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Stem cell‑based therapy for ameliorating 
intrauterine adhesion and endometrium injury
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Abstract 

Intrauterine adhesion refers to endometrial repair disorders which are usually caused by uterine injury and may lead 
to a series of complications such as abnormal menstrual bleeding, recurrent abortion and secondary infertility. At 
present, therapeutic approaches to intrauterine adhesion are limited due to the lack of effective methods to promote 
regeneration following severe endometrial injury. Therefore, to develop new methods to prevent endometrial injury 
and intrauterine adhesion has become an urgent need. For severely damaged endometrium, the loss of stem cells in 
the endometrium may affect its regeneration. This article aimed to discuss the characteristics of various stem cells and 
their applications for uterine tissue regeneration.
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Introduction
In 1948, Joseph Asherman first described the diagnosis, 
anatomy, etiology, prophylaxis, therapy and complication 
of a specific type of amenorrhea, which was later referred 
as Asherman’s syndrome (AS) [1], a condition also known 
as intrauterine adhesion (IUA).

IUA refers to the complication due to damage of endo-
metrial basal layer, for which mechanical trauma, infec-
tion and other factors may be attributable. The presence 
of adhesion tissue may lead to partial or complete oblit-
eration of the uterine cavity and/or cervical canal [2], 
which may consequently result in deformation or even 
disappearance of the uterine cavity [3]. Under normal 
conditions, the endometrial functional layer is periodi-
cally shed under hormone regulation, and the basal lay-
ers are important for the repair and regeneration of the 
surface. Therefore, disturbances to the structures of basal 
layers, such as repair disorder, may exacerbate this pro-
cess and lead to the occurrence of IUA [3].

Formation of adhesion
IUA may be classified as primary adhesion after preg-
nancy-related curettage or hysteroscopic surgery, as well 
as secondary adhesion reoccurred after adhesiolysis [4]. 
The European Medicine Agency (EMA) has estimated 
the prevalence of AS to be 0.04% [5]. More than 90% of 
IUA are related to pregnancy [6]. It is usually developed 
following the manipulation of early abortion or postpar-
tum-related curettage, and may be considered as a post-
operative complication of intrauterine surgery [2, 7, 8]. 
Uterine trauma and postoperative infection, including 
abdominal myomectomy, cervical biopsy or polylectomy, 
and insertion of intrauterine device (IUD), are also com-
mon causes of IUA [7]. Moreover, reproductive system 
infection, which may be due to non-pregnancy uterine 
cavity trauma and congenital uterine malformation, is 
another risk factor of IUA [9]. Additionally, IUA may also 
be correlated with irregular uterine dilation, inadequate 
disinfection, unsoftened cervix, long forceps scraping 
time or high intraoperative uterine negative pressure.

IUA can cause severe endometrial dysfunctions includ-
ing infertility and menstrual disorders such as periodic 
hypogastralgia, hypomenorrhea, amenorrhea, endo-
metriosis, recurrent pregnancy loss, and secondary 
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infertility [10]. Recurrent miscarriage is associated with 
IUA too. Approximately 20–30% of patients with recur-
rent pregnancy loss suffer from IUA [11–14]. However, 
it is still uncertain whether IUA is a cause or conse-
quence of recurrent miscarriage [6]. Severe IUA is usu-
ally accompanied by endometrial atrophy, which may 
interfere with embryonic implantation and fetoplacental 
growth, or even cause infertility [15]. The incidence of 
IUA among infertile patients is 13% [7], while 8% of infer-
tility cases are secondary to IUA [8].

Pathological mechanisms
The uterus is formed by a mixture of endometrial, mus-
cular and connective tissues. Histologically, the myome-
trium in IUA resembles that of the normal myometrium, 
but usually with increased thickness [16]. The connec-
tive tissue formed by thin collagen bundles often derives 
from dense fibrous strips [5]. Endometrial fibrosis is 
the common pathological manifestation of IUA, where 
fibrin is the mainly contributor to the formulation of tis-
sue bridges between the walls of uterine cavity [8]. As 
damaged endometrium cannot be properly repaired, 
endometrial stromata will be largely replaced by fibrous 
tissues, glands and inactive cubocolumnar epithelia 
which is non-responsive to hormonal stimulation [16, 
17]. Under such circumstance, the distinction between 
the functional and basal layers of the endometrium will 
be lost.

Endometrial trauma may affect the vascularity of endo-
metrium. As illustrated by pelvic angiography, the distri-
bution of vascularity in endometrium and myometrium 
may be impaired by traumatic endometrial damages [17]. 
As indicated by previous study, new blood vessels derived 
from pre-existing vasculature and vasculogenesis plays 
a pivotal role in the menstrual cycle [18]. However, the 
newly regenerated fibrotic tissue is usually without ves-
sels and, concomitantly, the paucity of blood supply in 
IUA patients may also indicate that uterine artery dam-
age is with fibrosis [7, 17]. Previous studies have shown 
aberrant activation of fibrosis to be closely associated 
with pathological changes of IUA [19–22]. Normal 

wound healing is regulated by a series of complex pro-
fibrosis and anti-fibrosis processes [23]. However, exces-
sive endometrial fibrosis may be related to the failure 
of normal wound healing process, which may aggravate 
the formation of IUA. Notably, inflammatory response, 
which occurs following endometrial trauma and may 
activate down-stream detrimental pathways, is also asso-
ciated with the process of fibrosis [24].

Classification
It is necessary to classify IUA in order to summarize their 
prognosis and correspondingly therapeutic outcome. 
There are different criteria for the classification of IUA 
since Asherman original description. Table 1 summarizes 
the current classification systems and their key features.

In 1978, Toaff and Ballas first classified IUA based on 
the result of hysterosalpingography (HSG) [25]. They 
were classified into four grades according to the loca-
tion and size of the lesion. In the same year, March et al. 
proposed a hysteroscopic classification of IUA based on 
the proportion of uterine cavity shown by HSG, which 
was classified into 3 grades from mild to severe [11]. The 
method is relatively simple and is still in use today. Nev-
ertheless, based on the extent of the disease, menstrual 
pattern, and morphological feature of the adhesions, 
the American Fertility Society had designed a new scor-
ing system in 1988, which could be used in the hyster-
oscopy and HSG [26], and added menstrual patterns to 
the rating parameters for the first time. Moreover, they 
suggested that the location of adhesion may be impor-
tant for infertile women, so it is necessary to chart the 
location and extent of adhesions. In the same year, Valle 
and Sciarra described a new classification based on the 
extent of uterine cavity occlusion and type of adhe-
sions [27]. Mild adhesions are filmy and composed of 
endometrial tissue, moderate adhesions are fibromus-
cular, while severe adhesion or complete occlusion of 
the uterine cavity are only composed of dense connec-
tive tissue, which had the poorest prognosis. Moreover, 
they concluded that although almost all patients treated 
with hysteroscopy were able to recover with normal 

Table 1  Classification of IUA

Source Summary of classification References

Toaff and Ballas Split into four grades according to the lesion location and size [25]

March et al. Classified as minimal, moderate, or severe based on the degree of uterine cavity involvement by HSG [11]

American fertility society Complex scoring system of mild, moderate, or severe IUAs based on the extent of cavity obliteration, type of 
adhesion, and menstrual pattern according to hysteroscopic or HSG assessment

[26]

Valle and Sciarra Adhesions classified as mild, moderate, or severe according to the extent of uterine cavity occlusion (partial or 
total) and the type of adhesions by HSG

[27]

Nasr et al. Creates a prognostic score by menstrual patterns, reproductive performance and hysteroscopy as parameters [28]
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menstruation, reproductive outcomes parallel the sever-
ity of the adhesions.

In 2000, Nasr et  al. proposed a new classification 
method to score IUA using menstrual patterns, repro-
ductive performance and hysteroscopy as parameters 
[28]. It is the first classification that correlates menstrual 
pattern and reproductive performance with the progno-
sis of hysteroscopic adhesiolysis, and they believed that 
the prognosis depends more upon the type of adhesions 
and the extent of coverage of tubal ostia. In their pro-
posed rating system, grades I and III were consistent with 
those of March et al. [11], but for moderate IUAs (grade 
II), there was an overlap between the two systems (with a 
sensitivity of 58.3%), which may be related to menstrual 
and reproductive history of patients.

In 2015, the Society of Obstetrics and Gynecology of 
Chinese Medical Association proposed a new rating scale 
based on the previous classification. Compared with the 
previous rating, the table added the previous history 
of curettage. However, there is still no consensus over 
the optimum classification of IUA. Further research is 
needed, particularly for prediction of reproductive prog-
nosis [6, 9].

Current treatment options
Currently, there has been no specific guideline for the 
treatment of IUA. Various therapeutic approaches have 
been developed for the repair of endometrial injury 
and prevention of recurrent adhesions. The most com-
mon strategy is transcervical resection of the adhesions 
(TCRA). Hysteroscopic treatment enables lysis of IUAs 
under direct vision with magnification, in which only 
blunt dissection is performed at the tip of the hystero-
scope [29, 30]. Daniel et al. have found that hysteroscopic 
resection could significantly reduce the incidence of IUA 
and increase the rate of pregnancy [31].

However, postoperative outcome may vary as the 
severity of adhesion is diverse and disparate [32]. The 
more severe the adhesions are, the more difficult dissec-
tion and greater risk of the complications will be. Accord-
ing to some studies, the pregnancy rate of patients with 
mild IUA was close to 95%, while in the severe group the 
rate was decreased to 60% after hysteroscopic treatment 
and subsequent miscarriages percentage could be as high 
as 75% [14].

In addition to hysteroscopic treatment, hyaluronic acid 
gel [33], hormone therapy [34], uterine perfusion [35], 
and amniotic membrane transplantation [36] have also 
been used for the treatment of IUA. However, such treat-
ments are only applicable to patients with mild and mod-
erate IUA. Therefore, to develop new methods to prevent 
endometrial injury and manage IUA has become a major 
demand.

In 2004, the first evidence for the existence of endo-
metrial stem/progenitor cells in the endometrium was 
reported [37]. Some researchers hypothesized that endo-
metrial repair disorders may be related to local stem cell 
damage and loss as regeneration and repairing of the 
endometrium are closely related with stem cells in the 
endometrium. Thereby, application of stem cells to treat 
endometrial injury may be an effective strategy to restore 
endometrial receptivity. This idea outperforms the con-
ventional treatment and opens a new avenue for the 
treatment of IUA.

Stem cell therapy
In 1978, Prianishnikov introduced endometrial stem cells 
(EnSCs) for the first time [38]. It was not until 2004 that 
Chan et  al. [37] ultimately isolated EnSCs from endo-
metrial tissue, since then the exploration has mounted. 
Gargett et  al. [39, 40] have confirmed the presence of a 
small number of stromal stem cells and epithelial stem 
cells in the uterus which could promote endometrial pro-
liferation during the menstrual cycle but were decreased 
with uterine injury. Such cells were thought to be respon-
sible for the periodic regeneration of the endometrium. 
Many researchers believe that the homing and migration 
of stem cells towards the site of lesion plays an impor-
tant role in tissue regeneration [41–43]. However, there 
are studies suggesting that the migration and invasion 
capacities of the stem cells were significantly lower from 
women with IUA compared with healthy women, which 
may indirectly affect the self-repairing ability of injured 
endometrium [44]. Furthermore, when the endometrium 
is severely damaged, the decrease or loss of stem cells in 
the endometrium may also affect the regeneration of the 
endometrium. On the other hand, autologous and alloge-
neic stem cell transplantation may both be effective for 
the treatment of IUA [45] (Fig. 1).

With the potential for self-renewal and multi-direc-
tional differentiation, stem cells have a broad prospect for 
the treatment of tissue injury involving the uterine cavity. 
In recent years, researchers have become focused on the 
effect of stem cells for the treatment of IUA (Table 2).

Bone marrow stem cells (BMSCs)
Bone marrow mesenchymal stem cells (BM-MSCs) are 
easy to culture in vitro, which makes it the most widely 
used seed cells for stem cell transplantation. BM-MSCs 
can differentiate into a variety of non-hematopoietic cells 
including skeletal myoblasts, cardiac myoblasts, skin epi-
thelia, as well as endothelial, renal, hepatic, and lung cells 
[32]. Compared with endometrial stem cells, BM-MSCs 
have greater migration ability, which may lead deposi-
tion of a higher proportion of donor cells in  vitro [46]. 
Therefore, BM-MSCs has become a promising candidate 
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Fig. 1  Stem cell-based approaches to uterus regeneration include (1) intravenous stem cells or EV/ Exo, (2) intrauterine injection stem cells or EV/
Exo and (3) fabrication of synthetic graft by encapsulating stem cell or EV/Exo therapeutics with biomaterials. After transplantation, stem cells can 
stimulate the angiogenesis, epithelization and gland regeneration while inhibitory inflammation and endometrial fibrosis, and eventually restore 
normal uterine structure and function

Table 2  Some resources and features of stem cells which contribute in endometrium regeneration

Stem cell Major source Properties References

BMSCs Bone marrow Multi-potent, highly proliferative, good migration ability, self-renewing, immunomodulatory 
properties

[46, 47]

Autologous 
adult stem 
cells

Bone marrow Donor-derived bone marrow cells have been identified in human uterine endometrium (both stro‑
mal and epithelial cells were derived from bone marrow origin). It is unknown whether these cells 
originate from bone marrow mesenchymal stem cells or circulating endometrial cells originally 
derived from the endometrium and harbored in bone marrow

[48]

eMSCs Endometrium Multi-potent, highly proliferative, self-renewing; coexpression of CD140b (PDGFR-β) and CD146, or 
expression perivascular markers SUSD2 (W5C5 antibody) SUSD2

[49–51]

ESP Endometrium Heterogeneous, presumably containing stem/progenitor cells of each endometrial cell lineage; 
produce endometrial endothelial, epithelial, and stromal cells in vitro and in vivo

[49, 52, 53]

UC-MSCs Umbilical cord Derived from the mesoderm in early development; low immunogenicity; multi-potent cells; high 
self-renewal ability; multi-differentiation; high proliferative potential

[54–56]

ADSCs Adipose tissue Abundant sources; easy sampling; self-renewal; multi-potential differentiation; strong proliferation 
ability

[57–61]

ESCs Embryo Pluripotent stem cells derived from the inner cell mass of a blastocyst; high telomerase activity; 
significant long-term proliferation potential

[62, 63]

ASCs Amniotic membrane Inflammatory suppression, angiogenesis promotion, anti-oxidative stress [64, 69]
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seeding cells for repairing uterine damage owing to their 
merits.

In 2008, Mints et al. [70] have detected presence of Y 
chromosome in the endometrial cells of a woman who 
received bone marrow transplants from a male donor. 
Subsequent studies also illustrated that endometrial angi-
ogenesis was not only from local endothelial cells, but 
may also come from BMSCs. Cervelló et al. [71] also con-
firmed the presence of XY donor-derived bone marrow 
cells in the endometrium of women receiving male bone 
marrow transplants, and such cells may be an exogenous 
source of endometrial trans-differentiation cells.

Although uterine damage was localized, BMSCs could 
migrate to both sides of the uterus, possibly due to the 
secretion of particular chemokines [10]. Accordingly, 
secretion of such signal molecules may be an important 
mechanism for stem cell therapy for uterine cavity injury. 
Cervelló et  al. [72] found that transplanted CD133(+) 
BMSC have located around endometrial vessels and 
could induce proliferation of surrounding cells by regu-
lating paracrine factors such as thrombospondin 1 and 
insulin-like growth factor 1. In addition, the expression of 
leukemic inhibition factor (LIF), an endometrial receptiv-
ity marker in the regenerated endometrium, may also in 
part contribute to the improved reproductive outcome in 
a rat model for IUA [73].

Studies have suggested that BMSCs transplanta-
tion may repair the damaged endometrium by pro-
moting the expression of ER and PR. Wang et  al. [74] 
injected BMSC into IUA rats by uterine and vein, and 
found that the BMSCs were more abundant in the uter-
ine injection group after 2  weeks. Interestingly, another 
study comparing the two methods of injection by using 
green fluorescent protein (GFP)-expressing BMDCs has 
found that systemic route of administration could result 
in better recruitment of BMDCs to the injured uterus 
after 2–3  weeks [46]. Other studies also found that the 
implantation and conception rates of IUA rats receiving 
vein injection of BMSCs were comparable to those with 
normal uteri, while all untreated IUA rats had failed to 
conceive [73]. Hence, both the systemic route of admin-
istration and local injection could rapidly promote for-
mation of new endometrial glands with subsequently 
replacing fibrotic scars by increasing ER and PR expres-
sion [74]. And, strikingly, fluctuations in systemic hor-
mone levels had no effect on the migration of BMSCs 
[32].

Clinically, BMSCs can improve the reproductive out-
come of IUA patients. Nagori et al. [48] discovered that 
angiogenic stem cells derived from autologous bone mar-
row derived stem cells could regenerate injured endome-
trium and lead to successful pregnancy and delivery. In 
2011, a woman with severe IUA has received transvaginal 

injection of autologous bone marrow stem cells, and after 
a period of time, her endometrial thickness and blood 
vessel richness gradually increased, allowing her to even-
tually maintain embryo growth [48]. In 2016, Santama-
ria et al. [75] used CD133+ BMSCs in conjunction with 
hormonal replacement therapy for IUA. After 2 months 
of stem cell therapy, endometrial thickness has increased 
in 11 IUA patients, with simultaneous amplification of 
endometrial vascular density and duration and inten-
sity of the menstrual cycle in the first 3  months which 
returned to the original level after 6 months. And three 
of them eventually conceive naturally.

Some researchers also reported that implantation 
of combination of BMSCs with scaffold materials into 
the IUA uterus was feasible. Zhao et  al. [76] recellular-
ized a collagen scaffold with high-density BMSCs and 
implanted them into the uterus of IUA patients, and 
found that it could reverse endometrial fibrosis and pro-
mote endometrial regeneration by down-regulating the 
expression of Np63. After the treatment, all five patients 
successfully attained pregnancies and delivered. Colla-
gen/BMSCs system could enhance proliferation of endo-
metrium and muscular cells, facilitate microvasculature 
regeneration, and restore the function of endometrium 
to eventually receive the embryos [77]. Recently, it was 
found that exosomes secreted by BMSCs could transfer 
miR-340 to endometriotic stromal cells and effectively 
attenuate endometrial fibrosis [78]. In addition to col-
lagen scaffolds, other polymer scaffolds combined with 
BMSC were also exploited for endometrial repair. Xiao 
et al. [79] constructed a BMSC-loaded elastic poly (glyc-
erol sebacate) (PGS) scaffold, within which the BMSCs 
could be directly differentiated into endometrial stromal 
cells after transplantation. Moreover, compared with col-
lagen scaffolds, PGS/BMSC also significantly prolonged 
the retention time of BMSCs in a rat model for uterine 
injury.

Endometrial stem/progenitor cells (EnSCs)
Many experiments have confirmed the presence of endo-
metrial stem/progenitor cells, including epithelial stem 
cells, endometrial mesenchymal stem cells (eMSCs), 
endothelial progenitor cells (EPCs), which could be 
activated during the menstrual cycle and conducive to 
rapid endometrial regeneration following menstruation 
(Fig.  2). During the past a few decades, the application 
of EnSCs in uterine regeneration has been rapidly grow-
ing for reasons such as high homology with uterine tis-
sue and ease to acquire [80]. Angiogenesis is one of the 
key steps in endometrial repair. Restructuring and mat-
uration of the vascular network can facilitate embryo 
implantation [81]. Blood vessel walls are considered as 
stem cell-niche with a large reservoir of progenitor cells 
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[82]. Previous study has found that eMSCs in the basa-
lis and functionalis are mainly perivascular cells, includ-
ing CD146+ and CD140b+ (platelet-derived growth 
factor-β, PDGFR-β +) pericytes [50, 51], sushi domain-
containing-2+(SUSD2+) cells [83] and CD34+ adventitial 
cells (located in the outermost layer of blood vessels and 
mainly in the basal layer) [82].

Although both CD34+ adventitial cells and CD146+ 
pericytes showed MSCs phenotypes in  vitro, they have 
exhibited a limited potential to regenerate the endome-
trium. Other studies have shown that CD146+CD140b+ 
cells could promote endometrial angiogenesis in rats and 
capillary formation of HUVECs in vitro [44, 84]. eMSCs 
have also been found to play certain role in regenerating 
the endometrial stroma in vivo [46].

EPCs are postulated to reside in the glands of the basa-
lis [86], while endometrial endothelial progenitor cells 
are recognized as side population cells (SP cells) [50]. As 
one of the potential endometrial stem/progenitor popu-
lations, endometrial side population (ESP) was first iden-
tified in short-term culture of endometrial cells [53]. ESP 
cells can generate endometrial endothelial, epithelial, and 
stromal cells in vitro and in vivo, which are located both 

in the basalis and functionalis [49]. Cervelló et  al. [52] 
transplanted hESP beneath the renal capsule of NOD-
SCID mice, and found that it could generate human 
endometrium.

As analogous to other stem cells, EnSCs also have the 
advantages of self-renewal, multi-differentiation, and 
high proliferation potential. Such cells can be obtained 
by scratching the endometrium or isolated from men-
strual blood. Such characteristics have made it a potential 
resource for the treatment of IUA.

Zhang et  al. [87] transplanted EnSCs derived from 
menstrual blood into IUA mice, and found that the 
endometrial thickness and microvascular density were 
increased, and the repair of damaged uterus was appre-
ciably accelerated. As reported, EMSCs conditioned 
medium could activate AKT and ERK pathways, induce 
overexpression of eNOS, VEGFA, VEGFR1, VEGFR2 and 
TIE2 in HUVECs, while decrease H2O2-induced apopto-
sis of human umbilical vein endothelial cells (HUVECs). 
In a subsequent study, they found that EnSCs could 
inhibit myofibroblast activation, resulting in rapid pro-
liferation of epithelial stem cells, which ultimately pro-
moted endometrial wound healing [3]. Moreover, they 

Fig. 2  Stem/progenitor cells identified in the human endometrium. (1) Endometrium is composed of endometrial epithelium, functionalis 
and basalis; (2) Epithelial progenitor cells are postulated to be located in the base of the glands in the basalis; (3) Perivascular SUSD2+ (W5C5 
antibody) cells with in vitro and in vivo mesenchymal stem/stromal cells (MSCs) properties are found in basalis and functionalis; (4) PDGFR-β/
CD140b+CD146+ endometrial MSCs (eMSCs) are pericytes. ESP cells consist of CD31+ endothelial cells and CD140b+CD146+ pericytes.  Adapted 
from Gurung et al. [85]
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delineated that Hippo/TAZ is the key signal of EnSCs 
against the process of endometrial interstitial fibrosis 
[3]. Another group has also found that EnSCs could sub-
stantially accelerate the repair of endometrial damage, in 
which a paracrine effect and activation of Hippo signal-
ing pathway were validated and the effect was found to be 
even better when combined with the application of plate-
let-rich plasma (PRP) [88]. Lin et  al. [89] reported that 
Gli2 signaling could also promote endometrial fibrosis by 
reducing the level of Gli2 protein in EnSCs conditioned 
medium (EnSCs-CM) and reduce endometrial fibrosis, 
a process which was critical in blocking the cell cycle of 
epithelial stem cells through granulocyte-colony stimu-
lating factor (G-CSF).

In 2016, EnSCs have been approved for usage in clinical 
trials for endometrial regeneration in patients with IUA. 
Endometrial thickness of all subjects has significantly 
increased, and some women even became pregnant fol-
lowing frozen embryo transplantation [90]. Furthermore, 
a clinical trial using autologous menstrual blood-derived 
stromal cells for treating severe IUA also showed satisfac-
tory results [90].

In recent years, more researches have focused on the 
paracrine pathway mediated by stem cells. Similar to 
other MSCs, EnSCs have been reported to mediate IUA 
repair through paracrine action of extracellular vesicles 
(EVs) [80]. A recent study has shown that EnSCs-EV have 
exerted their immunomodulatory function by inhibiting 
the activation of CD4+ T cells [91].

Umbilical cord‑derived mesenchymal stromal cells 
(UC‑MSCs)
Umbilical cord-derived mesenchymal stromal cells (UC-
MSCs) are multi-potent cells with strong self-renewal 
ability and multi-differentiation potential. Such cells are 
derived from the mesoderm in early development and 
have the advantages of easy collection, low immuno-
genicity, and high proliferative potential [54, 56].

In recent years, some researchers have reported that 
UC-MSCs could enhance endometrial cell prolifera-
tion and vascular remodeling while inhibit excessive 
fibrosis and inflammation, thereby repair the damaged 
endometrium and restore fertility [92]. Zheng et al. [93] 
injected hUC-MSCs into SD rats and showed that it has 
the ability to differentiate into epithelial cells, vascular 
endothelial cells, and estrogen receptor cells, which are 
essential for the supply of blood vessels and interrupting 
the formation of fibers. All of these could contribute to 
the restoration of fertility in IUA rats. They also trans-
planted CM-Dil-labeled hUC-MSCs into rats and found 
that the hUC-MSCs were not evenly distributed in uter-
ine tissues. More cells had migrated into the stroma and 
myometrium regions, while almost no cells reached the 

epithelium of endometrium and gland [93]. They spec-
ulated that this may be due to the fact that stroma and 
myometrium contained more blood vessels than did epi-
thelium, which was in keeping with the fact that MSCs 
are mainly distributed along the blood vessels [94]. A 
study has shown that EV could enhance angiogenic pro-
cesses in endothelial cells [95]. EV derived from hUC-
MSCs (hUCMSCs-EV) can also be used as a therapeutic 
agent for IUA, and was more effective when combined 
with estrogen [96].

Transplanting scaffolds loaded with UC-MSCs has 
been investigated as well. Xu et  al. [97] constructed a 
collagen scaffold (CS) loaded with UC-MSCs, and noted 
that this complex could facilitate the degradation of col-
lagen of uterine scar by upregulating MMP-9 secreted 
by UC-MSCs, which was instrumental for the repair and 
regeneration of endometrium, myometrium, and blood 
vessels. Xin et  al. [54] also transplanted CS/UC-MSCs 
into a model for endometrial damage and discovered that 
it could maintain the normal luminal structure, promote 
endometrial regeneration and collagen remodeling, and 
also increase the expression of estrogen receptors and 
progesterone receptors. Recent studies have shown that 
transplantation of UC-MSCs and auto-crosslinked hyalu-
ronic acid (HA) gel might have a dual repair effect with 
an anti-adhesive property and promotion of endometrial 
regeneration [98]. By implanting this complex to a rhesus 
monkey model for IUA, they found that UC-MSCs/HA-
GEL was superior to HA-GEL in repairing IUA caused by 
mechanical injury.

A phase I clinical trial also confirmed that transplan-
tation of UC-MSCs with biodegradable collagen scaf-
folds into the uterine cavity (by adhesion separation) in 
patients with recurrent IUA was effective [99]. Three 
months after the operation, the average and maximum 
endometrial thickness had both increased, while the IUA 
score was decreased. At the end of 30-month follow-up 
period, 10 of the 26 patients attained pregnancy and 8 of 
them had delivered without compelling birth defects or 
placental complications.

Adipose‑derived stem cells (ADSCs)
Adipose-derived stem cells (ADSCs) are also a type of 
mesenchymal stem cells derived from the mesoderm 
but mainly exist in adipose tissue. Their typical or spe-
cific cell markers include CD90(+), CD73(+), CD105 
(+), CD45(−) and CD34(−) [57]. At present, ADSCs are 
one of the most advantageous and extensively researched 
adult stem cells for cell therapy and tissue engineering. 
ADSCs have the advantages of abundant source, easy 
sampling, capable of self-renewal, multi-potential dif-
ferentiation, as well as strong proliferation ability, and 
can be obtained from patients themselves thereby avoid 
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ethical problems [59–61]. However, literature on the 
application of ADSCs for the treatment or prevention 
of IUA is still scarce. Shao et  al. [100] injected green 
fluorescent protein (GFP)-labelled ADSCs into IUA rats 
and found that ADSCs could differentiate into endo-
metrial epithelial cells. At 30  days after transplantation, 
the damaged endometrium was robustly improved, with 
increased microvascular density, endometrial thickness 
and glands. The expression of oestrogen and progester-
one receptors was also increased. In addition, the fertility 
of rats was also recovered to some extent. Sun et al. [101] 
exploited the ADSCs as seed cells to form scaffold-free 
cell plates with massively retaining of extracellular matrix 
proteins, growth factors, and a large number of cytokines 
without enzymolysis [102], and found that ADSCs mainly 
appeared in the basal layer of the regenerating endome-
trium at 21 days after transplantation, with some ADSCs 
differentiated into stromal-like cells.

It has been reported recently that acellular human 
amniotic membrane (AHAM) can substantially improve 
the expression of ADSCs angiogenic factors in  vitro, 
and in  vivo experiments also demonstrated that hAD-
SCs/AHAM transplantation into damaged uterine cav-
ity could significantly increase vascular density of the rat 
endometrial tissue [103]. They proposed that the ability 
of hADSCs/AHAM to repair damaged endometrium 
may be related to the accelerated angiogenesis, where 
the expression of angiogenic factors in hADSCs was 
up-regulated. Zhao et al. [104] have extracted exosomes 
from ADSCs (ADSC-exo) and applied them to an IUA 
rat model, and found that ADSC-exo could maintain the 
normal structure of uterus while improve the endome-
trial regeneration and reproductivity. They proposed that 
local application of ADSC-exo in uterus as a novel strat-
egy for the treatment of IUA and infertility. Research-
ers have recently study have injected autologous ADSCs 
combined with ShakeGel™3D directly into the mice 
uterus to repair the damaged endometrium and restore 
the fertility by activating the BMP7-Smad5 signaling 
pathway [105].

Embryonic stem cells (ESCs)
Embryonic stem cells (ESCs) are derived from the blas-
tocyst phase of the early mammal embryo. Compared 
with other stem cells, ESCs are truly pluripotent cells as 
they have originated from the endoderm of embryo and 
can differentiate into various cell types in special culture 
medium [62, 63]. ESCs have retained a normal karyotype, 
with high telomerase activity and significant long-term 
proliferation potential [62]. Such cells have shown prom-
ise for the treatment of various diseases including spinal 
cord injury [106], arrhythmia [107], liver injury [108], 
diabetes [109], cartilage repair [110], etc. However, so far 

few have reported application of the ESCs for the treat-
ment of IUA.

In 2015, Yu et al. [111] co-cultured hESCs with mouse 
endometrial stromal cells to induce differentiation of 
hESCs into endometrioid epithelium, and their results 
showed that the expression levels of cytokeratin, epi-
thelial cell adhesion molecule (EpCAM), ER, and PR in 
the co-culture group were significantly increased on the 
21st day after induced differentiation, confirming that 
hESCs could be differentiated into endometrioid cells 
[111]. Song et  al. [112] also co-cultured hESCs with 
endometrial stromal cells to induce endometrioid cells, 
and seeded the hESC-derived cells onto collagen scaf-
folds and transplanted them into a rat model for severe 
uterine damage. 12 weeks later, hESC-derived cells were 
observed to survive and have recovered the structure and 
function of uterine horn.

Nevertheless, the use of embryo-isolate stem cells has 
remained to be ethically controversial. Clinical trials have 
also been debated that in  vitro induction of the hESCs 
can have the risk of tumorigenesis. Therefore, the appli-
cation of ESCs in the treatment of IUA still has a long 
way to go.

Amniotic membrane stem cells (AMSCs)
Amniotic membrane stem cells (ASCs), including amni-
otic mesenchymal stromal cells (AMSCs) and amniotic 
epithelial cells (AECs), are stem cell-like cells isolated 
from the mesenchymal and epithelial layers of the amni-
otic membrane from discarded amniotic tissue, which are 
readily available and abundant, with relatively fewer ethi-
cal concerns [64, 65].

AMSCs possess potential therapeutic features such as 
inflammatory suppression, angiogenesis promotion, anti-
oxidative stress, and other beneficial properties. They 
have even shown an immunomodulatory capacity by 
paracrine action [65–69]. In recent years, AMSCs have 
been recognized as a suitable alternative source of seed 
cells for tissue engineering. Gan et  al. [113] discovered 
that transplantation of hAMSCs could lower the level 
of messenger RNA of pro-inflammatory cytokines while 
increase that of anti-inflammatory cytokines, which 
implied that AMSCs can promote endometrial regenera-
tion by immunomodulatory effects.

AECs are embryonic stem cell-like lineages with the 
capability of differentiation and adult stem cell-like 
immunomodulatory properties [114]. AECs have shown 
be effective for the treatment of lung fibrosis [115], brain 
injury [116], kidney injury [117], and hepatic fibrosis 
[118]. Recently, researchers have explored therapeutic 
potential of AECs on IUA. Li et al. [119] found that intra-
peritoneal injection of hAECs into IUA rats could allevi-
ate fibrogenic progression, increase vascular density and 
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restore the structure of uterine cavity. They also found 
that in  vitro co-culturing hAECs with H2O2-damaged 
human endometrial mesenchymal stem cells (hEnSCs) 
could activate autophagy of hEnSCs through paracrine 
pathways. In 2019, Lai et al. [120] had filed a patent for 
AECs, which signified that AECs could be used to pre-
vent IUA secondary to endometrium injury, repair the 
endometrial morphology in a mouse model for IUA, pro-
mote endometrial angiogenesis and mesenchymal cell 
proliferation, and improve the fertility of mice following 
uterine cavity injury.

Limitation of stem cell therapy
Stem cell therapy holds a great promise for uterine repair 
and regeneration. However, despite the remarkable 
achievements made in the research, their clinical applica-
tions still face challenges, as most studies have been con-
ducted on animal models with non-standardized study 
design. Variables of the treatment such as cell source, 
treatment time, cell number and injection method need 
to be notarized. The safety of such therapy also needs to 
be carefully assessed.

The preservation and clinical use of stem cells are 
both challenging. Current clinical trials have mainly 
used freshly thawed cell stocks [42]. However, cryo-
preservation and thawing may affect the viability and 

functionalities of the stem cells [121, 122]. Cryopreser-
vation can cause reversible and irreversible cryoinju-
ries to the stem cells, leading to host T-cell cytolysis, 
and affect the survival, distribution and immunosup-
pressive properties of exogenous stem cells [121, 123]. 
MSCs are not intrinsically immune-privileged and their 
transplants may induce immune rejection. Allogeneic 
MSCs may induce a memory T-cell response under cer-
tain conditions, resulting in rejection of allogeneic stem 
cells [124, 125]. Furthermore, extensive in vitro expan-
sion of stem cells  may  trigger replicative senescence, 
thereby affecting their therapeutic effectiveness [126].

With regard to the mechanism of stem cell therapy, 
previous studies showed that it relied on the appro-
priate homing and engraftment capacity of stem cells 
[127]. To date, increasing evidence suggested that the 
key mechanism of stem cell therapy is related to their 
paracrine pathway rather than ability for differentia-
tion. Stem cell-mediated paracrine factors may there-
fore overcome the limitations of cell-based therapy, 
though its effectiveness and safety need to be further 
validated. It has also been discovered recently that stem 
cells will die rapidly and be cleared by innate immune 
cells after transplantation, which suggested that repro-
gramming of the immune cells may enhance the thera-
peutic effect (Fig. 3) [128].

Fig. 3  Potential mechanisms of stem cell-based therapy. A Cell replacement by stem cells multi-lineage differentiation. B Cell communication 
though paracrine signaling; C: Dying cell clearance through phagocytosis.  Adapted from Wagoner and Zhao [128]
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Conclusion and future perspective
As a pervasively common postoperative complication of 
intrauterine surgery, IUA will inevitably affect the repro-
ductive capability and full recovery of the endometrium, 
which constitute a vital role in reproduction and mater-
nal health. Over the past a few decades, hysteroscopy, 
hormone therapy, and application of intrauterine devices 
have been tried to tackle IUA, but all showed some short-
comings. In recent years, exploitation of stem cell therapy 
to restore injured endometrium has become a promis-
ing new treatment approach. A growing number of ani-
mal experiments and clinical trials have focused on the 
effect and mechanisms with respect to stem cell therapy. 
Studies have shown that application of stem cells derived 
from bone marrow, endometrium, menstrual blood, adi-
pose, embryo, and cord blood can facilitate restoration 
of the structure and function of the uterus. In addition, 
combination of stem cells with biopolymer materials 
such as scaffolds, hydrogel, and nanostructure lipid car-
rier, can improve its delivery and enhance the survival 
and therapeutic effect of transplanted cells. Stem cell-
based therapy can promote the regeneration and repair 
of endometrium, disrupt formation of fibrosis, and pro-
mote regeneration of blood vessels through paracrine 
and immune modulations.

Nevertheless, there are also risks for stem cell-based 
therapy. The mechanism by which stem cells can pro-
mote endometrial regeneration is still unclear. In addi-
tion, immunogenicity and tumorigenicity should not be 
ignored, as previous context has stated that teratoma is 
a main obstacle to the clinical usage of stem cell-based 
therapies, in particular embryonic stem cells. Therefore, 
the selection of stable and safe stem cell types and trans-
plantation methods requires more research.

In summary, the ability of stem cells to self-differentiate 
and distinct regeneration mechanism have made them an 
attractive candidate for treating gynecological diseases 
such as the IUA.
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