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Abstract

Background: Recently, tRNA-derived fragments (tRFs) have been shown to serve important biological functions.
However, the role of tRFs in gastric cancer has not been fully elucidated. This study aimed to identify the tumor
suppressor role of tRF-5026a (tRF-18-79MP9P04) in gastric cancer.

Methods: Quantitative reverse transcription-polymerase chain reaction (QRT-PCR) was first used to detect tRF-5026a
expression levels in gastric cancer tissues and patient plasma. Next, the relationship between tRF-5026a levels and
clinicopathological features in gastric cancer patients was assessed. Cell lines with varying tRF-5026a levels were
assessed by measuring tRF-5026a using gRT-PCR. After transfecting cell lines with a tRF-5026a mimic or inhibitor,
cell proliferation, colony formation, migration, apoptosis, and cell cycle were evaluated. The expression levels of
related proteins in the PTEN/PI3K/AKT pathway were also analyzed by Western blotting. Finally, the effect of tRF-
5026a on tumor growth was tested using subcutaneous tumor models in nude mice.

Results: tRF-5026a was downregulated in gastric cancer patient tissues and plasma samples. tRF-5026a levels were
closely related to tumor size, had a certain diagnostic value, and could be used to predict overall survival. tRF-5026a
was also downregulated in gastric cancer cell lines. tRF-5026a inhibited the proliferation, migration, and cell cycle
progression of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Animal experiments showed
that upregulation of tRF-5026a effectively inhibited tumor growth.

Conclusions: tRF-5026a (tRF-18-79MP9P04) is a promising biomarker for gastric cancer diagnostics and has tumor
suppressor effects mediated through the PTEN/PI3K/AKT signaling pathway.
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Introduction

Gastric cancer is one of the most common digestive
tract tumors worldwide [1]. Early-stage gastric cancer
patients do not typically experience discomfort or any
symptoms. Consequently, most gastric cancer patients
are diagnosed with middle- and late-stage disease,
resulting in a 5-year postoperative survival rate of as
low as 25%. However, the 5-year postoperative sur-
vival rate for early-stage gastric cancer is 90-95% [2].
Therefore, it is vitally important to study the molecu-
lar mechanisms underlying gastric cancer occurrence
to help identify biomarkers for the early detection of
gastric cancer.

Noncoding RNAs (ncRNAs) are a class of RNAs that
do not encode proteins. ncRNA mutations or abnormal
expression are closely related to the development of
many diseases. MicroRNAs (miRNAs), long noncoding
RNAs (IncRNAs), and circular RNAs (circRNAs) have
been demonstrated to play a role in the occurrence, de-
velopment, and prognosis of gastric cancer [3-7].

Recently, tRNA-derived small RNAs (tsRNAs), which
were once mistaken for random tRNA degradation prod-
ucts, have been found to have important biological func-
tions [8]. These small ncRNAs are produced by specific
cleavage of precursor tRNAs or mature tRNAs at differ-
ent sites [8—10]. These tsRNAs act as signaling mole-
cules in stress responses and regulate gene expression
[11, 12]. Therefore, there is potential for the broad appli-
cation of tsRNAs in disease diagnosis and treatment.
tsRNAs mainly include tRNA-derived fragments (tRFs)
and tRNA halves (tiRNAs) [13-16]. tRFs are approxi-
mately 14—31 nucleotides (nt) in length and can be fur-
ther classified based on their source: tRF-1, tRF-2, tRF-3,
tRF-5, and i-tRF [13]. tiRNAs can also be divided into
two subclasses: 5° tiRNA and 3" tiRNA [13].

High-throughput sequencing and database screening
have revealed disease-associated tsRNAs [17—-19]. In this
study, we screened tRF-5026a through tREdb (http://
genome.bioch.virginia.edu/trfdb/) [14] and MINTbase
(ID: tRF-18-79MP9P04; https://cm.jefferson.edu/
MINTbase/) [17], which indicated that tRF-5026a (tRF-
18-79MP9P04) is a gastric cancer-associated tRF. How-
ever, its diagnostic value and biological roles in gastric
cancer are unclear. tRF-5026a, belonging to the tRF-5
subgroup, comes from mature tRNAY**A< and tRNA-
Val=CAC \We found that tRF-5026a had value in the diag-
nosis of gastric cancer. Furthermore, by upregulating
and downregulating the expression of tRF-5026a in gas-
tric cancer cells, we found that tRF-506a regulated the
growth of gastric cancer cells through the PTEN/PI3K/
AKT signaling pathway. These results helped to increase
our understanding of gastric cancer and suggested that
tRF-5026a may be useful as a biomarker and therapeutic
target of gastric cancer.
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Materials and methods

Tissue and plasma samples

In this study, 86 pairs of gastric cancer tissues and their
corresponding adjacent nontumor tissues were collected
at the Affiliated People’s Hospital of Ningbo University,
China. Nontumor tissues located 5 cm away from the
edge of cancerous tissue were visually confirmed to have
no obvious tumor cells. Tissue specimens were immedi-
ately preserved in RNAfixer Reagent (Bioteke, Beijing,
China) after removal from the patient and kept at — 80
°C until further use. In addition, fasting plasma samples
were collected from 37 gastric cancer patients 1 day be-
fore and 7 days after surgery. Fresh normal plasma sam-
ples were collected from 37 healthy age- and sex-
matched normal donors at Ningbo No. 1 Hospital. Eth-
ylenediaminetetraacetic acid (EDTA) was used as the
anticoagulant in the tubes used for blood collection.

All tissue samples included in this study were patho-
logically diagnosed. All clinical data were collected by
experienced physicians. The researchers were blinded to
the clinical data when operating.

Cell culture and transfection

The normal gastric mucosal epithelial cell line GES-1
was purchased from the Chinese Academy of Medical
Sciences Cancer Hospital (Beijing, China). The gastric
cancer cell lines AGS, MGC-803, HGC-27, BGC-823,
and SGC-7901 were purchased from the Shanghai Insti-
tute of Life Sciences, Chinese Academy of Sciences
(Shanghai, China). AGS cells were cultured in Dulbec-
co’s modified Eagle’s medium (DMEM) with high glu-
cose (HyClone, Logan, UT, USA) supplemented with 1%
penicillin/streptomycin (Gibco, Grand Island, NY, USA)
and 10% fetal bovine serum (FBS) (PAN-Biotech, Aiden-
bach, Germany) at 5% CO, and 37 °C. The gastric can-
cer cell lines MGC-803, HGC-27, BGC-823, and SGC-
7901 and the normal gastric mucosal epithelial cell line
GES-1 were cultured in Roswell Park Memorial Institute
(RPMI) 1640 medium (HyClone, Logan, UT, USA) sup-
plemented with 10% FBS and 1% penicillin/streptomycin
at 5% CO, and 37 °C.

Cells were seeded in cell culture plates or culture
flasks. When the cells reached 40-60% confluency, the
cells were transfected with 0.5 uM tRF-5026a mimic or
inhibitor with Lipofectamine 2000 transfection reagent
(Life Technologies, Carlsbad, CA, USA). The sequences
of the tRF-5026a mimic and mimic negative control
used were 5'-GUUUCCGUAGUGUAGUGG-3" and 5'-
UUGUACUACACAAAAGUACUG-3', respectively. The
sequences of the tRF-5026a inhibitor and inhibitor nega-
tive control were 5'-CCACUACACUACGGAAAC-3’
and 5-CAGUACUUUUGUGUAGUACAA-3’, respect-
ively. The oligos were designed and synthesized by Gen-
ePharma Co., Ltd. (Shanghai, China).
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Total RNA extraction

Total RNA in tissues and cells was extracted with TRIzol
reagent, while RNA was extracted from plasma with
TRIzol LS reagent (Invitrogen, Karlsruhe, Germany).
The RNA quality was then measured using a SmartSpec
Plus Ultra-Micro Spectrophotometer (Bio-Rad, Hercules,
CA, USA). The RNA purity was assessed based on the
A260/A280 values [19], where values of 1.8-2.1 were
considered acceptable. RNA was stored at — 80 °C until
further use.

RNA pretreatment and reverse transcription

The length of tRF-5026a is 18 nt and is therefore too
short to detect with quantitative reverse transcription-
polymerase chain reaction (qRT-PCR). Adaptors were
utilized to mitigate this problem. However, RNA modifi-
cations that are typically observed with tRFs and tiRNAs,
such as 3’-aminoacyl, methylation, and 2',3"-cyclic
phosphate, were of concern [19]. These modifications
can block the end binding of adaptors to the RNA
terminus, where internal methylation can hinder cDNA
synthesis during reverse transcription (RT). The rtStar™
tRF and tiRNA Pretreatment Kit (Arraystar, Rockville,
MD, USA) was used to remove these modifications. The
3" adaptor contained a universal RT primer (5'-AGAT
CGGACGCGG-3'). The 5" adaptor and 3’ adaptor se-
quences used were 5'-TCGGCCGACGATC-3" and 5'-
CCGCGTCCGATCT-3", respectively. The manufac-
turer’s protocol was followed for RNA pretreatment
(demodification) [19]. The rtStar™ First-Strand ¢cDNA
Synthesis Kit (Arraystar) was then used to synthesize
c¢DNA for the detection of tRFs with qRT-PCR.

PCR analysis

Upon adding cDNA, the PCR mix was assembled with
GoTaq qPCR Master Mix (Promega, Madison, WI,
USA) according to the manufacturer’s protocol. PCR
was performed on an Mx3005P Real-Time PCR machine
(Stratagene, Palo Alto, CA, USA). Small nuclear RNA
RNU6-2 was used as an external reference control for
tRF-5026a. The ACy; method was used to analyze the ex-
pression levels, where a lower AC, value indicates a
higher expression. The relative expression was calculated
using the 27%*“Y method. Data are expressed as the
mean t standard deviation (SD) of experiments con-
ducted in triplicate. The primer sequences for qRT-PCR
are shown in Supplementary Table S1.

To verify the accuracy of qRT-PCR, the qRT-PCR
products were subjected to agarose gel electrophoresis
and sequencing. The tRF-5026a qRT-PCR product was
first purified using the UNIQ-10 PCR Product Purifica-
tion Kit (Thermo Fisher Scientific, Waltham, MA, USA)
and cloned into the pUCm-T vector (Thermo Fisher Sci-
entific) according to the manufacturer’s instructions.
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Sequencing was performed by Thermo Fisher Scientific.
In addition, we measured the tRF-5026a levels with
Northern blotting by designing a specific complementary
probe sequence (5'-CCACTACACTACGGAAAC-3").

Cell proliferation assay

Cell proliferation was assayed with a Cell Counting Kit 8
(CCK-8) (Dojindo Molecular Technologies, Kumamoto,
Japan). Specifically, 24 h after transfection with the tRF-
5026a mimic or inhibitor, 5 x 10% cells in 100 pL were
seeded per well of a 96-well plate. Each treatment was
performed with six replicates. After incubating the cells
in a CO, incubator for 24 h, a total of 10 pL of CCK-8
solution was added to each well, and the cells were incu-
bated for an additional 3 h. Finally, the absorbance was
measured at 450 nm with a microplate reader (Spectra-
Max M5, Molecular Devices, CA, USA).

Colony formation assay

tRF-5026a mimic- or inhibitor-transfected cells were
added to a 6-well plate (500 cells/well) 24 h post trans-
fection and cultured in a CO, incubator. Each condition
was performed in triplicate. After culturing the cells for
15 days, the cells were gently rinsed with phosphate-
buffered saline (PBS) once or twice and then fixed with
1 mL/well of a 4% paraformaldehyde solution for 30
min. The cells were stained with 1 mL of 0.1% crystal
violet dye for 30 min, and the plate was rinsed gently
with tap water several times. After drying, a picture was
taken and used for analysis.

Cell migration assay

A Transwell assay was used to measure cell migration.
Transfected cells were first incubated in a CO, incubator
for 24 h and then resuspended in Opti-MEM I Reduced-
Serum Medium (Gibco). A total of 8 x 10* cells (200 uL)
were added to the upper chamber of a Transwell insert
(Costar, Corning, NY, USA), and 500 pL of RPMI 1640
medium containing 10% FBS was added to the lower
chamber. After the cells were cultured at 37 °C in a CO,
incubator for 24 h, the cells were fixed and stained with
paraformaldehyde fixation and crystal violet dye. The
migrating cells were then counted.

Cell cycle detection

The cells were first starved for one day in serum-free
medium to synchronize the cell cycles. After transfec-
tion, the cells were collected in a flow tube. One milli-
liter of DNA staining solution and 10 pL of
permeabilization solution (Multi Sciences) were added.
After vortexing the tubes for 5-10 s, the cells were incu-
bated for 30 min in the dark at room temperature. Fi-
nally, the stained cells were run on a FACSCalibur Flow
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Cytometer (BD Biosciences). The data were analyzed
with Modifit software (BD Biosciences).

Western blot analysis

The cells were first lysed with radioimmunoprecipitation
assay lysis buffer (Solarbio, Beijing, China). The protein
levels were then quantified using a Bradford assay kit
(Beyotime, Haimen, China). After the protein samples
were separated by 12% SDS-polyacrylamide gel electro-
phoresis, the proteins were transferred to a polyvinyli-
dene fluoride (PVDF) membrane (Millipore, Billerica,
MA, USA). The membranes were blocked and incubated
with primary antibodies, followed by washing with Tris-
buffered saline and Tween 20 (TBST). Secondary anti-
bodies were then incubated with the membranes
followed by washing with TBST. Finally, the proteins
were detected using WesternBright ECL HRP (Advansta,
Menlo Park, CA, USA) and the signals were detected
with a Clinx GenoSens 1600 integrated gel imaging ana-
lysis system (Clinx, Shanghai, China). The primary anti-
bodies that were directed against phosphates and tensin
homolog deleted on chromosome ten gene (PTEN),
phosphatidylinositide 3-kinase (PI3K), and protein kin-
ase B (AKT), as well as the goat anti-mouse IgG and
goat anti-rabbit IgG secondary antibodies, were all pur-
chased from Cell Signaling Technology Company (Dan-
vers, MA, USA).

Subcutaneous tumor model

Male 3-week-old BALB/c nude mice purchased from the
Shanghai Siliake Laboratory Animal Center (Siliake,
Shanghai, China) were housed in a specific pathogen-
free environment in the Experimental Animal Center of
Ningbo University, China. After consulting the literature,
we found that gastric cancer SGC-7901 and MGC-803
cells have good tumorigenic properties [20, 21]. There-
fore, the SGC-823 and MGC-803 cells were used for
xenograft studies. The mice were split into the following
groups: mimic negative control, low concentration
mimic (0.05 uM), and high concentration mimic (0.1
puM). Each group contained six mice each. A total of 5 x
10° cells in 150 pL were injected subcutaneously. Treat-
ments were given every other week. After tumor forma-
tion, the tumor volumes were measured every other day,
and the mice were sacrificed 1 month later. After the tu-
mors were removed, their sizes and masses were mea-
sured. The major organs were also assessed
macroscopically for changes.

Statistical analysis

The data are expressed as the mean + SD and were ana-
lyzed using Statistical Program for Social Sciences (SPSS)
20.0 (IBM, Chicago, IL, USA) software. Differences
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between groups were evaluated using a two-sided Stu-
dent’s ¢-test. P < 0.05 was considered meaningful.

Results

Low expression of tRF-5026a is observed in gastric cancer
tissues and cells

To detect tRF-5026a levels by qRT-PCR, specific amplifi-
cation primers for tRF-5026a were designed that
spanned both the tRF-5026a and adaptor sequences.
Agarose gel electrophoresis showed that the qRT-PCR
product length was consistent with its theoretical length
(44 bp) (Fig. 1a). To further confirm the qRT-PCR prod-
uct was correct, T-A cloning and sequencing were per-
formed. The alignment results (Fig. 1b) were consistent
with the base sequence of tRF-5026a obtained from the
MINTbase database (https://cm.jefferson.edu/
MINTbase/) and the tRFdb database (http://genome.
bioch.virginia.edu/trfdb/search.php), indicating that the
primers for tRF-5026a were capable of specifically ampli-
fying tRF-5026a.

To understand the expression of tRF-5026a in gastric
cancer, 86 pairs of gastric cancer and adjacent tissues were
collected. tRF-5026a was expressed at low levels in gastric
cancer tissues, as assessed by qRT-PCR (Fig. 1c). We also
measured the expression of tRF-5026a in gastric cancer
and paracancerous tissues using Northern blotting. North-
ern blotting confirmed that tRF-5026a was indeed
expressed at low levels in gastric cancer tissues and that the
length of tRF-5026a (18 nt) and its mature tRNA (76 nt)
were consistent with the theoretical length (Fig. 1d). From
the qRT-PCR data, we observed that 79.1% (68/86) of the
samples expressed low amounts of tRF-5026a (Fig. 1e).

Plasma is one of the most commonly collected sample
types in the clinic. We therefore measured plasma tRF-
5026a levels in gastric cancer patients and healthy con-
trols. Healthy people had higher plasma tRF-5026a levels
than gastric cancer patients both one day prior to and 7
days postoperatively (Fig. 1f). In addition, tRF-5026a
plasma levels of postoperative patients were higher than
those of preoperative patients (Fig. 1f); that is, after the
tumor was removed by surgery, the plasma tRF-5026a
level tended to increase to the level of healthy people.

To further investigate tRF-5026a expression in gastric
cancer, we explored the expression levels of tRF-5026a
at the cellular level. tRF-5026a was expressed at lower
levels in gastric cancer cells (AGS, MGC-803, HGC-27,
BGC-823, and SGC-7901) than in normal gastric muco-
sal epithelial cells (GES-1), as assessed by qRT-PCR (Fig.
1g). These cell line data were consistent with the data
from the tissue and plasma samples (Fig. 1e, f).

Diagnostic value of tRF-5026a in gastric cancer
Given that the levels of tRF-5026a were different in ma-
lignant tissues, plasma samples, and cell lines compared
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to normal conditions (Fig. 1), tRF-5026a therefore has
the potential to serve as a biomarker of gastric cancer.
To assess this potential, we first analyzed the area under
the receiver operating characteristic (ROC) curve (AUC)
of tRF-5026a and then measured the relationship be-
tween tRF-5026a expression levels in gastric cancer tis-
sues and the clinicopathological features of gastric
cancer patients. Using the postoperative follow-up data
of gastric cancer patients, survival curves were drawn to
evaluate the outcomes of the gastric cancer patients. Fi-
nally, independent predictors of gastric cancer prognosis
were identified by single factor and multivariate Cox re-
gression analysis.

For tissue expression of tRF-5026a, the AUC was
0.631, and the sensitivity and specificity were 0.512 and
0.721, respectively, for a cutoff value of 14.03 (Fig. 2a).
For plasma expression of tRF-5026a, the AUC was 0.883,
and the sensitivity and specificity were 0.973 and 0.676,
respectively, for a cutoff value of 8.81 (Fig. 2a). The diag-
nostic efficiency of tRF-5026a as a biomarker was signifi-
cantly improved when using a combination of tissue and
plasma expression data. The combined AUC was 0.908,

with a sensitivity and specificity of 0.946 and 0.811, re-
spectively (Fig. 2a).

The combined use of several biomarkers is a useful
method to improve their diagnostic value [22]. We previ-
ously found that tiRNA-5034-GIuTTC-2 could be a po-
tential biomarker of gastric cancer [19]. We combined the
tRF-5026a and tiRNA-5034-GluTTC-2 data to determine
whether the diagnostic value increased. When we com-
bined the tissue and plasma levels of both tRF-5026a and
tiRNA-5034-GluTTC-2, the AUC increased to 0.938, with
a sensitivity of 0.919 and a specificity of 0.865 (Fig. 2b).
The AUCs of the tissue and plasma tRF-5026a and
tiRNA-5034-GIuTTC-2 were higher than when they were
used separately (Supplementary Table S2).

In addition, after analyzing the clinicopathological fea-
tures of gastric cancer patients, we found that tRF-5026a
expression levels were associated with tumor serum
marker carbohydrate antigen 19-9 (CA19-9) levels (P =
0.026) and tumor size (P = 0.001) (Supplementary Table
S3). A survival curve analysis found that tRF-5026a expres-
sion levels in tissues from gastric cancer patients correlated
with overall survival (OS), where the OS of the low tRF-
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5026a expression group was shorter than that of the high
expression group (Fig. 2¢). Univariate and multivariate ana-
lyses showed that tRF-5026a was associated with TNM
stage and lymph node metastasis and was a good inde-
pendent prognostic biomarker for gastric cancer (Supple-
mentary Table S4).

Effects of tRF-5026a on cell proliferation
To study the role of tRF-5026a in gastric cancer, we
used a tRF-5026a mimic and inhibitor to modulate the
expression levels in gastric cancer cells. The tRF-5026a
levels were upregulated by the tRF-5026a mimic in a
normal gastric mucosal epithelial cell line (GES-1) and
gastric cancer cell lines (AGS, MGC-803, HGC-27,
BGC-823, and SGC-7901), as measured by qRT-PCR
(Supplementary Fig. S1a). We also successfully downreg-
ulated tRF-5026a expression in the normal gastric muco-
sal epithelial cell line GES-1 and the gastric cancer cell
lines AGS, HGC-27, BGC-823, and SGC-7901 (Supple-
mentary Fig. S1b).

The CCK-8 assay revealed that in the normal gastric
mucosal epithelial cell line GES-1 (Supplementary Fig.

S2a, b) and the gastric cancer cells AGS (Supplementary
Fig. S2¢, d), BGC-823 (Supplementary Fig. S2e, f), and
SGC-7901 (Supplementary Fig. S2 g, h), increasing tRE-
5026a levels inhibited proliferation, while decreasing
tRF-5026a promoted proliferation.

We further verified the suppressive effects of tREF-
5026a on the proliferative capacity by using a colony for-
mation assay. In the normal gastric mucosal epithelial
cell line GES-1 and the gastric cancer cells AGS, BGC-
823, and SGC-7901, the tRF-5026a mimic decreased
colony formation, while the inhibitor increased colony
formation (Fig. 3).

Effects of tRF-5026a on cell migration

The effects of tRF-5026a levels on cell migration were
analyzed using a Transwell assay. The migratory capabil-
ities of the normal gastric mucosal epithelial cell line
GES-1 and the gastric cancer cell lines AGS, BGC-823,
and SGC-7901 were decreased with the tRF-5026a
mimic and increased by the inhibitor (Supplementary
Fig. S3).
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Effects of tRF-5026a on the cell cycle

To explain the effects of tRF-5026a on proliferation in
gastric cancer (Supplementary Fig. S2, Fig. 3), we next
measured the effects of tRF-5026a on the cell cycle. In-
creasing tRF-5026a levels resulted in a Go/G; block in
the normal gastric mucosal epithelial cell line GES-1 and
the gastric cancer cell lines AGS, BGC-823, and SGC-
7901, as measured by flow cytometry (Fig. 4). Interest-
ingly, decreasing tRF-5026a levels caused a block at G,/
M in these cell lines. These findings indicated that tRF-
5026a regulated cell cycle progression.

Effects of tRF-5026a on the expression of signal
transduction-related proteins

To further investigate the effects of tRF-5026a on prolif-
eration, migration, and cell cycle (Figs. 3 and 4), we next

examined whether tRF-5026a was involved in the PTEN/
PI3SK/AKT signaling pathway because this pathway is a
fundamental player in biological activities such as cell
proliferation, migration, and the cell cycle [23, 24]. PI3K
and AKT are positive regulators, while PTEN is a nega-
tive regulator of this pathway.

We selected the poorly differentiated gastric cancer
cell line BGC-823 and the moderately differentiated gas-
tric cancer cell line SGC-7901 as representative gastric
cancer cell lines to study the effects of tRF-5026a on the
expression of PTEN, PI3K, and AKT. We found that in-
creasing tRF-5026a levels in gastric cancer cells resulted
in a decrease in PI3K and AKT levels, with an increase
in PTEN levels (Fig. 5). Conversely, decreasing tRF-
5026a levels resulted in an increase in PI3K and AKT
levels and a decrease in PTEN levels (Fig. 5).
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Effects of tRF-5026a on the growth of transplanted
tumors in animal models

To further elucidate the role of tRF-5026a in gastric can-
cer, we performed a subcutaneous tumor formation ex-
periment in nude mice. Increasing tRF-5026a levels in
the gastric cancer cell lines SGC-7901 (Fig. 6a, b) and
MGC-803 (Fig. 6¢, d) significantly inhibited the tumor
growth rate as measured by the tumor volume (Fig. 6e,
g) and tumor weight changes (Fig. 6f, h) in a dose-
dependent manner compared with the control group.
Moreover, tumor growth in the gastric cancer cell line
MGC-803 was completely prevented in 5/6 mice in the
high concentration tRF-5026a mimetic group (Fig. 6c,
d). The possible reasons are as follows: (1) The baseline
level of tRF-5026a in MGC-803 cells was lower than that
in SGC-7901 cells (Fig. 1g); and (2) the upregulation ef-
fects of the tRF-5026a mimic on the level of tRF-5026a
between MGC-803 cells and SGC-7901 cells were not
significantly different (Fig. S1). These results indicate
that MGC-803 cells are more sensitive to the tRF-5026a
mimic than SGC-7901 cells.

Although there were no significant differences between
the baseline levels of tRF-5026a in GES-1 and SGC-7901
cells (Fig. 1g), we did not use the GES-1 cells in the animal
experiment because it is a normal gastric mucosal epithe-
lial cell line and does not form xenografts.

Discussion

The main role of tRNAs is to carry amino acids to the
ribosome, thereby facilitating the synthesis of the corre-
sponding protein under the guidance of the mRNA. In
recent years, it has been found that many tsRNAs (tRFs
and tiRNAs) produced under specific conditions are in
fact not random tRNA degradation products [25]. More-
over, many studies have recently shown that tRFs and
tiRNAs can be found in a variety of cancers [26—29].
tRFs and tiRNAs can affect the development of cancer
by regulating transcription, altering mRNA stability,
inhibiting translation, and regulating ribosome biogen-
esis [15]. tRFs and tiRNAs can also affect cancer
development by regulating cell proliferation, metastasis,
apoptosis, and the cell cycle [30, 31]. These tsRNAs can
influence the expression levels of endogenous target
genes [25, 32, 33]. Some tRFs and tiRNAs also form
complexes with Ago and Piwi, indicating that these tRFs
and tiRNAs can function as miRNAs or piRNAs [26].
tRFs and tiRNAs also serve as regulators of gene expres-
sion and the stress response [34].

The rich modifications observed on tRFs and tiRNAs
[8, 9] increase their stability in tissues, plasma, and cells
compared with other ncRNAs (e.g., IncRNAs, circRNAs,
and miRNAs) [35-37]. In addition, tRFs and tiRNAs are
highly enriched in plasma samples and other bodily
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fluids [38, 39]. Pretreatment of total RNAs and the
addition of an adaptor prior to qRT-PCR results in
higher yields and lower dimer production rates when
trying to measure the levels of these tsRNAs [40]. In
addition, tRFs and tiRNAs are abnormally expressed in
cancer and can be detected efficiently. tRFs and tiRNAs
are therefore prospective new biomarkers for the nonin-
vasive diagnosis of gastric cancer.

Studies have found that tsRNAs are differently
expressed in stem cells who are in different differenti-
ation states and affect their genes’ transcription and
translation [41]. Huang et al. found that tRF/miR-1280
can promote cancer stem cells (CSCs) in the progression
of colorectal cancer [28]. Many tsRNAs were detected in
embryonic stem cells (ESCs) and induced pluripotent
stem cells [42]. Guzzi et al. found that in mammalian
stem cells, post-transcriptional RNA modification af-
fected the biogenesis and function of tRFs [43]. PTEN/
PI3K/Akt pathway is related to CSCs in various cancers
[44—-46]. Dubrovska et al. found that the PTEN/PI3K/
Akt pathway was closely related to prostate CSCs and
PI3K might be an effective therapeutic target of prostate
cancer [45]. In non-small cell lung cancer (NSCLC),
PI3K/AKT pathway plays a great role in the enrichment
of CSCs, thereby promoting the occurrence and develop-
ment of NSCLC [46]. And some small RNAs such as
miR-873 inhibits the proliferation and differentiation of
pancreatic CSCs mediated through PI3K/AKT signaling
pathway [47]. Here, we found that tRF-5026a inhibited

the occurrence and development of gastric cancer
through PI3K/AKT signaling pathway.

This study mainly aimed to screen for and identify
gastric cancer-related tRFs and to explore their bio-
logical functions. tRFs have the potential to play a major
role in gastric cancer diagnostics because tRFs are more
stable than traditional ncRNAs, and many ncRNAs have
demonstrated potential utility in gastric cancer diagnos-
tics. It remains to be determined how tRFs regulate the
occurrence and development of gastric cancer.

In this study, we measured representative gastric
cancer-associated tRFs at three levels, the cellular, ani-
mal, and clinical levels, and studied their possible bio-
logical functions. We found that tRF-5026a was
downregulated in gastric cancer tissues, plasma samples
and cells (Fig. 1), indicating that tRF-5026a may have a
tumor suppressor role and can be used as a potential
biomarker for gastric cancer diagnosis (Fig. 2). We found
that increasing tRF-5026a levels inhibited cell prolifera-
tion and migration and arrested the cell cycle process,
whereas silencing tRF-5026a resulted in increased prolif-
eration and migration (Figs. 3 and 4).

We then evaluated whether tRF-5026a could affect the
development of gastric cancer by acting on critical sig-
naling pathways. Because the PI3K/AKT signaling path-
way is one of the fundamental pathways identified in the
development of gastric cancer, we measured the effects
of tRF-5026a on the expression of key proteins in this
pathway. The PI3K/AKT signaling pathway plays a role
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in promoting cell proliferation, preventing cell apoptosis,
and promoting cell viability [48]. PI3K and AKT are
positive regulators of this pathway, while PTEN acts as a
negative regulator of the PISK/AKT signaling pathway.
PI3K is dephosphorylated to phosphatidylinositol di-
phosphate (PIP2) by using phosphatidylinositol triphos-
phate (PIP3) as a substrate. Because PIP3 is a product of
PI3K that mediates the activation of AKT and dephos-
phorylation to PIP2 is accomplished under the action of

PTEN, PTEN therefore inhibits the activity of the PI3K/
AKT signaling pathway [49, 50]. We found that upregu-
lating tRF-5026a levels inhibited the PI3K/AKT signaling
pathway, while downregulating tRF-5026a promoted ac-
tivation of the PI3K/AKT pathway (Fig. 5). These effects
led to either inhibited cell proliferation and migration,
arrested cell cycle progression, or increased proliferation
and migration (Figs. 3 and 4). The PI3K/AKT signaling
pathway, which is overactive in many cancers, regulates
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the proliferation, migration, invasion, and cell cycle pro-
gression of cancer cells and is closely related to tumor
neovascularization, endothelial growth, and replication
potential [51]. Our study demonstrated that tRF-5026a
inhibited the growth of gastric cancer cells by regulating
the PI3BK/AKT signaling pathway and it exerted a tumor
suppressor effect (Fig. 5). However, one of the limits of
this study is that the RNAs and proteins that directly
bind to tRF-5026a were not identified, which needs to
be addressed in future studies.

In conclusion, tRF-5026a (tRF-18-79MP9P04) is a po-
tential biomarker for the diagnosis of gastric cancer.
tRF-5026a (tRF-18-79MP9P04) had tumor suppressive
effects in gastric cancer mediated through the PTEN/
PI3K/AKT signaling pathway.
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