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Abstract

Menstrual blood-derived mesenchymal stem cells (MenSCs) have great potential in regenerative medicine. MenSC
has received increasing attention owing to its impressive therapeutic effects in both preclinical and clinical trials.
However, the study of MenSC-derived small extracellular vesicles (EVs) is still in its initial stages, in contrast to some
common MSC sources (e.g., bone marrow, umbilical cord, and adipose tissue). We describe the basic characteristics
and biological functions of MenSC-derived small EVs. We also demonstrate the therapeutic potential of small EVs in
fulminant hepatic failure, myocardial infarction, pulmonary fibrosis, prostate cancer, cutaneous wound, type-1
diabetes mellitus, aged fertility, and potential diseases. Subsequently, novel hotspots with respect to MenSC EV-
based therapy are proposed to overcome current challenges. While complexities regarding the therapeutic
potential of MenSC EVs continue to be unraveled, advances are rapidly emerging in both basic science and clinical
medicine. MenSC EV-based treatment has great potential for treating a series of diseases as a novel therapeutic
strategy in regenerative medicine.
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Background
Mesenchymal stem cells (MSCs) are heterogeneous sub-
sets of stromal/mesenchymal regenerative cells [1, 2].
They possess powerful self-renewal ability and multi-
lineage differentiation potential via symmetric/asymmet-
ric cell division [3–5]. Currently, MSC-based therapy has
been diffusely exploited in the treatment of numerous
diseases in basic science and clinical medicine [6–12].

Additionally, many clinical trials have proved that MSC
infusion is safe and effective at various doses [13–18].
Currently, MSCs can be obtained from almost all parts
of tissues/organs, including bone marrow, umbilical
cord, adipose tissue, placenta, fetal tissue, Wharton’s
jelly, induced pluripotent stem cell (iPSC), embryonic
stem cell (ESC), cervical tissue placentae, periodontal lig-
aments amniotic membrane/fluid, endometrium, lung,
liver, dental pulp, peripheral blood, dermal tissues, syn-
ovial membranes, and skeletal muscle tissue [19–22].
With the development of personalized medicine, some
attractive treatment modalities should be considered to
provide precise measures that reflect the underlying bio-
logical processes of the complex of diseases in each pa-
tient [23–25]. Moreover, with the exception of common
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sources of MSCs [including bone marrow (BM)-MSCs,
umbilical cord (UC)-MSCs, and adipose tissue (AD)-
MSCs], other sources should also be considered because
these novel sources of MSCs may possess powerful
merits in the treatment of corresponding diseases [10,
26–28]. Menstrual blood-derived mesenchymal stem
cells (MenSCs) were first found by Meng et al. in 2007
[29]. Since then, MenSC has become a promising thera-
peutic strategy for the development of effective treat-
ments [30–33]. Compared with other sources of MSCs,
MenSCs have several advantages, including abundance,
periodic acquisition, non-invasive isolation, high prolif-
eration rate, low immunological rejection, and lack of
ethical issues [34–36]. More importantly, MenSCs sup-
ply an alternative way that is both painless and free of
ethical issues arising from BM-MSCs donations [36].
MenSCs possess a doubling time of approximately 19.4
h, twice as fast as that of BM-MSCs that is estimated at
40–45 h [29]. Menstrual blood in women can be ob-
tained monthly from the age of 20 to 45 years [37–40].
This impressive source is superior to BM-MSCs, AD-
MSCs, and UC-MSCs. Although extensive progress has
been made in deciphering the immunosuppression/im-
munoregulation of MSCs, the study on the immunoreg-
ulation of MenSCs is still in its infancy [34]. It is only
known that MenSCs do not express MHC-II. Therefore,
the slow progress in the immunoregulation of MenSCs
greatly limits the application of MenSCs. Based on these
advantages, MenSCs have been continuously reported
for treating various diseases in both basic science and
clinical medicine [37, 40–43].
An increasing number of studies have demonstrated

that the therapeutic benefits of MSCs are principally me-
diated via paracrine roles, through the secretion of
growth factors, chemokines, and cytokines rather than
their differential abilities or cellular replacements [5, 10,
44–53]. Therefore, researchers are increasingly inter-
ested in the therapeutic value of MSC-derived bioactive
molecules, especially the secretome and extracellular
vesicles (EVs), which are considered the key components
of paracrine effect in the treatment of MSC-based ther-
apy [54–56]. Furthermore, researchers have shown that
MSC-conditioned medium induced repair of injured tis-
sues in several animal models [47, 57]. Compared with
MSC-based therapy, MSC EV-based therapy is highly
recommended because it is less likely to trigger an
immune-repulsion response and is safe to the host, not
causing ethical problems [58, 59]. In addition, EVs have
different routes of injections, including intranasal, oral,
intravenous, intraperitoneal, and subcutaneous [60–64].
Thus, MenSC-derived EVs offer important application
advantages. In this review, we systematically discuss the
current progress of MenSC-derived EVs with regard to
the identification of components, functions, and

therapeutic potential in treating a series of diseases.
Moreover, we highlight current challenges and promis-
ing perspectives of MenSC-derived EVs in regenerative
medicine to guide future clinical applications.

The basic characteristics and biological functions
of MSC-derived small EVs
EVs are generally released from the endosomal compart-
ments, present in almost all body fluids, and released by
all types of cells [65, 66]. They are involved in multiple
pathological processes with cell-to-cell communication
monitoring, showing promising therapeutic potential in
different diseases [67–70]. Classically, EVs are generally
divided into exosomes, microvesicles, and apoptotic bod-
ies, based on their sizes, origins, biogenesis, and cargo:
(1) exosomes, diameter of 30–150 nm, fused with the
cell membrane through multivesicular bodies to deliver
into the extracellular body; (2) microvesicles, diameter of
50–1000 nm, derived from the direct budding of the
plasma membrane; (3) apoptotic bodies, a diameter of
100–5000 nm, displaying wide distributions [71–73].
Their biological functions are shown in Table 1.
As consensus has not yet emerged on specific markers

of EV subtypes, it is hard to distinguish exosomes or
microvesicles; therefore, MSC exosomes or microvesicles
are referred to as MSC-derived small EVs, following the
classical references [74–77]. Small EVs consist of various
biomolecules, such as regulatory proteins, small pep-
tides, lipids, and some genetic materials (including
mRNA, small RNA, long non-coding RNA, genomic
DNA, complementary DNA, and mitochondrial DNA),
which are delivered to a spectrum of recipient cell types
[78–81]. Over the past decade, small EVs have emerged
as major mediators of cell-free therapy and are a promis-
ing tool for a variety of diseases. In view of their excep-
tionally broad biological functions, small EVs can
stimulate targeting cells, transfer membrane receptors,
deliver proteins or genetic information, and eventually
cause epigenetic differences in recipient cells [82–85]. In
addition to cell communication, it is increasingly evident
that small EVs have an important function in regulating
different physiological processes, such as cell mainten-
ance, immune surveillance, cell migration, tissue repair,
glycometabolic regulation, cell differentiation, cancer
therapy, hematopoietic engraftment, blood coagulation,
and angiogenesis [86–92]. Thus, small EVs offer a
unique platform for the development of a novel class of
therapeutics for the treatment of various diseases.
Generally, MSC-derived small EVs share an evolution-

arily conserved set of molecules, including membrane
transport and fusion proteins (GTPases, annexins, and
flotillin), heat shock protein (HSP) family (HSP20,
HSP27, HSP40, HSP60, HSP70, and HSP90), tetraspa-
nins (CD9, CD63, and CD81), multivesicular body

Chen et al. Stem Cell Research & Therapy          (2021) 12:433 Page 2 of 15



biogenesis [ALG-2-interacting protein-X (Alix) and
TSG101], as well as some lipid-related proteins and
phospholipases [93–96]. The therapeutic potential of
MSC-derived small EVs is usually elicited by delivering
biologically relevant proteins and RNAs to recipient cells
[97]. Accumulating evidence shows that MSC-derived
small EVs are successfully applied as therapy of several
disease models [98–105]. Recently, small EVs have been
reported as the principal therapeutic agents with regen-
erative capabilities and immunomodulatory functions of
MSC secretions [75, 80, 106, 107]. To date, MSC-
derived small EVs have been isolated from a series of
sources, including human/mouse/rat/canine/pig bone
marrow [108–112], human/mouse/rat/canine/equine/
mini-pig adipose tissue [112–117], mouse cardiac tissue
[118], and human umbilical cord [119], ESC [120], iPSC
[121], menstrual blood [122], Wharton’s jelly [123], pla-
cental and fetal tissue [124, 125], dental pulp [126], gas-
tric cancer tissue [127], synovial membrane [128],
corneal [129], fetal liver [130], oral mucosa [131], and
amniotic fluid [132]. Detailed information on reports of
MSC-derived small EVs from different sources is pre-
sented in Table 2. Although an increasing number of
sources of MSCs are being evaluated for their role in
exosomes, the underlying mechanism and appropriate
source need to be further explored.
MenSC-derived small EVs were first reported by

Lopez-Verrilli et al. in 2016 [122], and the authors re-
vealed that MenSC-derived small EVs promote axonal
regeneration after nerve injury in the central and periph-
eral nervous system. Previous studies showed that
MenSC-derived small EVs express CD63 and TSG101
[133, 134], and other researchers further discovered that
MenSC-derived small EVs present CD9, CD81, HSP70,
and HSP90 [122, 135–140]. Additionally, MenSC-
derived small EVs do not express Rab5 or calnexin [122,
136, 138, 140]. Thus, protein markers of MenSC-derived
small EVs should include CD9, CD63, CD81, HSP70,
HSP90, and TSG101 and exclude Rab5 and calnexin
(Fig. 1). Although these markers are commonly studied,
some other molecules (such as HSP60 and Alix) still
need to be recognized in accordance with universal

MSC-derived small EVs [94, 106, 141]. Moreover, serv-
ing as a unique tissue type source of MSCs, some repre-
sentative markers from MenSC-derived small EVs
should be identified to represent the specific source of
MSCs. Although research on MenSC-derived small EVs
is relatively new compared to common sources of MSCs,
the basic definition and identification of MenSC-derived
small EVs should be established for future research.

Table 1 Biological functions of extracellular vesicles (EVs) in body fluids

EVs
functions

Exosomes Microvesicles Apoptotic bodies

Origin Endosomal multivesicular bodies Cell surface Apoptotic cell surfaces

Generation Intracellular vesicle traffic Plasma membrane Plasma membrane

Size 30–150 nm 50–1000 nm 100–5000 nm

Markers Tetraspanins (CD9/63/81), Alix, HSP70/90, flotillin,
TSG101, clathrin, GM130, MHC

Annexin V, selectins, integrins, flotillin-2, CD40,
metalloproteinases

Histones, Annexin V

Cargos Proteins, lipids, mRNA, miRNA, DNA, carbohydrates Proteins, mRNA, miRNA Proteins, mRNA, miRNA,
fragment of DNA

Table 2 Different sources of MSC-derived small EVs

Source of MSC-derived small EVs Year Reference

Human ESC 2010 [120]

Rat BM 2012 [108]

Mouse BM 2012 [109]

Human BM 2013 [110]

Human AD 2013 [113]

Human UC 2013 [119]

Human placental 2013 [124]

Human Wharton’s jelly 2013 [123]

Human gastric cancer tissue 2014 [127]

Fetal tissue 2014 [125]

Dental pulp 2015 [126]

Human iPSC 2015 [121]

Rat AD 2016 [114]

Mouse AD 2016 [115]

Human menstrual blood 2016 [122]

Mini-pig AD 2016 [116]

Human amniotic fluid 2016 [132]

Human synovial membrane 2016 [128]

Human Corneal 2018 [129]

Pig BM 2018 [111]

Mouse cardiac 2018 [118]

Human fetal liver 2019 [130]

Human oral mucosal 2019 [131]

Equine AD 2019 [117]

Canine BM and AD 2019 [112]

Notes: ESC, embryonic stem cell; BM, bone marrow; AD, adipose; UC, umbilical
cord; iPSC, induced pluripotent stem cell; AM, amniotic membrane
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Therapeutic potential of MenSC-derived small EVs
in treating various diseases
In contrast to numerous studies on small EVs from
common sources of MSCs (such as BM-MSCs, AD-
MSCs, and UC-MSCs), the research on the therapeutic
potential and underlying mechanisms of MenSC-derived
small EVs are still in an initial stage. In this context, al-
though the therapeutic effect of MenSC has been dem-
onstrated since 2007 [29], the study on MenSC-derived
small EVs was first reported in 2016 [122]. Owing to the
superiority of MenSC gradually emerging in recent years
[31, 33, 34, 142], studies on MenSC-derived small EVs
have great potential and profound significance in regen-
erative medicine, as shown in Fig. 1.

MenSC-derived small EVs for fulminant hepatic failure
(FHF)
FHF, also termed acute liver failure (ALF), is a progres-
sive, life-threatening, and sharp pathological reaction
characterized by hepatic dysfunction [143]. Currently,
orthotopic liver transplantation (OLT) is the most effect-
ive treatment for FHF. However, because of the shortage
of donor organs, high transplantation costs, and accurate

expertise needed for the surgery, an increasing number
of researchers are seeking other available methods to
treat FHF. It has been verified that MenSC-derived small
EVs have an effect in suppressing hepatocyte apoptosis
in a D-galactosamine (D-GalN)/lipopolysaccharide
(LPS)-induced FHF model in mice [133]; also, the ex-
pression of tumor necrosis factor-α (TNF-α), interleukin
(IL)-6, and IL-1β was evidently reduced in co-culture of
alpha mouse liver 12 (AML12) hepatocytes with
MenSC-derived small EVs in vitro. Additionally, the ef-
fective bioactive molecules for ameliorating FHF were
mainly mediated by MenSC exosomes of angiopoietin-2,
intercellular adhesion molecule-1 (ICAM-1), anexelekto,
IL-6, osteoprotegerin, IL-8, insulin-like growth factor-
binding protein-6 (IGFBP-6), and angiogenin [133].

MenSC-derived small EVs for myocardial infarction
Myocardial infarction (MI), a type of coronary artery dis-
ease, is caused by apoptosis of cardiomyocytes due to ex-
cessive ischemic conditions [144]. Because MI has a
long-term undiscovered period, it usually leads to severe
hemodynamic deterioration and sudden death. Thus, a
novel therapeutic strategy is required to treat MI. Wang

Fig. 1 Identification of MenSC-derived small EVs and their therapeutic potentials for tissue repair in various diseases. Small EVs from MenSCs
consist of regulatory proteins, RNAs, and DNAs, lipids, and siginaling peptides promoting regenerative repair of wounded cells and tissues.
MenSC-derived small EVs are positive for the expression of CD9, CD63, CD81, HSP70, HSP90, and TSG101, and they are negative for Rab5 and
calnexin. The expression of HSP60 and Alix, which are positive for universal MSC-derived small EVs, need to be recognized for further verification.
The therapeutic potential of MenSC-derived small EVs in various diseases, including fulminant hepatic failure (FHF; via inhibition of hepatocyte
apoptosis by bioactive molecules), myocardial infarction (MI, via secreted microRNA-21), pulmonary fibrosis (via secreted microRNA-lethal-7),
prostate cancer (PC; via suppression of angiogenesis by ROS signaling), cutaneous wound (via increase in VEGF-A and activation of NF-κB
pathway), type-1 diabetes mellitus (T1DM; via generation of β islets to secrete insulin by Pdx-1 signaling), aged fertility (via regulation of ROS
signaling and increase in pluripotent activity), and some potential diseases (such as inflammatory and neurodegenerative diseases)
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et al. discovered that transplantation of MenSC-derived
small EVs significantly improved cardiac function in in-
farcted rat hearts [134]. The authors further found that
microRNA (miR)-21 secreted from MenSC-derived
small EVs played a dominant role in improving MI in
the animals. The exosomal miR array showed that miR-
21 targets phosphatase and tensin homolog (PTEN) and
the downstream molecule of AKT/PKB (protein kinase
B) to trigger signal cascades. This result showed that
MenSC-derived small EVs ameliorate the damaged car-
diac function in MI primarily through the paracrine
function on excretive miR-21.

MenSC-derived small EVs for pulmonary fibrosis
Pulmonary fibrosis is a chronic problem that is of wide-
spread concern [145]. Lung transplantation is currently
the optimal treatment for this disease, but it is limited
by the lack of donors; thus, an alternative method is re-
quired for pulmonary fibrosis treatment. Sun et al. veri-
fied that transplantation of MenSC-derived small EVs
significantly ameliorated bleomycin-induced pulmonary
fibrosis by repairing alveolar epithelial cell injury in a
mouse model in vivo and in vitro [146]. Further investi-
gation revealed that miR lethal-7 (let-7) of MenSC-
derived small EVs enhanced the ability of lectin-like oxi-
dized low-density lipoprotein receptor-1 (LOX-1) to in-
hibit the activation of reactive oxygen species (ROS) and
mitochondrial-DNA damage by regulating NOD-, LRR-,
and pyrin domain-containing protein 3 (NLRP3) signal-
ing pathway. Thus, targeting miRs (such as let-7) of
MenSC-derived small EVs is a promising approach for
the treatment of pulmonary fibrosis.

MenSC-derived small EVs for prostate cancer
Prostate cancer (PC) is an epithelial malignancy that oc-
curs in the prostate and is the third-leading cause of
cancer mortality in men [147]. Although comprehensive
treatments (such as surgery radiotherapy, endocrine
therapy, and radiation) are used in PC patients, the prac-
tical effect is still far away from curing the disease [148].
Some researchers have found that MSC-derived small
EVs have the ability to ameliorate the tumor microenvir-
onment by limiting tumor growth, angiogenesis, and me-
tastasis, mainly targeting fibroblasts, endothelial cells,
and immune cells [149]. Recently, Alcayaga-Miranda
et al. proved that MenSC-derived small EVs significantly
inhibited tumor angiogenesis in the PC3 tumors model
in mice [135]. Moreover, the antitumor effect contrib-
uted to a decrease in vascular density and tumor
hemoglobin content. MenSC-derived small EVs inhib-
ited the secretion of vascular endothelial growth factor
(VEGF) and hypoxia-inducible factor-1α (HIF-1α) and
reduced the activity of nuclear factor kappa B (NF-κB).
The authors further proved that MenSC-derived small

EVs lowered reactive oxygen species (ROS) production
in PC3 cells. In this context, a previous study showed
that ROS regulates angiogenesis and tumor development
through HIF-1α and VEGF in PC3 cells [150]. Therefore,
these results indicate that MenSC-derived small EVs act
as a blocker of tumor-induced PC angiogenesis by sup-
pressing tumor-induced angiogenesis via a ROS-
dependent mechanism.

MenSC-derived small EVs for cutaneous wounds
Cutaneous wounds commonly occur via loss of struc-
tures and appendages by externally acute stimulants
(such as extensive burns, scalds, trauma, or diabetic ul-
cers) that induce chronic wounds/scars [151]. MSC-
derived small EVs have therapeutic potential in cutane-
ous repair and regeneration [152]. Dalirfardouei et al.
showed that MenSC-derived small EVs significantly re-
duced cutaneous damage in diabetic foot ulcers in mice
[140]. Wound healing mainly contributes to the
polarization of M1-M2 macrophages by increasing
VEGF-A to promote angiogenesis and activating NF-κB
to alleviate local inflammation.

MenSC-derived small EVs for type-1 diabetes mellitus
(T1DM)
T1DM is caused by multiple factors that lead to an in-
crease in blood glucose concentration and a severe de-
crease in insulin secretion [153]. Currently,
transplantation of islets is the most effective treatment;
however, it is restricted owing to the lack of sufficient
pancreatic donors. The therapeutic potential of MenSCs
for treating T1DM has been verified [154]. Mahdipour
et al. demonstrated that MenSC-derived small EVs have
a therapeutic function, improving T1DM in rats [138].
The authors also found that administration of MenSC-
derived small EVs improved the regenerative capacity of
β islets and facilitated the production of insulin through
the pancreatic and duodenal homeobox 1 (Pdx-1) signal-
ing cascade.

MenSC-derived small EVs for aged fertility
With social and financial pressure, an increasing number
of women have postponed motherhood after the age of
thirty-five. However, because of the poor quality and in-
sufficient quantity of oocytes, the overall pregnancy rate
and fertility level is low [155, 156]. Therefore, improving
the quality of oocytes or activating aging oocytes is a vi-
able route to improve the fertility of aged women [157].
Different sources of MSC-derived small EVs play a vital
role in improving ovarian insufficiency age-related fertil-
ity [139]. Moreover, EVs can be used to improve the
quality of embryos during assisted reproduction [157].
Marinaro et al. found that MenSC-derived small EVs in-
creased embryo quality and quantity by regulating
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antioxidant enzymes and increasing pluripotent activity
in an aged mouse model [139]. Additionally, MenSC-
derived small EVs showed the ability to increase the de-
velopmental level of in vitro fertilization-derived em-
bryos via an ROS-dependent approach in aged female
mice [137]. Based on the proteomics analysis of murine
blastocysts, some core genes related to cellular response
to oxidative stress (Gpx1 and Sod1), metabolism (Acaca
and Gapdh), placentation (Pgf, VEGF-A), and trophecto-
derm/inner cell mass formation (Pou5f1 and Sox2) are
the most likely candidates for improving embryo quality
and quantity [137, 139]. Other researchers found that
miR-17-5P, miR-223-3P, miR-146a-5p, and miR-21-5p
from UC-MSC-derived small EVs are possible contribu-
tors to improving ovarian insufficiency or age-related
fertility [158–160]. Additionally, Zhao et al. revealed that
increased expression of integrin-β3, leukemia inhibitory
factor, and VEGF in AD-MSC-derived small EVs may
promote endometrial regeneration and fertility restor-
ation [161].

MenSC-derived small EVs for potential diseases
Although many studies have focused on the mutual ef-
fect between MenSC-derived small EVs and specific dis-
ease models, the study of the interaction between
MenSC-derived small EVs and pro-inflammatory condi-
tions also provides a direction for regenerative medicine.
Marinaro et al. used a comprehensive proteomics and
transcriptomics analysis and found that some function-
ally immunomodulatory proteins [including colony-
stimulating factor-1, PYCARD (PYD and CARD do-
main), and endoplasmic reticulum aminopeptidase 1
(ERAP1)] regulate immune responses in interferon
(IFN)-γ primed MenSC-derived small EVs [162]. Thus,
MenSC-derived small EVs have a promising immuno-
modulatory potential for treating inflammation-related
diseases in future studies. Additionally, Lopez-Verrilli
et al. found that MenSC-derived small EVs effectively
enhanced the growth of primary neuronal cells [122].
The authors showed that MenSC-derived small EVs
have superior potential when compared with MSC-
derived small EVs from other sources (including bone
marrow, umbilical cord, and chorion) in neurodegenera-
tive diseases.

Current challenges of MenSC-derived small EVs
for tissue repair
Although MenSC-derived small EVs have been described
in several studies, the effective elements of small
MenSC-derived EVs remain a mystery. Small EVs con-
tain bioactive molecules that affect the characteristics of
target cells [82, 98]. Additionally, the involvement of
miRNAs in the cellular and molecular mechanisms of
MenSC-derived small EVs is of great importance, but to

date, only a few miRNAs (miR-21and let-7) have been
explored [134, 146]. In fact, MenSC expresses octamer-
binding transcription factor 4 (OCT-4), which is a
marker of ESC [154], a distinct marker compared with
other sources of MSCs. Research on MenSC-derived
small EVs is relatively limited compared with MSC-
derived small EVs from other sources (such as bone
marrow, adipose tissue, and umbilical cord). Currently,
the similarity of therapeutic mechanisms between
MenSC-derived and other sources of small EVs is mainly
due to the secretion of effective bioactive molecules and
production of miRNAs [163]. The miR-21, miR-27a,
miR-196a, and miR-206 are abundant in EVs from BM-
MSCs and are responsible for pro-regenerative and im-
munomodulatory effects [164–166]; miR-20, miR-21,
miR-23a, miR-125b, miR-326, and miR-145 are profuse
in EVs from UC-MSCs and are responsible for medi-
ation of apoptosis, regulation of autophagy, inhibition of
neddylation, and suppression of myofibroblast differenti-
ation [167–169]; let-7, miR148a, miR378, and miR532-
5p are abundant in EVs from AD-MSCs and are respon-
sible for angiogenesis, cellular transport, apoptosis, and
proteolysis [170, 171]; and let-7 and miR21 are abundant
in EVs from MenSCs and are responsible for regulating
mitochondrial-DNA damage and enhancing cell survival
rate [134, 146]. Several studies explored MSC-derived
small EVs signaling pathways [64, 160, 172, 173], sup-
porting that a thorough database of small EVs from
MenSCs is needed to further assess their therapeutic po-
tential. Additionally, current studies about small EVs
from MenSCs are relatively few and most of them are
preliminary, the further in-depth comparisons are neces-
sary between MenSC-derived and other sources of
MSC-derived small EVs. And distinct bioactive elements
and special signaling pathways from MenSC-derived
small EVs are needed to be explored in the future.
Determining the optimal dose and appropriate time

points for the administration of small EVs without ad-
verse effects are vital issues. The quality control of
MenSC-derived small EVs is an important factor, an in-
dispensable link in the process for the final approval of
MenSC-derived small EV therapy. The quality of small
EVs mainly includes characteristics, purity, efficacy,
safety, and stability based on a large amount of data to
establish the standards of consistency and stability. Al-
though MenSC is a heterogeneous cell population, as a
minimum standard catalog, it must follow the current
guidelines of the International Society for Cellular Ther-
apy [174]. Different methods to separate and quantify
MenSC-derived small EVs with different identification
standards may cause controversy and reduce reliability
in experimental conclusions. It is difficult to analyze and
compare exosomes from different sources because the
corresponding contents are also discrepant. Therefore,
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establishing a unified standard of MenSC-derived small
EVs will facilitate their clinical application.
The long-term effect of MenSC-derived small EVs is a

vital issue that needs to be addressed in regenerative
medicine. There are few studies concerning the sus-
tained therapeutic effects. Current purification and en-
richment strategies (including ultracentrifugal collection,
tandem filtration, and polyethylene glycol precipitation)
of MSC-derived small EVs originate from the manufac-
turing methods of viruses or viral-like particles. The
stabilization of the purity and physiological function of
MenSC-derived small EVs remains a problem. There-
fore, if any viral-related products (including lentiviral
and adenoviral vectors of gene editing) are present in
the conditioned medium or recipient cell, they will be
enriched in the final exosome extraction, which is a po-
tential risk for safe use. In addition, small EVs contain
abundant small RNAs. These small RNAs may increase
the instability of nucleic acid chains or cause structural
changes in partial tissues along with some complications
[175, 176]. Therefore, before MenSC-derived small EVs
are applied in clinical medicine, more studies are re-
quired with a large number of basic medicine and clin-
ical trials to assess their long-term safety.

Future perspectives of MenSC-derived small EVs
in regenerative medicine
As there is great potential for the clinical application of
MenSC-derived small EVs, novel strategies should be de-
veloped to expedite this process. Future perspectives of
MenSC-derived small EVs with regard to regenerative
medicine will be devoted to the aspects subsequently de-
scribed (Fig. S1).

Engineered MenSC-derived small EVs
Currently, genome editing is a novel technology widely
applied in genetic modifications, functional genomics,
transcriptional regulations, and stem-cell therapies. With
the rapid development of CRISPR/Cas9, engineered
MSC-derived small EVs are a powerful tool [94, 177,
178]. This modification can be achieved by overexpress-
ing proteins or modifying miRs in MSCs to achieve
changes in exosomes [179]. These engineered MSC-
derived small EVs have a higher therapeutic potential
than the initial MSC-derived small EVs. This has been
proven for small EVs from miRs (including miR-92a-3p,
miR-133b, miR-181-5p, miR-22-3p, miR-31, miR-466,
and miR-584)-engineered MSCs [180–186]. Additionally,
small EVs from proteins (including SDF-1, TRAIL,
TIMP2, P53, IDO1, and PEDF)-engineered MSCs also
improved the treatment outcome in regenerative medi-
cine [187–192]. Owing to the therapeutic potential of
MenSC-derived small EVs in several diseases, some engi-
neered small EVs of MenSC are establishing a

foundation for clinical trials and clinical medicine. As
there are only sporadic studies on miR-21 engineered
MenSC-derived small EVs in treating MI [134], more
engineered MenSC-derived small EVs should be
explored.

Hypoxia-treated MenSC-derived small EVs
Hypoxia is an important feature of various tumors. It
can maintain the survival of tumor cells and has a strong
correlation with tumor invasion and poor prognosis
[193]. Hypoxic cells undergo extensive intracellular mo-
lecular and metabolic regulation to create a tumor
microenvironment that is conducive to their survival
and growth. Cells secrete various cytokines, exosomes,
proteins, nucleic acids, and lipids during hypoxia. In fact,
hypoxia-treated MSC-derived exosomes have a better ef-
fect in treating diseases. Small EVs from hypoxia-treated
human AD-MSCs have a high ability to increase angio-
genesis through VEGF/VEGF-receptor and protein kin-
ase A (PKA) signaling pathways [194, 195]. Zhu et al.
discovered that BM-MSC-derived small EVs effectively
protected the cardiac function through miR-125b in a
hypoxia-induced MI mouse model [196]. Cheng et al.
found that BM-MSC-derived small EVs restrained apop-
tosis to improve myocyte protection in a hypoxia-
challenged MI rat model, partially owing to exosomes
containing miR-210 [197]. Thus, hypoxia-treated
MenSC-derived small EVs could be a strong candidate
for enhancing the cardiac function.

MenSC-derived small EVs combined with targeting drugs
Small EVs have a series of advantages as drug carriers,
such as unique structure and physicochemical proper-
ties, effective cell access, low immunogenicity and tox-
icity, and natural capacity to cross organism barriers
[198, 199]. Additionally, MSC-derived small EVs can de-
liver drugs to recipient cells in a highly selective manner
[98, 200]. In other words, MSC-derived small EVs are an
ideal delivery system for small molecular drugs. Chang
et al. found that AD-MSC-derived small EVs combined
with 50 mg/kg/day melatonin improved acute inflamma-
tory colitis in a rat model [201]. Kalimuthu et al. verified
that paclitaxel (25, 50, and 100mg/mL) mixed with BM-
MSC-derived small EVs were more powerful than single
BM-MSC-derived small EVs in inhibiting breast cancer
[202]. The authors revealed that the loading efficiency
was 38.9, 76.1, and 74.22 ng/mg for 25, 50, and 100 mg/
mL of paclitaxel, respectively. Currently, targeting drugs
vary with specificity and uptake efficiency of recipient
cells; thus, further investigation is needed to confirm the
optimum dose of each qualified drug. We believe that
targeting drugs combined with MenSC-derived small
EVs is promising to exert a stronger role than that of
MenSC-derived small EVs alone.
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MenSC-derived small EVs from three-dimensional cultures
Three-dimensional (3D) tissue-specific cultures have
been a powerful tool in disease therapy in recent
years, and a large number of studies have been con-
ducted on various diseases [203]. Currently, 3D
structures can be derived from pluripotent stem cells
(including ESCs and iPSCs) or adult stem cells (in-
cluding epithelial cells and MSCs [204, 205]. 3D cul-
ture can provide researchers with precise control
over spatial heterogeneity within the tumor micro-
environment by spatially depositing predefined bio-
banks that contain multiple stem-cell types,
biochemical factors, and ECMs [206, 207]. Kim et al.
found that 3D-cultured MSCs significantly enhanced
the secretion efficiency of exosomes and their pro-
duction [208]. Furthermore, exosomes from 3D-
cultured BM-MSCs [209] and UC-MSCs [210]
showed a powerful regeneration capacity. Although
3D culture from single-cultured MSCs has not been
systematically reported, small EVs from 3D-cultured
MenSCs would produce abundant bioactive mole-
cules to meet the dose requirements for clinical
medicine.

MenSC-derived small EVs for cancer immunotherapy
The successful application of immune checkpoint in-
hibitors of cytotoxic T lymphocyte antigen-4, pro-
grammed cell death protein 1 (PD-1), and
programmed cell death protein ligand 1 (PD-L1) in
various diseases has attracted interest in the field of
immunotherapy, especially cancer immunotherapy
[211–213]. The underlying function of small EVs has
been explored in cancer immunotherapy as a novel
therapeutic strategy [214, 215]. The immune-
modulation of MSC-derived small EVs has been ap-
plied, for example, to improve skin regeneration
[216], protect against hearing loss [217], prevent in-
flammation, or induce remyelination in multiple scler-
osis [218], graft-versus-host disease [219], and asthma
[220]. Marinaro et al. revealed that MenSC-derived
small EVs exert immunomodulatory effects in the
treatment of inflammatory conditions by immuno-
modulatory proteins and several miRNAs using prote-
omics and genomics analyses [162]. Thus, MenSC-
derived small EVs may be a competitive candidate for
future cancer immunotherapy owing to their out-
standing immunomodulatory role.

Fig. 2 The strategy for developing clinical applications of MenSC-derived small EVs. Tissue donors should be selected and examined for MenSC-
derived small EVs production. Donors can be autologous or allogeneic obtained from menstrual blood. MenSCs modification by bioengineering
[CRISPR/Cas9, small molecules, synthetic mRNA, virus transfection (lentivirus/adenovirus), recombinant proteins] may be considered to improve
therapeutic efficacy of MenSC-derived small EVs. Therapeutic effects of engineered MenSC may be further improved by encapsulating miRNA or
siRNA in them. The application of MenSC-derived small EVs first evaluated the safety and effectiveness through an animal disease model. Then,
MenSC-derived small EVs were employed to treat a variety of diseases in the clinic
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MenSC-derived small EVs immobilized in hydrogel
The use of chemical materials with biological functions
may be an interesting candidate to transfer MSC-derived
small EVs [221]. Biomaterials can provide matrix inter-
action, enhancing the transmission effect of MSC-derived
small EVs and affect secretion characteristics through sig-
nal transmission from outside to inside. Currently, well-
defined synthetic hydrogels are promising carriers for the
delivery of stem cells [222, 223]. Shi et al. found that the
combination of human gingival exocrine MSCs and
hydrogel can effectively alleviate skin wound healing in
diabetic rats by improving collagen epithelialization, de-
position, and remodeling and increase angiogenesis and
neuron growth [224]. Zhang et al. verified that chitosan
hydrogel combined with MSC-derived small EVs signifi-
cantly enhanced the therapeutic roles of hindlimb ische-
mia, via firefly luciferase imaging of angiogenesis [225].
Zhao et al. found that chitosan hydrogel-encapsulated
MSC-derived small EVs significantly prolonged the aging
of skin processes by improving the function of old dermal
fibroblasts [226]. Li et al. established a system for human
MSC-derived small EVs immobilized in an exosome
peptide-modified adhesive hydrogel (Exo-pGel), which ef-
fectively migrated to the spinal cord injury microenviron-
ment and exerted evident nerve recovery and urinary
tissue preservation through relieving inflammation and
oxidation [227]. Thus, the function of MenSC-derived
small EVs may effectively enhance immobilization in
hydrogels, and this may be a promising strategy in future
regenerative medicine.

Conclusions
MenSC-derived small EVs deliver a large amount of
regulatory proteins and mRNAs to improve the regen-
erative repair of wounded cells and tissues. While com-
plexities about their therapeutic potential continue to be
unraveled, advances are continuously found in both
basic science and clinical medicine. Novel techniques
(including engineered molecules, hypoxia-treated condi-
tions, targeting drugs, 3D culture, cancer immunother-
apy, and hydrogel) with respect to MenSC-derived small
EVs may further promote translational medicine. Add-
itionally, a strategy for developing the clinical use of
MenSC-derived small EVs was proposed (Fig. 2). Rapid
progress in separation techniques and combinations are
available in MSC-derived small EVs, as important
sources of MSC, MenSC, and MenSC-derived small EVs
should be explored in the future. Additionally, the func-
tion of MenSC-derived small EVs also needs to be inves-
tigated for further comparisons with other sources of
MSC-derived small EVs. In summary, although more re-
search is needed, MenSC-derived small EV-based ther-
apy has great potential for treating various diseases in
regenerative medicine.
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