumor necrosis factor a

differentiation efficiency of the BMSCs were fewer or
lower in the injected sites [12]. This result may indicate
that the therapeutic mechanism of these BMSCs in
treating SSc involves paracrine signaling rather than dif-
ferentiation. Therefore, in this study, we used BMSCs as
a tool to explore the pathogenesis of scleroderma and to
develop a more practical treatment by exploring BMSC-
EVs and their components. Again, BLM-induced SSc
mice were used as models of the disease since the patho-
logical changes in the mice, like increased dermal thick-
ness and collagen accumulation, are similar to those in
patients with SSc [29].

MSCs have been reported to play an antifibrotic role
in fibrotic diseases such as liver fibrosis [30], kidney fi-
brosis [31], lung fibrosis [32, 33], and skin fibrosis [10].
However, there are still unresolved and unavoidable risks
of MSC clinical applications, such as iatrogenic tumor
formation, cellular rejection, and infusion toxicity [34].
Additionally, the use of cells as drugs is still in a very
preliminary stage, and the evaluation and approval of
such drugs for clinical use are a long way off. On the
other hand, EVs derived from MSCs have been shown to
be key factors in MSC-to-surrounding cell communica-
tion [35] and are considered stem cell-based, cell-free
drugs and carriers of siRNA [36]. Compared to BMSCs,
BMSC-EVs have several advantages, like being simpler
to produce and store and having easier quality control
procedures. As EVs are not cells, viability is not a con-
cern. This makes EVs potentially much easier to use
than cells post thaw. Indeed, there is preliminary evi-
dence that the thawing process may alter membranes of
EVs so that they are more easily absorbed by target cells
[37]. The safety of intravenous and intraperitoneal injec-
tion of EVs has been verified in animal experiments [38,
39]. However, the large-scale production of EVs is influ-
enced by the specific therapeutic application. As prod-
ucts of cells, the manufacture of EVs is dependent on
the ability to produce large quantities of cells in ways
that do not alter certain cell behavior and characteristics.
Some alterations in the cell culture platform might alter
the production, composition, attributes, or function of
EVs [40]. Furthermore, some primary cell lines (such as
mesenchymal stem cells) exhibit a low proliferative cap-
acity, limiting the ultimate culture size and duration,
number of production batches, and reproducibility. Solu-
tions to these issues include cell immortalization via

overexpression of the MYC gene [41]. Furthermore, the
safety and efficiency of MSC-derived EVs have been evalu-
ated in several clinical trials for various diseases, including
an inhaled form in severe acute respiratory syndrome cor-
onavirus 2 (NCT04276987, ChiCTR2000030261) and an
intravenous injection in diabetes mellitus (NCT02138331).
Therefore, we designed the present study to determine
whether BMSC-EVs can mediate the effects of BMSCs in
treating SSc with the hope that they can be developed into
a therapy that lacks the risks of MSCs. As expected, sub-
cutaneous BMSC-EV treatment significantly improved
BLM-induced dermal damage and abnormalities and re-
duced ECM deposition and collagen density. The thera-
peutic effects of the BMSC-EVs were as strong as those of
the BMSCs. Therefore, BMSC-EVs have great potential to
be developed as a new therapy for SSc.

EVs serve as carriers that transport functional proteins,
mRNAs, and miRNAs to various cells, where these fac-
tors act as mediators of intercellular communication and
signaling pathways [42, 43]. Studies have proven that
MSC-EV miRNAs possess the abilities to promote cell
proliferation, accelerate injured tissue repair, and inhibit
fibrotic diseases [16, 44—46]. In this study, we further
demonstrated that there are a series of miRNAs in
BMSC-EVs that contribute to the alleviation of SSc by
regulating relevant signaling pathways. Previously, the
TGEB pathway, Toll-like receptor signaling, and the
WNT pathway were reported to be the main dysfunc-
tional signaling pathways in the skin of patients with
SSc [47], and the TGFP and Wnt/p-catenin pathways
have been found to be hyperactivated to promote
ECM production and induce fibrosis [48, 49]. In this
study, we focused on these signaling pathways, and
our data suggest that BMSC-EVs might treat BLM-
induced SSc by regulating the TGFPp and WNT
pathways as well as the inflammatory response. In a
fibroblast SSc model induced by TGF-B1 modulation,
the SSc markers COL1, FN1, and a-SMA and the in-
flammatory factors IL-6 and IL-10 were upregulated
in the TGF-PB1-treated fibroblast, and the increase in
proteins was inhibited by the BMSC-EVs (Supplemen-
tal Fig. 2a). Additionally, the WNT signaling pathway
proteins B-CATENIN and LEF1 and the TGEp signal-
ing pathway proteins phosphorylated Smad2 and
phosphorylated Smad3 were upregulated in TGFp1-
treated fibroblasts and suppressed in BMSC-EV-
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treated fibroblasts (Supplemental Fig 2b). EVs
inhibited fibroblast activation by downregulating the
expression of TGF-Bl1 in the dermis, significantly
reduced the infiltration of inflammatory cells and
inhibited the release of inflammatory factors in the
skin of BLM-induced SSc mice. All these effects were
related to the miRNAs of the BMSC-EVs.

The miRNA let-7 family contains let-7a, 7b, 7c, 7d, 7e,
7f, 7 g, 7i, and 7j, mir-29, mir-125, and mir-21. All these
miRNAs were found to be highly expressed in mouse
BMSC-EVs in this study. let-7 was the first discovered
miRNA and is functionally conserved in vertebrates [50];
in addition, it was reported to inhibit the production of
proinflammatory cytokines such as II8 and receptors
such as Il1rl and I123r to negatively regulate the differ-
entiation of Th17 cells and to regulate natural killer T
cells [51-53]. Both EVs and miRNAs can regulate the
TGEP signaling pathway. For example, the downregula-
tion of the Let-7, mir-29, and mir-30 families in idio-
pathic pulmonary fibrosis is related to the TGEp
pathway [54, 55], and mir-29 knockdown significantly
upregulates TGFp signaling in the induction of pulmon-
ary fibrosis [54]. Moreover, let-7 cooperates with miR-
99a and miR-125b, both of which are highly expressed
in BMSC-EVs, when targeting receptor subunits and
SMAD signaling transducers to block the TGF( pathway
[56]. TGEP signaling and Wnt signaling have been found
to promote each other to induce fibrosis in SSc [57, 58].
Mir-21 and mir-29 have been reported to target trans-
ducers of Wnt signaling [59, 60]. Thus, miRNAs from
BMSC-EVs could regulate dysfunctional signals from
pathways like the TGFf and Wnt pathways to ameliorate
SSc symptoms, including ECM deposition and inflam-
matory infiltration. This study increases the understand-
ing of the molecular regulation of EV-mediated miRNAs
in SSc pathogenesis and of the treatment of SSc with
BMSC-EVs.

Conclusion

BMSC-derived EVs could effectively treat the dysfunc-
tion and fibrosis of skin in a murine SSc model, demon-
strating their potential as a replacement for related stem
cell therapies. The miRNAs of BMSC-EVs might allevi-
ate ECM deposition and inflammatory infiltration by
regulating the TGFB and WNT signaling pathways. For
the first time, BMSC-EVs were proven to be able to
intervened SSc in mice, and BMSC-EVs may provide a
potential cure for patients with SSc.
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