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Abstract 

Recently, mesenchymal stromal cells (MSCs) and their derivative exosome have become a promising approach in the 
context of liver diseases therapy, in particular, acute liver failure (ALF). In addition to their differentiation into hepato-
cytes in vivo, which is partially involved in liver regeneration, MSCs support liver regeneration as a result of their 
appreciated competencies, such as antiapoptotic, immunomodulatory, antifibrotic, and also antioxidant attributes. 
Further, MSCs-secreted molecules inspire hepatocyte proliferation in vivo, facilitating damaged tissue recovery in ALF. 
Given these properties, various MSCs-based approaches have evolved and resulted in encouraging outcomes in ALF 
animal models and also displayed safety and also modest efficacy in human studies, providing a new avenue for ALF 
therapy. Irrespective of MSCs-derived exosome, MSCs-based strategies in ALF include administration of native MSCs, 
genetically modified MSCs, pretreated MSCs, MSCs delivery using biomaterials, and also MSCs in combination with 
and other therapeutic molecules or modalities. Herein, we will deliver an overview regarding the therapeutic effects 
of the MSCs and their exosomes in ALF. As well, we will discuss recent progress in preclinical and clinical studies and 
current challenges in MSCs-based therapies in ALF, with a special focus on in vivo reports.
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Introduction
Acute liver failure (ALF) is characterized by the occur-
rence of coagulopathy (international normalized ratio 
[INR] > 1.5) and any level of encephalopathy emerging 
24 weeks following the occurrence of the first symptoms 
in patients who have no history of previous liver disease 
[1]. The timing and the level of clinical presentation can 
be classified into three types: hyperacute, acute, and sub-
acute [2]. Hyperacute and acute types involve fulminant 

hepatic failure, while the subacute type is also named 
subfulminant [3]. Interestingly, the mortality rate among 
the patients whose hepatic encephalopathy appears 
8 weeks after the onset of symptoms (fulminant hepatic 
failure) is lower than the patients with a more gradually 
evolving course [4]. Multiorgan failure (MOF) has proved 
to be the main cause of death (> 50%) from ALF, while 
intracranial hypertension (ICH) and infection are the 
other main causes of mortality in this patient population 
[5].

During last two decades, a diversity of stem cells, such 
as pluripotent stem cells (PSCs), mesenchymal stro-
mal cells (MSCs), hepatic progenitor cells (HPCs), and 
hematopoietic stem cells (HSCs), has been used to treat 
liver diseases [6–8]. However, MSCs are the most com-
mon type used in research, since they pose no ethical 
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challenges and can be obtained easily [9, 10]. Results 
show that MSCs have the capability of differentiating 
more than once; moreover, they can self-renew. They 
can differentiate into an array of cell lineages, including 
hepatocyte-like cells (HLCs) [11]. MSCs are also charac-
terized by other properties, such as anti-inflammatory, 
antiapoptosis, antifibrotic, antioxidant, blood vessel for-
mation, improvement of tissue repair, and growth factor 
secretion [12, 13]. Despite many preclinical and clinical 
investigations on MSCs used in treating ALF, it is still 
unknown what mechanism contributes to the therapeutic 
effect of MSCs. Besides, MSCs-exosomes have caught the 
attention of many researchers as a new cell-free method 
regarding the regeneration of the liver [14, 15]. They have 
dissipated the worries concerning the direct application 
of MSC (e.g., immunogenicity and tumor formation [16]. 
Such exosomes encompass high frequencies of cytoplas-
mic and membrane proteins, including enzymes, tran-
scription factors, lipids, ECM proteins. They also include 
nucleic acids, such as mitochondrial DNA (mtDNA), 
single-stranded DNA (ssDNA), double-stranded DNA 
(dsDNA), messenger RNA (mRNA), and microRNA 
(miRNA) [17]. The size of exosomes varies from 30 to 
150 nm, and they can be transferred to other cells to do 
their functions. As a highly controlled process, the gen-
eration of exosome from the other organisms similar to 
themselves is comprised of three main steps: (1) forma-
tion of endocytic vesicles by the folding of the exterior 
area of the plasma membrane, (2) formation of multive-
sicular bodies (MVBs) by inward budding of the endo-
somal membrane, and (3) incorporation of established 
MVBs with the plasma membrane and secretion of the 
vesicular contents, called exosomes [14, 18]. Exosomes 
elicit antioxidant effects and motivate target cells to trig-
ger downstream signals. Moreover, they convey genetic 
material to target cells, leading to the suppression of 
inflammation and apoptosis. [19, 20].

This review aims to give an overview of the present 
knowledge to elucidate mechanisms used by MSCs to 
underlie liver restoration in ALF. Another aim is to pre-
sent a discussion of new developments in preclinical and 
clinical investigations on MSCs therapy in liver-associ-
ated diseases, with a particular focus on ALF.

Pathophysiology of ALF
Acetaminophen (APAP) has proved to be the main 
cause of ALF [21]. The following people are highly likely 
to experience ALF stimulated by APAP: alcoholic peo-
ple who use APAP; people who suffer from malnutri-
tion; or people who take medications that are believed 
to induce CYP450 enzymes (e.g., phenytoin, carbamaz-
epine, or rifampin). Results of a study on 308 patients 
with severe liver disorder in the USA revealed APAP as 

the main cause of ALF in 40% of patients [22]. The other 
causes detected were as follows in the increasing order of 
prevalence:

•	 Malignancy (1%)
•	 Budd-Chiari Syndrome (2%)
•	 Pregnancy (2%)
•	 Wilson disease (3%)
•	 Hepatitis A virus infection (4%)
•	 Autoimmune hepatitis (4%)
•	 Ischemic hepatitis (6%),
•	 Hepatitis B virus infection (6%)
•	 Idiosyncratic drug-induced liver injury (13%)

The causes of 17 percent of cases were not known [4].
Based on results, it is possible to categorize the ALF 

pathophysiology into two groups: pathophysiologies 
of liver problems involving a specific cause and patho-
physiology concerning the appearance of second-
ary multiorgan failure (MOF) [23]. With regard to the 
pathophysiology of liver disorders, the results show that 
APAP toxicity is the main cause [24]. Secondary MOF 
often derives from the primary extensive pro-inflam-
matory effect, which leads to a pervasive inflammatory 
effect syndrome. Then, a deregulated anti-inflammatory 
response ensues [25, 26].

It is not clear what mechanism causes the ongoing 
death of tissue when there is no ongoing injury. Oxida-
tive stress results in the formation of reactive oxygen 
species (ROS). This, in turn, activates c-Jun N-termi-
nal kinase (JNK) through a series of events [27]. Such 
activation may support disruption of normal mito-
chondrial function, which inspires more hepatocyte 
necrosis and damage associated molecular patterns 
(DAMPs) [28, 29]. DAMPs bring about the activation 
of hepatic macrophages, resulting in the formation of 
the inflammasome [30, 31]. Concisely, as complexes 
characterized by multiple proteins, inflammasomes 
receive the intracellular danger signals through NOD-
like receptors (NLRs) [32]. The inflammasome effec-
tively regulates the inflammatory response by eliciting 
a response to low-threshold signals. Toll-like receptors 
(TLRs) induction by DAMPs leads to the inflamma-
some activation, supporting the subsequent activation 
of caspase-1 and IL-1β secretion [33, 34]. Researchers 
have identified the characteristics of the NLR family 
pyrin domain containing 3 (NLRP3) inflammasome 
belonging to the inflammasome family. NLRP3 inflam-
masome has three potential activation pathways: (1) 
ATP signal which occurs outside a cell, leading to 
potassium efflux and pannexin recruitment; (2) incor-
poration of crystalized cholesterol, uric acid or amy-
loid with lysosomal dysfunction after the ingestion and 
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elimination of these particles; and (3) activation by 
reactive oxygen species (ROS) [33, 35, 36]. Investiga-
tions have examined the activation of inflammasome 
in APAP-induced ALF by a special focus on the con-
tribution of the inflammasome to acute liver disorder 
[37]. It appears that DAMPs are released from necrotic 
hepatocytes and sinusoidal endothelial cells, leading 
to the activation of the inflammasome in the manner 
mentioned above.

The rationality of MSCs therapy in ALF
MSCs migration to damage tissue by interaction with 
several receptors and molecules, and thereby inducing 
liver recovery by various mechanisms has been proved 
(Fig. 1). Although the mechanisms of MSCs transplanta-
tion are still not entirely understood, a growing body of 
proof has indicated that their immunomodulation, differ-
entiation, and antifibrotic capabilities play central roles in 
liver repair. Among them, anti-inflammatory potential of 
MSCs play most critical role. Although there is no clear 

Fig. 1  Underlying mechanism complicated in mesenchymal stromal cells (MSCs) migration to damaged liver tissue. The connections between 
CXCR4 and SDF-1ɑ, c-Met and HGF, and finally VLA-4 and VCAM-1 underlie cell to cell interaction between endothelial cells (ECs) and MSCs, which, 
in turn, facilitate MSCs migration to damaged liver tissue. Then MSCs secrete anti-inflammatory molecules, such as PGE2, IDO, TGF-β, IL-10, and NO 
to down-regulate inflammation. These molecules prompt the change of inflammatory to proliferating phase largely defined by the secretion of 
PDGF and VEGF, sustaining hepatocyte formation and proliferation
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evidence indicating the MSCs in vivo differentiation into 
hepatoid cells post-transplantation, MSCs can be differ-
entiated into hepatocyte-like cells (HLCs) in  vitro and 
then be infused. Of course, this process is time-consum-
ing process with insufficient established HLCs, thereby 
hindering its therapeutic utility in clinic. However, there 
is some evidence indicating that replacing fetal bovine 
serum (FBS) with polyvinyl alcohol (PVA) might lead 
to improved differentiation ability [38]. In  vivo, as only 
a small number of intravenously injected cells reach the 
liver, MSCs-mediated favored effects mainly depend on 
the secreted molecules rather than their direct effects 
or differentiation into hepatocytes post-transplantation 
[39].

MSC anti‑inflammatory properties
The hepatocyte loss is the first symptom and mechanism 
contributing to acute liver damage. It is still unclear what 
causes ongoing necrosis when there is no injury. ROS are 
produced in response to oxidative stress. This, in turn, 
activates c-Jun N-terminal kinase (JNK) through a series 
of events, resulting in mitochondrial dysfunctions. These 
events lead to a higher level of hepatocyte necrosis, as 
well as the expansion of DAMPs [40]. DAMPs stimulate 
the activation of hepatic macrophages and the formation 
of the inflammasome [41]. In the next stage, the release 
of pro-inflammatory cytokines eases the recruitment of a 
larger number of immune cells to the inflammation area, 
and so advances hepatocyte cell necrosis.

The majority of past investigations have indicated that 
MSCs play a therapeutic role in the treatment of liver 
dysfunction by releasing trophic factors and the factors 
modulating the immune system [42]. Although the role 
of MSCs in modulating the immune system is unclear, 
they might control the immune cells through the secre-
tion of soluble factors and the contacts between cells. The 
regulation of adaptive and innate immune responses by 
MSCs is exerted by inhibiting T cells and dendritic cells 
(DCs), which leads to a reduction in the activation and 
growth of B cells [43, 44]. This, in turn, enhances the 
formation of regulatory T (Treg) cells and prevents the 
growth and toxicity of natural killer (NK) cells induced by 
the chemotherapeutic molecules [45]. Also, transforming 
growth factor-beta (TGF-β) and interleukin 10 (IL-10) 
as crucial factors in the regulation of a large number of 
inflammatory cells [46, 47]. Studies revealed a significant 
increase in the amounts of TGF-β and IL-10 in serum 
following the injection of UC-MSCs, but a significant 
decrease in the amounts of IL-6, tumor necrosis factor-
alpha (TNF-α), and cytotoxic T lymphocytes (CTLs) was 
seen in peripheral blood [48]. This led to the restoration 
of liver function, as well as a reduction in the develop-
ment of disease and the level of mortality. Furthermore, 

transient T cell apoptosis can be induced by BM-MSCs 
through the Fas ligand (FasL)-dependent pathway [49]. 
Then, macrophages are stimulated by apoptotic T cells 
to form high amounts of TGF-β, resulting in the up-reg-
ulation of Treg cells to trigger immune tolerance. MSCs 
can prevent cytotoxic CTLs and NK cells through the 
contact between cells and paracrine factors, including 
indoleamine 2,3-dioxygenase (IDO), TGF-β, and prosta-
glandin E2 (PGE2) [50, 51]. Of course, TGF-β acts as a 
two-edged sword. It can weaken the immune system and 
thereby suppress liver inflammation [49]; on the other 
hand, it can increase liver fibrosis [52]. MSCs, in fact, 
can act as an immunomodulatory agent in reducing the 
inflammation of the body through up-regulating anti-
inflammatory Treg cells and decreasing T helper 1 (Th1) 
and Th17 cells in ALF [53]. Moreover, the inflammation 
after MSC transplantation can be indirectly stimulated 
by up-regulating M2-type macrophages, leading to the 
secretion of a variety of anti-inflammatory factors, such 
as chemokine ligand 1 (CCL-1) and IL-10, up-regulation 
Th2, and Treg cells [54]. Also, MSCs play an important 
role in the reduction of B-cell growth through contact 
between cells and the secretion of soluble factors [55]. 
Finally, MSC transplantation can play an effective role in 
mitigating liver damage in ALF by decreasing the number 
and activity of neutrophils in both peripheral blood and 
the liver.

MSCs differentiate into HLCs
MSCs are characterized by their ability to proliferate and 
differentiate in vitro. For the first time, Friedenstein et al. 
procured MSCs in 1968 from the bone marrow (BM) [56, 
57]. After that, MSCs obtained from multiple sources, 
making them an excellent supply of multipotent cells for 
treatment of liver dysfunctions. A variety of methods are 
used to differentiate MSCs into HLCs [58, 59]. Studies 
show that multiple signals contribute to the regulation 
of the cells’ behavior in a cooperative manner. Such sig-
nals are usually triggered by extracellular matrix (ECM), 
growth factors, and even juxtacrine signals [60]. Each one 
of the organs, as well as the developmental stage, is char-
acterized by a specific regulated timing and distribution 
pattern of signals. As a result, achieving better results 
in the case of in  vitro cultures requires establishing a 
type of environment that resembles the local environ-
ment. Based on the research previously done, it is pos-
sible to differentiate MSCs obtained from various sources 
into hepatocytes in the case of both mice and humans 
through the implementation of a variety of protocols and 
methods in vitro [61, 62].

Hepatic differentiation protocol is known to be the 
most frequently used method for hepatic differentia-
tion, which benefits from Iscove’s Modified Dulbecco’s 
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Medium (IMDM), as well as cytokine cocktail. Epider-
mal growth factor (EGF) or fibroblast growth factors 
(FGF) trigger the MSCs to differentiate into endoder-
mal cells during the early induction stage. EGF prompts 
the MSCs to proliferate by interfaces with EGF receptor 
(EGFR) [63]. Besides, FGF is a member of a bigger fam-
ily that is comprised of seven polypeptides with similar 
characteristics [64]. This family plays an essential role 
in the primary stage of endodermal patterning [65]. 
In particular, FGF-4 and basic FGF (bFGF) are com-
monly used. Like EGF, FGF influences the growth rate 
of MSCs [66].

Generally, the differentiation of cells is stimulated 
by adding FGF, HGF, nicotinamide (NTA), and also 
insulin-transferrin-selenium (ITS) into cultures [67]. 
As a mesenchymal origin pleiotropic cytokine, hepato-
cyte growth factor (HGF) contributes to adjustment of 
growth, differentiation, and chemotactic migration of 
MSCs [68]. MSCs’ exposure to HGF for a short time 
causes the activation of c-Met receptors along with 
its downstream agents such as extracellular signal-
regulated protein kinase (ERK)1/2, p38, mitogen-acti-
vated protein kinases (MAPKs), and phosphoinositide 
3-kinase (PI3K) /Akt [69, 70]. MSCs’ exposure to 
HGF for a long time will make changes in cytoskeletal 
arrangement; moreover, it results in the migration of 
cells and a notable decrease in proliferation. In addi-
tion, ITS and NTA promote the growth and survival of 
primary hepatocytes [71].

Despite the fact that MSCs can differentiate in culture 
through induction, the organ-specific microenvironment 
is the best technique, enabling MSCs differentiation into 
a certain cell type. The ability to express hepatocyte-
specific genes is one of the specific characteristics of 
hepatic-differentiated cells, which can be affected by 
microenvironmental features [72]. Reports display that 
in the case of humans, the differentiation of the MSCs 
obtained from umbilical cord (UC) into HLCs occurs 
more quickly in the fibrotic liver microenvironment [73].

Other studies also show that the differentiation of 
MSCs into functional hepatocytes does not occur 
directly; rather, these cells initially differentiate into bil-
iary epithelial cells (BEC)-like cells, followed by differen-
tiation into HLCs [74]. However, according to the results 
of other investigations, MSCs transdifferentiation infre-
quently occurs after MSC infusion in animal models 
[75]. MSCs obtained from menstrual blood, for instance, 
turned out to prevent hepatic satellite cells (HSCs) acti-
vation and resultant liver fibrosis, leading to the improve-
ment of liver function. Yet, very few transplanted MSCs 
differentiated into functional HLCs in  vivo [76]. These 
results demonstrate that the therapeutic impact of MSCs 
is mediated mainly by indirect paracrine signaling.

MSCs antifibrotic properties
Thanks to their antifibrotic and immunosuppressive 
properties, MSCs play an important role in the treatment 
of fibrosis [77]. Also, fibrosis in not a common pathologi-
cal signs of ALF; long-term liver damage mainly results 
in fibrosis. MSC transplantation could attenuate liver 
fibrosis by down-regulation of TGF-β1, Smad2, collagen 
type I, and smooth muscle alpha-actin (αSMA), reduc-
ing liver fibrosis regions in vivo [78]. Besides, BM-MSCs 
decreased hepatic collagen distribution by impairing the 
TGF-β/Smad signaling pathway in a cirrhosis rat models 
[79]. MSCs also ameliorated hepatic microvascular dys-
function and portal hypertension, which contribute to 
complications defining clinical decompensating [80]. Fur-
ther, the expression of matrix metalloproteinase (MMP)-
2, -9, -13, and -14 can be up-regulated by MSCs [81], 
which, in turn, attenuates liver fibrosis through degrad-
ing extracellular matrix (ECM) [82]. MSCs reinforce this 
effect by the down-regulation of the tissue inhibitors of 
matrix metalloproteinases (TIMPs). Importantly, there is 
an association between the balanced levels of MMPs and 
TIMP and fibrosis resolution [83]. Moreover, MSCs have 
both direct and indirect roles in inhibiting the activation 
and growth of hepatic satellite cells (HSCs) and thereby 
could inhibit collagen synthesis [84]. The direct inter-
actional relationship between MSCs and HSCs helps to 
inhibit HSC proliferation by stimulating G0/G1 cell-cycle 
arrest. This is done by inhibiting the phosphorylation of 
ERK1/2 [85]. On the other hand, MSCs contain substan-
tial levels of milk fat globule-EGF factor 8 (MFGE8). The 
MFGE8 reduces expression levels of TGF-β1 receptor on 
HSCs, thus strikingly fences primary human HSCs acti-
vation [86]. In co-culture conditions, MSCs also mainly 
impair α-smooth muscle actin (α-SMA) expression of 
HSCs, which is mediated, in part, by the activation of the 
Notch pathway [87]. The indirect secretion of some piv-
otal factors (IL-10, HGF, TGF-β, and TNF-α) by MSCs 
averts the growth of HSCs and reduces the formation of 
collagen. In contrast, HGF and NGF enhance the apopto-
sis of HSCs [88, 89].

MSCs antioxidant properties
One of the events deriving from ROS is oxidative stress, 
which is known as a common driver in creating dam-
age to the liver. Some of these damages include the 
liver failure, liver fibrosis, liver cirrhosis, viral hepatitis, 
and also hepatocellular carcinoma (HCC) [90, 91]. The 
results of some investigations have revealed that MSCs 
play a strong mediatory antioxidant role in different 
animal models [92, 93]. Oxidative liver injury is mostly 
caused by thioacetamide (TAA) or carbon tetrachloride 
(CCl4) as the most commonly used toxins. These types 
of toxins give rise to hepatocyte dysfunction through 
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the peroxidation of lipid and proteins alkylation, nucleic 
acids, and lipids [94, 95], resulting in the inflammatory 
response, hepatocellular injury, and liver fibrosis. Cell 
signaling and homeostasis require a low level of physi-
ologic ROS formed by the mitochondrial respiration. 
MSCs have proved to have the capability of mitigating 
oxidative stress simulated by CCl4 and TAA in vivo [96, 
97]. Through enhancing the superoxide dismutase (SOD) 
expression and antioxidant response elements (AREs) 
stimulation, MSCs boost antioxidant and cytoprotective 
performance, leading to a reduction in hepatocyte apop-
tosis [98, 99]. Due to their antioxidant role along with 
their role in modulating the immune systems, MSCs can 
be very useful in developing therapies for liver injuries.

The importance of MSCs‑exosome as cell‑free 
approach in ALF
Exosome is a main subtype of extracellular vesicles (EVs) 
with a diameter in the range of 40–150  nm. Exosome 
are mainly produced by a diversity of human cells, such 
as stem/stromal cells, immune cells, and tumor cells 
[100]. They include several biological components, more 
importantly, miRNAs, proteins, lipids and mRNAs, as 
cargo [101, 102]. The production and secretion proce-
dure of exosome consists of three chief steps: (1) crea-
tion of endocytic vesicles through invagination of the 
plasma membrane, (2) creation of multivesicular bodies 
(MVBs) upon endosomal membranes’ inward budding, 
and (3) incorporation of created MVBs with the plasma 
membrane and releases of the vesicular contents termed 
exosomes [14, 18]. Then, the contents of exosomes are 
transferred to the recipient cells, and thereby modify 
physiological cells [15]. As a result of their great capa-
bilities to elicit hepatoprotective effect, exosomes are 
recently been considered as a rational therapeutic option 
for liver failure, thereby circumventing comprehensions 
concerning stromal cells’ direct transplantation [103, 
104]. They are smaller and less complex compared with 
parent cells, and thereby easier to produce and store. 
Also, they exhibit no risk of tumor formation. Impor-
tantly, exosomes are less immunogenic than their par-
ent cells due to their lower membrane-bound proteins. 
Recently, UC-MSCs-derived glutathione peroxidase1 
(GPX1) enriched exosome showed the capacity to com-
promise oxidative stress as well as apoptosis in the hepat-
ocyte, stimulating hepatoprotective effect in ALF rodent 
models [105]. Also, MSCs-derived exosome potently 
reduced inflammatory response in ALF animal models 
by impairment of IL-6-mediated signaling axis [106] and 
also down-regulation of NLRP3 pathway [107]. However, 
further studies are strongly needed to entirely elucidate 
how MSCs-derived exosomes exert their hepatoprotec-
tive influences in vivo.

MSCs in ALF (animal studies)
Native MSCs
MSCs-based treatments have shown huge potential for 
regenerating the liver and repairing its injury, which 
resulted from several liver disorders (Tables 1, 2). In vivo, 
MSCs can migrate to damaged tissues and constrain the 
production of pro-inflammatory molecules (e.g., IL-1, 
IL-6, and TNF-ɑ) and ultimately potentiate liver cells 
growth. As described, the chief mechanism behind the 
MSCs-mediated positive effects is their immunoregula-
tory potential rather than direct differentiation into hap-
toid cells. These cells efficiently hinder the activation of 
both innate and adaptive immune system cells, such as 
neutrophils, macrophages, NK cells, DCs, monocytes, 
and also lymphocytes. Studies in liver failure animal 
models revealed that MSCs could transdifferentiate into 
albumin-expressing HLCs, and also may support nor-
mal hepatocytes proliferation in  vivo upon fusion with 
them [108]. Findings have outlined the important roles of 
SDF-1/CXCR4 axis to ease MSCs migration to damaged 
tissue, sustaining liver rescue in ALF [108]. As well, injec-
tion of MSCs-derived hepatocyte into mice with liver fail-
ure ameliorated liver function, as evidenced by analysis of 
serum profile as well as biochemical factors rates [109]. 
Notably, the serum levels of TGF-β1 and IL-10 in trans-
planted animals were more prominent than in control 
animals [109]. Other studies displayed that pyroptosis, a 
unique shape of programmed cell death induced by pen-
etrating inflammatory reaction, was suppressed by MSCs 
therapy in ALF preclinical model [110]. Accordingly, 
MSCs administration caused liver repair in C57BL/6 mice 
by up-regulation of IL-10 and concomitantly suppression 
of NLRP3 [110]. Given that NLRP3 inflammasome elicits 
liver failure through induction of procaspase-1 and pro-
IL-1 β accompanied with the adjustment of downstream 
CD40-CD40L signaling, its inhibition as elicited by MSCs 
can enable liver recovery in ALF [111]. Besides, the study 
of the soluble factor produced by MSCs and their potent 
desired impacts in a rat model of ALF revealed that 
IL-10, which mainly is secreted by MSCs, has a central 
role in ALF recovery post-transplantation [112]. It was 
found that phosphorylated STAT3 diminished upon 
IL-10 injection and conversely STAT3 suppression abro-
gated IL-10-induced effects in  vivo, reflecting the emi-
nent role of STAT3 signaling in exerting IL-10-induced 
anti-inflammatory influences [112]. In addition to the 
IL-10, MSC-produced PGE2 could constrain apoptosis 
and simultaneously augment hepatocyte proliferation, 
thereby decreasing ALF [113]. In fact, PGE2 stimulated 
YAP activation and then activated YAP suppressed phos-
phatase and tensin homolog (PTEN) and consequently 
up-regulated mammalian target of rapamycin (mTOR), 
a foremost controller of cell growth. This axis in turn 
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protected versus ALF through increasing hepatocyte 
proliferation [113]. Furthermore, there is clear evidence 
signifying that MSCs could modify phenotype and func-
tion of macrophages, adjust DCs either differentiation or 
maturation, and impede the T cell activities by the pro-
duction of tumor necrosis factor-alpha-stimulated gene 6 
(TSG-6) in ALF models [114]. TSG-6 mainly averts the 
inflammatory response as a result of suppressing P38 and 
JNK signaling axes, providing a suitable milieu for ALF 
rescue upon MSCs transplantation [115]. MSCs also can 
induce their favored influences by heme oxygenase (HO) 
1, a rate-limiting enzyme in heme metabolism, which is 
noted as an effective antioxidative and cytoprotective 
molecule. Recently, it was proven that MSCs administra-
tion gave rise to HO-1 up-regulation, whereas suppress-
ing HO-1 impaired MSCs-induced desired effects and 
also hepatocyte autophagy [116]. These favored effects 
upon MSCs therapy were most probably caused by PI3K/

Akt signaling pathway-induced HO-1 up-regulation 
[116]. Also, Zhang et al. found that systemic administra-
tion of BM-MSCs into the ALF rat model attenuated ALF 
by up-regulation of the HO-1 expression and subsequent 
attenuation in neutrophil infiltration and activation [117]. 
This event finally reduced hepatocyte apoptosis and also 
improve their proliferation, culminating liver recovery. 
Similarly, the pivotal role of neutrophils in ALF patho-
genesis has been clarified by other reports [118]. In the 
D-galactosamine-induced ALF animal model, the great 
number of neutrophils aggregated in the liver tissue along 
with promoted myeloperoxidase (MPO) activity and 
enhanced alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) serum levels are mainly detected 
[118]. Nonetheless, injection of BM-MSCs brought 
about functional recovery, which was documented by 
reduced ALT and AST levels and also improved sur-
vival rate in the treatment group compared with the 

Table 1  Direct administration of native mesenchymal stromal cells (MSCs) in liver failure preclinical models, especially acute liver 
failure (ALF)

Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Glycogen synthase kinase-3β (GSK-3β), Mammalian target of rapamycin (mTOR), Phosphoinositide 
3-kinases (PI3Ks), CXC chemokine receptor 4 (CXCR4), Stromal derived factor-1α (SDF-1α or CXCL12), Prostaglandin E2 (PGE2), Nuclear factor-erythroid factor 2-related 
factor 2 (Nrf2), Nuclear factor-kappa B (NF-κB), Natural killer T (NKT) cells, T helper 17 (Th17), Interleukin-10 (IL-10)

Sources Model Result (ref)

Placenta Rat Migration to damaged site and induction of immunomodulatory effects by secreting paracrine factors in ALF [193]

Bone marrow Rat Systemic administration of MSCs reduced ALT, AST, and bilirubin levels [124]

Bone marrow Rat Reducing ALF, improving glucose metabolism and survival, and also stimulation of the hepatocyte proliferation by activating 
AKT/GSK-3β/β-catenin pathway [122]

Adipose tissue Rat Normalization of amino acids, sphingolipids, and glycerophospholipids in the liver and blood along with attenuation hepato-
cyte apoptosis and conversely promoting their proliferation rate [194]

Placenta Rat Stimulation of liver repair through the antifibrotic and autophagic mechanisms [149]

Umbilical cord Monkey Inhibition of the activity of IL-6 producing monocyte, amelioration of the liver histology, and also animal survival [119]

Adipose tissue Rat Suppression of the secondary complications of liver failure [195]

Bone marrow Porcine Improving the liver function homeostasis, attenuation of reactive oxygen species (ROS) following efficient homing, and also 
differentiation into hepatocytes [196]

Bone marrow Rat Amelioration of mitochondrial activities and normalization of lipid metabolism upon modifying the mTOR pathway [197]

Umbilical cord Rat Provoking the endogenous liver regeneration, hindrance of hepatocyte apoptosis by up-regulated c-Met in hepatocyte [120]

Bone marrow Rat Potentiating of MSCs-elicited liver regeneration following the abrogation of autophagy in MSCs [198]

Bone marrow Rat Amelioration of ALF by up-regulation of the heme oxygenase 1 (HO-1) expression, which resulted in inspiring the autophagy 
process through PI3K/AKT signaling axis [116]

Bone marrow Mice Enhancing MSCs competencies to stimulate liver recovery following transdifferentiation as well as fusion with hepatocytes 
by SDF-1/CXCR4 axis [199]

Bone marrow Mice Reducing ALF by IL-10 produced by MSCs, which ultimately inhibits pyroptosis [110]

Bone marrow Mice MSCs derived from adipose tissue showed superiority over MSCs isolated from bone marrow in ALF [125]

Bone marrow Mice Improvement of hepatocyte mediated by PGE2 released by MSCs, ameliorating ALF [113]

Wharton’s jelly Mice Restoration of hepatotoxicity by WJ-MSC [200]

Bone marrow Swine Averting ALF upon stimulation of hepatocyte proliferation and suppressing their apoptosis by intraportal MSCs transplanta-
tion [123]

Bone marrow Rat Attenuated aggregation and function of neutrophils [118]

Adipose tissue Mice Protection against ALF by affecting the Nrf2 and cytochrome P450 expression [201]

Umbilical cord Mice Inducing the endogenous liver regeneration but not notable hepatogenic differentiation [202]

Umbilical cord Mice Attenuation of ALF by down-regulation of MyD88/NF-κB pathway involved in inflammation [203]

Bone marrow Mice Attenuation of ALF by modifying ratio between Th17 and regulatory NKT cells [204]
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control group (50% vs 12.5%). Notably, the intervention 
led to a robust decrease in the population of neutro-
phils in the liver, MPO function, and also the expression 
of pro-inflammatory factors, including TNF-α, IL-1β, 
interferon gamma (IFNγ) and CXC chemokine ligands 
1/2 (CXCL1/2) [118]. In addition, in a monkey model of 
ALF, systemic administration of the MSCs derived from 
another source, unbiblical cord (UC), reduced hepatic 
aggregation and maturation of circulating monocytes and 
their IL-6 releases, resulted in prolonged survival [119]. 
UC-MSCs also could induce a reduction in ALF by pro-
voking the endogenous liver regeneration in association 
with suppression of liver cell apoptosis by up-regulating 
HGF/c-Met signaling axis [120] or down-regulation of 
Notch and STAT1/STAT3 signaling [121]. The positive 
influences of MSC therapy on hepatocyte proliferation 
also may arise from activation of AKT/ glycogen synthase 
kinase 3 beta (GSK-3β)/β-catenin pathway and enhance-
ment in glucose metabolism leading to improved survival 
rate in ALF animal model [122]. Interestingly, intraportal 
injection of MSCs showed superiority over hepatic intra-
arterial, intravenous, and intrahepatic injection in terms 
of liver recovery rate in swine with ALF. Notably, the liver 
recovery might be attributable to down-regulation of 
caspase-3, up-regulation of apoptosis inhibitor survivin 

as well as activation of AKT and ERK axes [123]. On the 
other hand, another study revealed that systemic infusion 
of MSCs was more effective than the intraperitoneal (IP) 
injection to support liver recovery because of the more 
significant increase in expression levels of growth factor 
vascular endothelium growth factor (VEGF) [124]. Also, 
compared with BM-MSC, adipose tissue (AT)-derived 
MSCs displayed higher therapeutic capacities, as defined 
by estimation of ALT and AST levels post-transplanta-
tion in ALF murine model [125].

MSCs delivery using biomaterials
Present cell transplantation approaches are hindered 
via poor post-delivery survival, liver ECM and vascula-
ture deterioration, and also difficulties in fusion into the 
host tissue [126]. As a result, scientists are persuaded 
to deliver MSCs within biomaterial structure to sustain 
the transplants’ viability and also potentiate MSCs long-
standing activation in vivo [126].

Recent reports noted that BM-MSCs are valued options 
to co-culture with hepatocytes in poly (lactic acid-gly-
colic acid) (PLGA) scaffolds, enhancing the hepatocel-
lular activities [127]. Administration of BM-MSCs and 
hepatocyte seeded PLGA scaffolds led to the considerably 
advanced cellular proliferation and conversely supported 

Table 2  Administration of modified mesenchymal stromal cells (MSCs) or/and native MSCs in combination with other modalities in 
liver failure preclinical models, especially acute liver failure (ALF)

CXC chemokine receptor 4 (CXCR4), Interleukin-1 (IL-1), Hepatocyte nuclear factor 4 alpha (HNF4α), Transforming growth factor (TGF-β), Vascular endothelial growth 
factor 165 (VEGF165), Granulocyte colony-stimulating factor (G-CSF), Hepatocyte growth factor (HGF)

Sources Model Intervention Result (ref)

Adipose tissue Rat MSCs plus Eugenol Enhancing antifibrotic competencies of MSCs by eugenol 
through down-regulation of TGF-β/Smad axis [205]

Bone marrow Rat MSC plus
Neutrophil depletion

Amelioration of ALF in rats [206]

Umbilical cord Rat MSC plus Icaritin Enhancing the antiapoptotic capability of MSCs by promot-
ing the HGF/c-Met pathway [131]

Umbilical cord Mice HNF4α-overexpressing MSCs plus Hepatocyte Improving the EGF release by HNF4α-UMSCs [207]

Umbilical cord blood Rat VEGF165 -overexpressing MSCs Induction of marked therapeutic influences on ALF [143]

Bone marrow Mice CXCR4-overexpressing MSCs Improved migration and reduced damaged tissue by 
stimulating hepatoprotective impacts [142]

Amniotic fluid Rat IL-1-overexpressing MSCs Improved liver function along with prolonged survival [145]

NA Swine MSCs plus IL-lRa-loaded chitosan nanoparticles Eliciting a synergistic impact by abrogating liver inflamma-
tion [136]

Bone marrow Rat Dexmedetomidine and Midazolam primed MSCs Enhancing the therapeutic merits of MSCs [208]

Umbilical cord Rat MSCs plus G-CSF Attenuation of liver damage by suppressing the genera-
tion of pro-inflammatory cytokines, alleviation of oxidative 
stress, and reducing liver cell loss [132]

Bone marrow Swine MSCs plus IL-1R antagonism Exerting synergistic influences by prohibiting the inflamma-
tion and apoptotic signaling [135]

Bone marrow Mice MSCs seeded on human amniotic membranes (HAM) Improving survival rate [209]

Bone marrow Mice Poly lactic-co-glycolic acid (PLGA) scaffold loaded with 
MSCs

Stimulation of hepatoprotective impacts by paracrine fac-
tors [127, 128]

Bone marrow Mice Regenerated silk fibroin (RSF) scaffold loaded with MSCs Potentiating liver function by provoking angiogenesis [130]
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a striking reduction in ALT, AST, and total bilirubin in 
ALF preclinical models post-transplantation, ultimately 
leading to the prolonged survival [127]. Another study 
demonstrated that MSCs seeded PLGA scaffolds were 
survived for 3 weeks, and displayed more evident activi-
ties than MSCs injected by intravenous route, which was 
verified by lower mortality in vivo [128]. However, there 
was no significant alteration in hepatic inflammation and 
necrosis zones between the two applied interventions 
[128]. Also, poly L-lactic acid (PLLA) nanofiber scaffold 
could improve the hepatic differentiation of BM-MSCs 
[129]. In  vitro, analysis exhibited that expression levels 
of liver-specific markers, more importantly, albumin and 
α-fetoprotein, were greater in differentiated cells on the 
nanofibers compared with differentiated cells in plates. 
These results deliver the proof of the theory that engi-
neered PLLA scaffold could be an efficient alternative 
to augment MSCs differentiation into functional HLCs 
[129]. Besides, BM- and AT-MSC seeded regenerated silk 
fibroin (RSF) matrices potently differentiated into HLCs 
in  vitro and also stimulated angiogenesis and restored 
liver functions in the ALF mice model in vivo [130].

Combination therapy with MSCs
A diversity of studies recently has focused on combina-
tion therapy with MSCs and other molecules or modali-
ties to diminish ALF. Meanwhile, co-administration of 
MSCs with Icaritin, a well-known ingredient isolated 
from traditional Chinese medicine, resulted in promis-
ing outcomes in  vivo [131]. Indeed, MSCs co-cultured 
with Icaritin improved survival, reduced serum levels of 
AST and ALT, and elicited histological variations in liver 
tissue more potently than MSCs alone. Importantly, the 
up-regulation of HGF/c-Met by Icaritin was found to be 
involved in MSCs-triggered antiapoptotic influences on 
hepatocytes, reflecting the potential of herbal extracts 
to promote MSC-mediated therapeutic impacts [131]. 
The addition of the granulocyte colony-stimulating fac-
tor (G-CSF) to UCB-MSCs also improved survival and 
reduced ROS and pro-inflammatory cytokines expres-
sions in ALF murine model [132]. Also, intervention 
engendered a significant reduction in cell apoptosis in 
liver tissues more evidently than UCB-MSCs alone [132]. 
These findings were similar to previous reports display-
ing that G-CSF therapy alone could significantly attenu-
ate short-term mortality in patients suffering from liver 
failure mainly by reducing inflammation concomitant 
with activating PI3K/Akt axis in hepatocytes [133, 134]. 
In another study, thanks to the crucial role of IL-1 in 
the progress of ALF, Sang et  al. evaluated possible syn-
ergetic effects of combined use of MSCs with 2  mg/kg 
interleukin-1 receptor antagonist (IL-1Ra) in vivo [135]. 
They found that treatment significantly attenuated liver 

cell apoptosis, improved their proliferation, and even-
tually enhanced animal survival. It is supposed that the 
observed effects were dependent on enhancement in 
AKT and also a reduction in nuclear factor (NF)-κB 
expression, potentiating liver cell proliferation [135]. 
Similarly, co-administration of MSCs plus IL-1Ra chi-
tosan nanoparticles (NPs) was more effective than MSC 
transplantation alone for treating ALF [136]. IL-1Ra-
loaded NPs administration by ear veins exhibited syner-
gistic impacts with portal vein injection of MSC in a mini 
swine model of ALF by the hindrance of liver inflamma-
tion [136].

Pretreated MSCs
Current studies have verified that pretreatment 
with chemical agents, hypoxia, and also cytokine or 
chemokine in vitro can improve the therapeutic merits of 
MSCs upon transplantation in vivo [137, 138]. Compared 
to native MSCs, pretreated MSCs largely demonstrate 
developed hepatogenic differentiation, homing capability, 
and survival and paracrine impacts.

In 2019, Nie et  al. suggested that IL-1β pretreatment 
could circumvent the MSC’s poor migration toward the 
injured region in ALF murine model [139]. Correspond-
ingly, IL-1β-MSCs showed superiority over native MSCs 
respecting the survival time and liver function in  vivo. 
Remarkably, IL-1β-MSCs suppressed liver cell apoptosis 
and necrosis and also provoked their proliferation. Pre-
ferred effects were most probably enticed by improved 
CXCR4 expression resulting from IL-1β pretreatment 
and thereby increased migration toward CXCL12 (SDF-1 
α) in damage tissue [139]. Interestingly, pretreatment 
with injured liver tissue might improve MSCs homing 
and also their hepatogenic differentiation [140]. In vivo, 
transplantation of pretreated MSCs led to an enhance-
ment in albumin, cytokeratin 8, 18, and antiapoptotic 
protein Bcl-xl levels, whereas supported a reduction in 
pro-apoptotic protein Bax and caspase-3 levels [140]. 
Likewise, short-term, but not long-term, sodium butyrate 
(NaB) treatment augmented hepatogenic differentiation 
of BM-MSCs and consequently alleviated liver injury 
in vivo, according to Li et al. reports [141].

Genetically modified MSCs
Genetically modified MSCs mainly are used to enhance 
their colonization rate post-transplantation, leading to 
ameliorated liver recovery in ALF. Meanwhile, geneti-
cally modified MSC to overexpress the CXCR4 gene 
demonstrated more appropriate migration capability 
toward SDF-1α and also induce better hepatoprotective 
impacts in vitro [142]. In ALF murine model, CXCR4-
MSCs efficiently migrated to damaged tissue, and in 
turn, brought about prolonged survival and restored 
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liver activity more prominent than native MSCs trans-
plantation [142]. Besides, UCB-MSCs modified to 
overexpress vascular endothelial growth factor 165 
(VEGF165), a strong pro-angiogenic factor, potenti-
ated the UCB-MSCs multipotency and also resulted in 
better homing and colonization in liver tissues post-
transplantation [143]. While both native UCB-MSCs 
and VEGF165-encoding UCB-MSC restored liver activ-
ity in the ALF rat model, modified stromal cells exhib-
ited more desired therapeutic influences on ALF [143]. 
Given that IL-35 plays a pivotal role in Treg-induced 
immunoregulation, Wang et al. evaluated the therapeu-
tic merits of IL-35 overexpressing MSCs in ALF [144]. 
They showed that modified stromal cells migrated 
to the damaged tissues and considerably reduced 
the necrosis zones of damaged livers. Moreover, IL-
35-MSCs averted hepatocyte apoptosis through down-
regulation of the FASL expression by immune cells. 
They also attenuated IFN-γ levels secreted by immune 
cells potently via targeting JAK1-STAT1/STAT4 signal 
pathway [144]. As described in previous sections, IL-
1Ra elicits strong anti-inflammatory and antiapoptotic 
impacts on immune response in liver failure. Accord-
ingly, Zheng and coworkers showed that transplanta-
tion of IL-1Ra-encoding amniotic fluid (AF)-MSCs by 
the portal vein in the ALF rat model led to reduced 
mortality as well as ameliorated liver activity [145].

MSCs‑exosome in ALF
Exosomes are small membrane-bound EVs that are pro-
duced and then released by numerous types of cells, 
such as stem/stromal cells, immune cells, or tumor cells. 
Exosomes are comprised of a myriad of biological com-
ponents, including proteins, lipids, mRNAs as well as 
miRNAs as cargo, which can be conveyed to the recipi-
ent cells [103]. Such cargo can adjust physiological cell 
functions and thereby adapt tissue microenvironment, 
and also inspire hepatocyte proliferation, reflecting their 
competencies to be described as a rational therapeutic 
option in liver diseases, such as ALF (Table 3). Reduced 
levels of miR-20a-5p accompanied with the enhanced 
level of CXCL8, most eminent neutrophil chemoattract-
ants, are mainly observed in hepatocytes during ALF. 
But, BM-MSCs-exosome could improve miR-20a-5p 
expression and conversely attenuate CXCL8 levels in 
hepatocytes [146]. Also, systemic injection of UC-MSC-
exosome (16  mg/kg) induced liver restoration in the 
ALF mice model [105]. It was found that glutathione 
peroxidase1 (GPX1) enriched exosome-mitigated oxi-
dative stress and apoptosis in the hepatocyte, while the 
elimination of GPX1 led to the abrogated UC-MSCs-
exosome-elicited hepatoprotective impacts in mice [105]. 
In addition, UC-MSC-exosomes potently modified the 
membranous expression of CD154 (or CD40 ligand) in 
intrahepatic CD4+ T cells, largely contributing to the 
inflammatory response in the liver [147]. The suppressive 

Table 3  Mesenchymal stromal cells (MSCs) derived molecules (e.g., exosome) in liver failure preclinical models, especially acute liver 
failure (ALF)

Silica magnetic graphene oxide (SMGO), NLR family pyrin domain containing 3 (NLRP3), Tumor necrosis factor-ɑ (TNF-ɑ), T helper 1/2 (Th1/2), Vascular endothelial 
growth factor (VEGF), Interleukin 8 (IL-8 or CXCL8), Conditioned medium (CM), Embryonic stem cells (ESCs), Glutathione peroxidase1 (GPX1), C-reactive protein (CRP)

Sources Model Intervention Result (ref)

Umbilical cord Mice MSCs-exosome GPX1 enriched exosomes diminished oxidative stress and also apoptosis [105]

Placenta Rat MSCs-exosome CRP enriched exosome provoked angiogenesis by up-regulation of Wnt signaling axis [149]

Bone marrow Rat MSCs-exosome Stimulation of hepatoprotective impacts by exosome-rich fractionated secretome [150]

Bone marrow Mice MSCs-exosome Suppression of NLRP3 in macrophage and thereby reducing ALF by TNF-ɑ pretreated exo-
some [107]

Menstrual blood Mice MSCs-exosome Liver function recovery, improved survival rates, and suppressed hepatocellular apoptosis 
[151]

Umbilical cord Mice MSCs-extracellular vesicles Inhibition of T cell activation in liver tissue following reserve of CD154 expression [147]

Bone marrow Mice MSCs-conditioned medium Promoting hepatocyte proliferation, inhibition of their apoptosis, hindrance of the infiltration 
of macrophages, improving Th2/Th1 ratio, and enabling hepatic stellate cell (HSC) loss [157]

Bone marrow Rat MSCs-conditioned medium Marked attenuation of panlobular immune cells infiltrates and also hepatocellular apoptosis 
[210]

ESCs-MSCs Mice MSCs-conditioned medium Supporting hepatocytes growth by VEGF enriched conditioned medium [156]

Bone marrow Mice MSCs-exosome Attenuation of liver inflammation by exosomal miR-20a-5p/intracellular CXCL8 axis [146]

Bone marrow Rat MSCs-conditioned medium Reduced hepatocyte apoptosis [154]

Bone marrow Rat MSCs-conditioned medium Improving the hepatoprotective impacts of the conditioned medium by SMGO potently 
elicited through inhibition of inflammation and loss of hepatocytes [155]

Amniotic fluid Mice MSCs-conditioned medium Hepatic progenitor-like (HPL)-CM showed superiority over amniotic fluid-MSCs in terms of 
liver recovery [158]
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effect on CD154 expression and resultant inflamma-
tion was due to the existence of chaperonin containing 
TCP1 subunit 2 (CCT2) in these exosomes, which tar-
gets Ca2 + influx and down-regulates CD154 genera-
tion in CD4 + T cells [147]. In another study, Shao et al. 
screened the miRNAs in the MSCs-exosomes compli-
cated in inhibition of IL-6-mediated signaling axis in ALF 
mice model. They showed that miR-455-3p was released 
by exosomes and efficiently instigated PI3K signaling, 
and in turn, sustained hepatocyte proliferation [106]. 
Also, IL-6 pretreated MSCs or exosomes exhibited higher 
levels of miR-455-3p compared with native MSCs or 
their derivative exosome. In fact, miR-455-3p-enriched 
exosomes suppressed macrophages activation, reduced 
local liver injury, and also diminish the expression of pro-
inflammatory cytokines in  vivo [106]. The miR-455-3p 
also could constrain activation of HSCs and liver fibrosis 
upon down-regulation of the heat shock protein (HSP) 
47/TGF-β/Smad4 signaling pathway [148]. Importantly, 
C-reactive protein (CRP) enriched placenta-derived mes-
enchymal stromal cells (PD-MSCs)- exosome could up-
regulate Wnt signaling pathway as well as angiogenesis 
in animal hepatocytes by interacting with endothelial 
cells [149]. Another study also revealed that rat BM-
MSCs-exosome-rich fractionated secretome could bring 
about a hepatoprotective impact in ALF models mainly 
caused by diminished oxidative stress [150]. Similarly, 
transplantation of exosomes derived from menstrual 
blood-mesenchymal stromal cells (Men-SCs) that con-
tained a diversity of cytokines, such as intercellular adhe-
sion molecule-1 (ICAM-1 or CD54), angiopoietin-2, Axl, 
angiogenin, insulin-like growth factor-binding protein 
6 (IGFBP-6), osteoprotegerin, IL-6, and IL-8, improved 
liver function in the ALF animal model [151]. Treatment 
resulted in improved survival rates as well as reserved 
hepatocyte apoptosis. Notably, attenuated numbers of 
neutrophils and also diminished levels of caspase-3 were 
evidenced post-transplantation, assuming that Men-SC-
exosome can be a substitute treatment to support liver 
failure [151]. Pretreatment of UC-MSCs-exosome with 
TNF-α also enhanced exosome-induced hepatoprotec-
tive influence in the ALF mice model [107]. Pretreated 
exosomes led to the attenuated serum ALT, AST, and 
pro-inflammatory cytokines levels and concomitantly 
down-regulated stimulation of NLRP3 inflammasome. 
Molecular analysis revealed that miRNA-299-3p up-reg-
ulated in TNF-α-primed MSCs-exosome played an emi-
nent role in the amelioration of liver damage in ALF by 
blocking the NLRP3 pathway [107]. Apart from its role 
in liver failure recovery, a miR-299-3p activity as a potent 
tumor suppressor has been documented in hepatocellu-
lar carcinoma by alleviating tumor size and venous infil-
tration [152].

MSCs-conditioned medium (CM) could also mod-
ify morphological characteristics of hepatocytes in the 
ALF model. Meanwhile, secretome achieved by culti-
vating MSCs with low oxygen content (10%) provoked 
more prominent hepatoprotective influence, and sig-
nificantly reduced ALT and AST and also pro-inflamma-
tory cytokines serum levels following injection in  vivo 
[153]. In another study, Li and coworkers evaluated the 
therapeutic merits of CM from MSCs co-cultured with 
hepatocytes in the ALF rat model [154]. The apoptotic 
cells frequency was lower in CM derived from co-cul-
tured cells than MSCs-CM or hepatocyte-CM. Also, CM 
derived from co-cultured cells strikingly alleviated liver 
injury and facilitated liver recovery, indicating the advan-
tages of this strategy for liver failure therapy [154]. Also, 
silica magnetic graphene oxide (SMGO) could enhance 
the hypo protective influences of MSC-CM in ALF 
in  vivo [155]. Meanwhile, administration of 300  μg/kg 
SMGO boosted MSC-CM competencies to avert necro-
sis, apoptosis, and inflammation of hepatocytes. Besides, 
SMGO therapy up-regulated the expression of VEGF 
and matrix metalloproteinase-9 (MMP-9) in vitro [155]. 
Another report also demonstrated that administration 
of CM from embryonic stem cell (ESC)-derived MSCs 
potentiated the proliferation of primary hepatocyte and 
improved IL-10 secretion from immune cells in  vivo 
[156]. It appeared that such events might arouse because 
of the existence of VEGF in ESC-MSC-CM, which affect 
hepatocytes proliferation and migration, generating new 
avenues to cure ALF [156]. Likewise, MSC-CM sus-
tained hepatocytes proliferation, reduced their apop-
tosis, compromised macrophages infiltration, elevated 
Th2 and Treg cells population, decreased levels of Th17 
cells population, and eventually enabled HSCs death in 
ALF preclinical model [157]. The MSC-CM injection 
caused glycogen synthesis and storage recovery and also 
ameliorated ALF with no effect on Th1 cells [157]. Also, 
CM achieved from either amniotic fluid (AF)-MSCs or 
hepatic progenitor-like (HPL) cells derived from AF-
MSCs thanks to the presence of IL-10, IL-1Ra, IL-13, and 
IL-27 stimulated liver recovery in the mice model with 
ALF [158].

MSCs in liver‑associated conditions (clinical trials)
Several clinical trials have been accomplished or are 
ongoing to address the safety, feasibility and efficacy of 
MSCs therapy in liver-associated conditions, most fre-
quently in liver failure and liver cirrhosis (Table 4, Fig. 2). 
BM-MSCs and UC-MSCs are most commonly used types 
of cells. Of course, there is still no definite standard for 
which source of MSCs should be applied for clinical use. 
It seems that UC-MSCs are preferred for liver failure 
treatment as a result of higher differentiation capability. 
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Also, the immunogenicity of UC-MSCs is lower than that 
of BM-MSCs [159, 160]. Hence, autologous BM-MSCs 
and allogeneic UC-MSCs are highly preferred. On the 
other hand, poor proliferation, anti-inflammatory and 
self-renewal ability impedes AT-MSCs application in 
clinic [161]. Although intravenous injection is most used 
route, intraportal administration is evidently the optimal 
route for MSC therapy in liver-associated conditions due 
to the faster engraftment and the prohibited off-target 
accumulation. However, we must assess patients’ condi-
tions and the potential risk of applying a particular route 
before choosing the administration route.

Liver failure
A study of the safety and preliminary efficacy of UC-MSC 
transplantation (3 times at 4-week intervals) was car-
ried out by Ming and colleagues [162]. They showed that 
the intervention had no unwanted effects, while attenu-
ated total bilirubin and ALT levels, prolonged survival 

rate, and finally ameliorated liver functions, as evidenced 
by improved serum albumin, and prothrombin activity 
[162]. As well, intrasplenic and intrahepatic administra-
tion of autologous BM-MSCs derived hepatocyte inspired 
short-term amelioration in patient’s ascites, lower limb 
edema, and serum albumin [163]. Of course, defining the 
life span of the transplanted cells, and also determining 
the presence of long-term side effects is urgently required 
[163]. Moreover, another trial, which was accomplished 
from 2010 to 2013, indicated that systemic administra-
tion of allogeneic BM-MSCs could exert therapeutic 
benefits in patients suffering from HBV-related LF [164]. 
Meanwhile, stromal cell therapy augmented serum total 
bilirubin and ultimately promoted the 24-week survival 
rate by stimulating liver rescue concomitant with lessen-
ing the occurrences of stern infections compared with the 
control group (16.1% versus 33.3%) [164]. Likewise, other 
trials also exhibited that autologous BM-MSC transplan-
tation was safe for chronic HBV-induced LF patients, as 

Table 4  Clinical trials based on MSCs-based therapies in liver diseases (e.g., ALF)

Gamma-glutamyl transferase (GGT), Alkaline phosphatase (ALP), Bone marrow (BM), Umbilical cord (UC), Umbilical cord blood (UCB), Adipose tissue (AT), Hepatitis C 
virus (HCV), Hepatitis B virus (HBV)

Condition Cell Source Participant no Main results (ref)

Primary biliary cirrhosis Allogeneic UC 7 Robust attenuation in serum ALP and GGT levels [168]

Liver failure Allogeneic UC 43 Enchantment in the survival rates without side effects [162]

HBV-induced liver cirrhosis Autologous BM 56 Improving the Treg/Th17 cell ration [171]

Liver cirrhosis Autologous BM 25 Removing the HCV RNA caused by transplanted MSCs-medi-
ated paracrine effect [211]

Decompensated liver cirrhosis Autologous BM 4 Improved the quality of life without serious side effects [167]

Alcoholic liver cirrhosis Autologous BM 12 No side effects in concomitant with histological and quantita-
tive amelioration [212]

HCV-induced liver cirrhosis Autologous BM 40 Normalization of liver enzymes levels in association with resto-
ration in liver function [213]

Liver cirrhosis Autologous BM 8 Improved liver function evidenced by enhanced serum albumin 
and reduced total bilirubin[172]

Liver failure Autologous BM-derived hepatocyte 40 Improvement in ascites, lower limb edema as well as serum 
albumin levels [163]

Decompensated liver cirrhosis Allogeneic UC 45 Improved level function documented with enhanced serum 
albumin levels and reduced total bilirubin levels [180]

HCV-induced liver cirrhosis Autologous BM 20 Amelioration of liver function in Egyptian patients [170]

HCV-induced liver cirrhosis Autologous BM 25 Partial rescue in liver function [169]

Decompensated liver cirrhosis Autologous BM 27 No significant beneficial effect [174]

Liver failure Allogeneic BM 110 Improved overall survival and also reduced incidence of severe 
infections [164]

Liver cirrhosis Allogeneic (UC, UCB, BM) 26 Stromal cell injection by peripheral vein was safe and partially 
effective [173]

HBV-induced liver cirrhosis Allogeneic UC 40 Enhanced IL-10 levels and also reduced IL-6 and TNF-ɑ levels 
[214]

Ischemic-type biliary lesions 
following liver transplantation

Allogeneic UC 12 Stem cell injection was safe and elicited favorable short-term 
outcomes [215]

Alcoholic liver cirrhosis Autologous BM 72 Ameliorated histologic fibrosis and liver normal activity [216]

Liver allograft rejection Allogeneic UC 27 Improved Treg/Th17 cell ratio [217]

Liver allograft rejection Allogeneic BM 10 No side effect [218]
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shown by the incidence of no serious intervention-related 
events and carcinoma during 192 weeks follow-up [165]. 
Also, the short-term outcome was promising; however, 
long-term efficacy was not clearly amended [165].

Liver cirrhosis
Cirrhosis is a late-stage liver disease in which healthy 
liver tissue is substituted with scar tissue and the liver is 
perpetually damaged. Liver transplantation is a standard 
therapeutic plan aiming to treat liver cirrhosis patients 
[166]. Meanwhile, MSCs have recently been noted as a 

possible therapeutic option to partially ameliorate liver 
function in this condition as a result of their appreciated 
antifibrotic and immunoregulatory attributes [55].

A phase 1 trial on 4 patients with decompensated liver 
cirrhosis verified the safety and feasibility of MSCs ther-
apy [167]. Moreover, the life quality of all patients was 
ameliorated post-transplantation concerning the mean 
physical and mental component scales [167]. In primary 
biliary cirrhosis patients, UC-MSC injection by periph-
eral vein (3 times at 4-week intervals) exhibited no seri-
ous untoward effects [168]. Also, intervention caused a 

Fig. 2  Clinical trials based on mesenchymal stromal cells (MSCs) therapy in liver-associated conditions registered in ClinicalTrials.gov (November 
2021). The schematic demonstrates clinical depending on the study phase (A), study status (B), MSCs source (C), study location (D), participant 
number (E), and condition (F)
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robust reduction in serum alkaline phosphatase (ALP) 
and γ-glutamyltransferase (GGT) levels compared to the 
control group during 4  years follow-up. Notwithstand-
ing, no alteration was observed in levels of ALT, AST, 
total bilirubin, albumin, INR, or the prothrombin time 
activity. Thereby, comprehensive randomized controlled 
cohort trials are justified to authorize the clinical merits 
of UC-MSC transplantation [168]. In addition, injection 
of autologous BM-MSCs led to a partial amelioration 
of liver function in 25 Egyptian patients suffering from 
HCV-triggered liver cirrhosis, as evinced by improved 
prothrombin activity and serum albumin levels along 
with reduced bilirubin level [169]. In a similar condi-
tion, Amin et  al. found that intrasplenic administration 
of autologous BM-MSCs potentiated liver function with 
attenuation in total bilirubin, AST, ALT, prothrombin 
time (PT), and also INR levels [170]. Autologous BM-
MSCs therapy also inspired an improvement in liver 
function among HBV-related liver cirrhosis patients fol-
lowing transplantation [171]. This trial was conducted in 
56 patients with HBV-induced liver cirrhosis, and results 
showed an enhancement in Treg/Th17 ratio post-trans-
plantation during 24-week follow-up [171]. Consistently, 
mRNA levels of forkhead box protein P3 (FOXP3), an 
eminent Treg-associated transcription factor, strikingly 
were diminished, whereas retinoic acid-related orphan 
receptor gamma t (RORγt) expression levels which are 
tightly in association with Th17 cells were reduced. Fur-
ther, the intervention resulted in an enhancement in 
TGF-β levels, while IL-17, TNF-α, and IL-6 were signifi-
cantly decreased following transplantation [171]. In con-
trast to several cited trials implying that the autologous 
MSC therapy can be a safe and effective alternative for 
patients with liver cirrhosis [172, 173], Mohamadnejad 
et al. noted that MSC infusion by peripheral vein had no 
advantageous result in cirrhotic patients [174]. Overall, 
large-scale studies are required to achieve reliable results 
concerning MSCs therapy in liver cirrhosis.

Potential risks of MSC transplantation
The treatment of liver dysfunctions through MSCs has 
been the central aim of several clinical and preclini-
cal investigations. In this context, a few issues need to 
be dealt with cautiously (e.g., the possible emergence of 
carcinogenesis and the transmission of the virus). Dif-
ferent growth factors can be secreted by MSCs, and this 
may stimulate the growth of tumor cells and angiogenesis 
[175, 176]. The past experimental investigations showed 
that the number of passages is a defining factor in ren-
dering a tissue malignant or cancerous. Studies show that 
chromosome abnormalities may occur after more than 
three passages in the MSCs of mice [177, 178]. Moreover, 
MSCs are likely to experience telomeric deletions after 

a multitude of passages. Despite the lack of any clini-
cal reports on the malignant transformation of human 
MSCs, the follow-up period was not long enough for the 
formation of a tumor for most of them [179]. As a result, 
there need to be more studies on chromosomal integrity 
before MSCs transplantation to make sure that the pro-
cedure is completely safe.

Contrary to autotransplantation, allotransplantation 
can pose the danger of the spread of the virus to the 
patients [180]. Even though the spread of parvovirus B19 
into BM cells was observed in vitro, there is no confirmed 
case of parvovirus B19-positive MSC-related viremia 
in humans. Yet, we do not know the spread of the her-
pes simplex virus (HSV) and cytomegalovirus (CMV) 
via MSCs in  vivo. Owing to these facts, recipients, and 
donors of MSC are recommended to be screened for 
parvovirus B19, HSV, and CMV, as immunosuppressed 
patients are likely to catch infectious [181].

Enhancing the quantity of MSCs‑secreted 
molecules
Now, restricted secretion of soluble mediators, such as 
exosome, from parental MSCs fences their wide-ranging 
application in clinics. Following some passages, MSCs 
mainly demonstrates abrogated competence to produce 
and then release soluble factor. Recent studies have indi-
cated that tangential flow filtration (TFF) system-based 
tactics support the secretion of greater levels of vesi-
cles from origin stromal cells than vesicle isolation by 
ultracentrifuge [182]. Further, ultrasonication of MSC-
derived extracellular vesicles could improve their yields 
up to 20-fold [183]. Other proofs are indicating that three 
dimensional (3D) culture may facilities the incessant pro-
duction of MSC-derived exosome [184, 185]. Cultivation 
of MSCs in 3D cultures together with conventional either 
differential ultracentrifugation or TFF also could engen-
der a higher quantity of MSCs-derived secretome [186]. 
Also, MSCs culture on particular biomaterials, such as 
alginate hydrogel [187] and avitene ultrafoam collagen 
ease generation of exosome with higher quantity and 
also potency [188]. As well, pretreatment of MSCs with 
hypoxia or various molecules, in particular cytokines or 
chemokines (e.g., IFN-γ, TNFα, IL-1β, IL-6, and TGF-β), 
gives largely rise to the secretion of vesicles with greater 
regenerative competencies [189–191].

Conclusion and future direction
Some investigations in preclinical models of liver dis-
eases, such as ALF, have verified the MSC’s unique com-
petence to establish hepatocyte in  vivo. Nonetheless, it 
seems that the therapeutic merits of MSCs largely rely 
on their aptitudes to secrete a myriad of factors, more 
importantly, cytokines, growth factors, and miRNAs, 
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facilitating liver recovery. During last two decades, vari-
ous clinical trials have been conducted to evaluate the 
capability of MSCs therapy in liver-associated condi-
tions, such as ALF (Table  4, Fig.  2); however, achieved 
outcomes are quite inconsistent. Given that autologous 
MSCs derived from elder patients or patients with obe-
sity experienced abrogated proliferation and differen-
tiation capability, using allogeneic cells in some cased is 
urgently required. In this circumstance, screening recip-
ients and donors of MSC for parvovirus B19, HSV, and 
CMV are of paramount importance. Taken together, the 
providing of a universal MSC quality standard evaluation 
system is required.

To determine the mechanism contributed to MSCs 
therapy, it is urgently required to determine the pro-
tein, DNA and RNA secreted by MSCs. The proteomics 
and transcriptomics can play a pivotal role in evaluating 
the underlying mechanism. Notably, improving the fre-
quency of cells homing to the damaged liver is the central 
point to potentiate the therapeutic impacts of MSCs. In 
fact, investigation of the homing attributes of MSCs is of 
paramount importance to augment the effective thera-
peutic quantity of such cells. In published clinical results, 
MSCs have been administrated into patients by several 
available routes, more frequently intravenous routes fol-
lowed by intrahepatic injection (e.g., by the portal vein 
and hepatic artery). Also, intrasplenic injection has been 
applied in a few studies. Based on findings, a remarkable 
number of cells are trapped in the lungs upon systemic 
injection and thereby did not move to the liver afterward. 
Hence, finding better administration route is recom-
mended to achieve significant outcome in  vivo. Mean-
while, a study indicated that intraportal injection was 
more effective than hepatic intra-arterial injection and 
also intravenous injection to restore liver injury in  vivo 
[123]. As well, it has been shown that portal vein injec-
tion has superiority over intrasplenic injection [192]. On 
the other hand, other reports exhibited that injection by 
the hepatic artery was not beneficial for the transdiffer-
entiation of MSCs.

Among the recent clinical trials concerning the MSCs 
therapy for liver diseases (e.g., liver failure) treatment, 
the total number of MSCs employed was from 106 to 
109, irrespective of which method was applied to deliver 
the dose. The large range of doses applied is difficult to 
explicate as there are few reports including comparisons 
of several doses in the same clinical trial. Nonetheless, it 
seems that as few as 1 × 107 cells can be helpful based on 
recent published results.

In sum, although clinical trials have evidenced the 
safety and modest efficacy of short-term application of 
MSCs, further trials are warranted before MSCs appli-
cation in clinical to treat ALF and other liver-associated 

conditions for optimizing administration routes as well 
as dosses.
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