
Li et al. Stem Cell Research & Therapy          (2022) 13:232  
https://doi.org/10.1186/s13287-022-02905-0

REVIEW

Modeling hypertrophic cardiomyopathy 
with human cardiomyocytes derived 
from induced pluripotent stem cells
Jiangtao Li1, Xin Feng1 and Xiang Wei2* 

Abstract 

One of the obstacles in studying the pathogenesis of hypertrophic cardiomyopathy (HCM) is the poor availability 
of myocardial tissue samples at the early stages of disease development. This has been addressed by the advent of 
induced pluripotent stem cells (iPSCs), which allow us to differentiate patient-derived iPSCs into cardiomyocytes 
(iPSC-CMs) in vitro. In this review, we summarize different approaches to establishing iPSC models and the applica-
tion of genome editing techniques in iPSC. Because iPSC-CMs cultured at the present stage are immature in structure 
and function, researchers have attempted several methods to mature iPSC-CMs, such as prolonged culture duration, 
and mechanical and electrical stimulation. Currently, many researchers have established iPSC-CM models of HCM and 
employed diverse methods for performing measurements of cellular morphology, contractility, electrophysiological 
property, calcium handling, mitochondrial function, and metabolism. Here, we review published results in humans to 
date within the growing field of iPSC-CM models of HCM. Although there is no unified consensus, preliminary results 
suggest that this approach to modeling disease would provide important insights into our understanding of HCM 
pathogenesis and facilitate drug development and safety testing.
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Introduction
Hypertrophic cardiomyopathy (HCM) is a fatal hetero-
geneous myocardial disease, caused by autosomal domi-
nant sarcomeric gene mutations, which manifests as left 
ventricular hypertrophy, myocardial hypercontractility, 
diastolic dysfunction, myofibrillar disarray, and fibrosis 
[1–3]. Epidemiological studies based on echocardiogra-
phy have shown a prevalence of 1/500 in the population 

[1, 4], but a higher prevalence (about 1/200) when clini-
cal and genetic diagnoses (including family members) 
are taken into account [5, 6]. Pare et al. [7] reported that 
mutation at the protein level was found in the MYH7 
gene, encoding the β-myosin heavy chain (β-MHC). 
Based on this study, Seidman’s team identified missense 
mutations in the MYH7 gene that were associated with 
the first HCM [8]. Subsequently, numerous genetic stud-
ies have shown that HCM is an inherited disease of the 
cardiac sarcomere. Furthermore, the advent of next-gen-
eration sequencing and whole-exome sequencing led to 
the discovery of new HCM mutations in sarcomeric and 
sarcomere-associated genes [9, 10], reconfirming that 
HCM is primarily a monogenic sarcomeric disease.

Approximately half of HCM patients harbor mutations 
in genes that encode sarcomeric proteins and related 
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myofilament elements responsible for regulating car-
diomyocyte contraction and cardiac function [11–13]. 
Among the known causal genes, MYH7 and myosin-
binding protein C (MYBPC3) are the most common, 
and they are responsible for about half of familial HCM 
patients [11, 14, 15]. Mutations of TNNT2, TNNI3, and 
TPM1 are relatively uncommon, together accounting for 
less than 10% [16–18]. Although less common, cardiac 
α-actin (ACTC1), myosin light chain 2 (MYL2), myosin 
light chain 3 (MYL3), and cysteine- and glycine-rich pro-
tein in 3 (CSRP3) have also been identified as causes of 
HCM [19–21]. The nine genes mentioned above have the 
strongest causal role in HCM (Table 1) [9, 22].

For common HCM mutations, such as MYH7 and 
MYBPC3, their causal role is unambiguous. However, not 
all HCM mutations cause HCM [23]. Even in the same 
family, HCM mutations typically show different expres-
sivity (defined as the severity of the phenotype that 
develops in patients with the pathogenic mutation) and 
penetrance (defined as the proportion of individuals car-
rying a pathogenic mutation who display a phenotype) 
[24]. Because of human genetic diversity, population-spe-
cific frequency of variants, and the presence of thousands 
of coding variants in each exome, it is difficult to distin-
guish whether causal or incidental variants cause HCM 
[23, 25–28].

Although we have identified many mutations that cause 
HCM, our understanding of the pathogenesis from muta-
tion to phenotype remains incomplete. The reason for 
this lies not only in the diversity of mutations that lead 
to similar clinical manifestations but also in the fact 
that animal models only partially recapitulate human 
phenotypes. For example, in mouse models, heterozy-
gous mutations in MYH7 or MYBPC3 failed to develop 
pathognomonic septal hypertrophy seen in patients [29]. 
Neither has left ventricular obstruction been observed 
in any mouse models. Either homozygous knock-in or 

knock-out of the respective gene is lethal (e.g., α-MHC 
[30]), or animals develop severe left ventricular dysfunc-
tion (e.g., MYBPC3 [31–38]). The mouse reports still did 
not answer some fundamental questions: (1) the exact 
physiological roles of the most common sarcomeric 
proteins in HCM such as β-MHC and cMyBPC; (2) the 
mechanisms by which these sarcomeric proteins ensure 
normal cardiac systolic and diastolic function; and (3) the 
mechanisms of myocardial hypertrophy and disarray in 
HCM due to mutations in sarcomeric and non-sarcom-
eric genes with a different function [15, 29, 39, 40].

In addition, another reason for our limited understand-
ing of the pathophysiology of HCM is that few myo-
cardial tissues and cells have been isolated from HCM 
patients. And only a very small number of studies have 
specifically reported on the in vitro phenotype of HCM 
[41]. The myocardial tissues are commonly obtained 
from HCM patients undergoing surgical septal myec-
tomy or heart transplantation. However, all these tissue 
sources represent an advanced stage of HCM, making us 
wonder to which extent the abnormalities in comparison 
with the heart tissue without heart failure can reflect pri-
mary defects or secondary compensatory outcomes.

The somatic cell reprogramming technique discovered 
by Yamanaka [42] paved the way for the generation of 
cardiomyocytes derived from patient-specific induced 
pluripotent stem cells (iPSCs), which allowed us to deeply 
understand the pathogenesis of HCM. The primary cause 
of HCM is the mutation in sarcomeric genes, leading to 
changes in Ca2+ handling properties, ion channel remod-
eling, energy deficiency, and microvascular dysfunction. 
However, the mechanisms why progressive changes ini-
tiated by these primary mutations occur in one individ-
ual and not in others are still unknown. Therefore, iPSC 
models represent a valuable tool to study HCM in vitro. 
By improving protocols for the generation of iPSC lines 
and the differentiation of cardiomyocytes from iPSCs, 

Table 1  Function and population frequency of common HCM causal genes

Gene Protein Function Population 
frequency 
(%)

MYH7 β-Myosin heavy chain ATPase activity and force generation  ~ 15

MYBPC3 Myosin-binding protein C Regulator of myocardial contraction and relaxation  ~ 20

TNNT2 Cardiac troponin T Regulator of actin–myosin interaction  ~ 2

TNNI3 Cardiac troponin I Inhibitor of actin–myosin interaction  ~ 2

TPM1 α-tropomyosin Places the troponin complex on cardiac actin  ~ 2

ACTC1 Cardiac α-actin Major constituent of contractile apparatus  < 1

MYL2 Regulatory myosin light chain Affects actin–myosin dissociation and regulates contraction  ~ 1

MYL3 Essential myosin light chain Binds to myosin heavy chain and stabilizes myosin conformation  < 1

CSRP3 Cysteine- and glycine-rich protein 3 a Z disk protein; establishment and maintenance of the cytoskeleton  < 1
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researchers can recapitulate in vitro phenotypes of HCM. 
iPSC-derived cardiomyocytes (iPSC-CMs) have several 
advantages: (1) They can be generated from a wide vari-
ety of readily available cells, including those in the skin, 
urine, and blood [43–45]; (2) they resemble the early 
stage of cardiac development and have the ability to show 
morphological and functional changes that first appear 
in disease without being hidden by systemic compensa-
tory responses [46]; and (3) they are patient-specific, ena-
bling genotype–phenotype association and providing an 
unprecedented platform for the drug screening for indi-
vidualized therapy.

Up to date, much progress has been made utilizing 
patient-specific iPSC-CM models to characterize HCM 
and study the pathogenesis of HCM. In this review, we 
will provide an in-depth overview of current iPSC-CM 
models of HCM, including the generation and functional 
parameters of iPSC-CMs, methods of maturing iPSC-
CMs, gene editing in iPSCs, and the HCM phenotype of 
iPSC-CMs. Finally, we will discuss the future perspec-
tives of iPSC-CM models of HCM.

Generation of iPSC‑CM models
iPSC generation
As a new approach to mimicking human diseases 
and associated genetic mutations, iPSC technology 
became possible since Yamanaka identified four critical 
reprogramming factors (OCT4, SOX2, KLF4, c-Myc). 
Depending on the type of donor cells, the combination 
of reprogramming factors might vary with the fact that 
specific cell types may endogenously express some fac-
tors. For example, c-Myc is not necessary for the repro-
gramming of fibroblasts [47]. Patient-specific iPSC-CM 
models require obtaining human tissues to generate iPSC 
lines. To minimize the invasiveness, a gradual shift from 
using fibroblasts from skin biopsies to urine or blood 
cells can be observed [44, 45].

Initially, iPSCs were generated by retroviral transduc-
tion [42, 48, 49]. Yamanaka’s laboratory used the Molo-
ney-based retroviral vector system, which generated 
iPSCs with high efficiency, but was restricted to dividing 
cells. Therefore, lentiviruses were used to improve the 
transduction efficiency of both dividing and non-divid-
ing cells. However, it was found that the expression of 
Yamanaka factors was difficult to silence after lentiviral 
transduction [50, 51], resulting in difficulty in the differ-
entiation of iPSCs [52]. Therefore, inducible systems were 
used to silence reprogramming factors so that they were 
not expressed [53]. However, the integration of viruses 
into host cell DNA increases the risk of insertional muta-
tions [54]. For example, transgenic reactivation of c-Myc 
showed increased tumorigenicity limiting their applica-
tion [47].

To overcome the disadvantages of retroviruses and len-
tiviruses, non-integrating vectors have been developed, 
including adenovirus, Sendai virus, virus-free methods 
like episomal transfection, and synthetic mRNA delivery. 
In host cells, adenovirus transduction allows the over-
expression of reprogramming factors without genomic 
integration [55]. Sendai virus [56] is an RNA virus that 
does not enter the nucleus, thus reducing the risk of 
genomic insertion. Episomal transfection [57] is an alter-
native method to generate virus-free iPSCs. However, the 
efficiency of this approach is relatively low [58]. In addi-
tion, transfection using synthetic mRNA [59] is a simple, 
non-integrating strategy with high efficiency, which can 
overcome innate antiviral responses. Non-integrating 
vectors generate iPSCs that are more suitable for disease 
modeling.

In addition to integrating and non-integrating vec-
tors, there are transgene-free reprogramming methods 
that can also generate iPSCs by implanting recombinant 
reprogramming factors into somatic cells [60]. Stud-
ies have shown that the reprogramming efficiency was 
improved by using small molecule compounds, e.g., the 
histone deacetylase inhibitor valproic acid [61].

In summary, different integration vectors, non-inte-
gration vectors, and non-transgenic reprogramming 
methods have been developed to improve efficiency and 
further reduce the risk of genome alteration.

iPSC‑CM differentiation
The adult heart is a post-mitotic organ with a very limited 
regeneration capacity [62]. However, in most cases, it is 
difficult to isolate primary human cardiomyocytes from 
surgical specimens and culture them for a long time due 
to ethical and technical issues. In addition, cardiomyo-
cytes isolated from animals have species differences, e.g., 
different electrophysiology in comparison with human 
ones. Therefore, iPSCs are an important source of cardio-
myocytes [63].

The differentiation of cardiomyocytes from human 
iPSCs can be achieved under in vitro culture conditions 
by modulating the signaling pathways involved in cardiac 
development [64]. Currently, there have been three main 
strategies for the directed differentiation of cardiomyo-
cytes from iPSCs: co-culture with visceral endoderm-like 
(END-2) cells [65], embryoid body (EB)-based differen-
tiation [64], and monolayer cell culture [66].

During embryonic development, END-2 cells release 
the factors that lead to cardiac differentiation around 
the mesoderm [67]. This finding was the basis of the co-
culture strategy in which iPSCs can differentiate into car-
diomyocytes with the presence of END-2 cells. Although 
this culture protocol successfully directed the differentia-
tion of iPSCs into cardiomyocytes, the yield was very low 



Page 4 of 20Li et al. Stem Cell Research & Therapy          (2022) 13:232 

(less than 10%) [68]. EB-based differentiation is a serum-
mediated three-dimensional (3D) culture approach that 
relies on the ability of iPSCs to form floating cell aggre-
gates in the low-adherent matrix. These aggregates called 
EBs can differentiate into cells of all three germ layers. 
However, due to the presence of serum, this method has 
low reproducibility and large inter-group differences [69]. 
Therefore, serum was then replaced by cytokines and 
growth factors, such as Wnt proteins [70], bone mor-
phogenetic proteins (BMPs), and activin A [71, 72]. In 
addition, some small molecules could promote cardiac 
differentiation, including activators (CHIR99021) and 
inhibitors (IWR, XAV, IWP2) of the Wnt pathway [73]. 
However, by using this approach, the number of cells 
required is large and the differentiation efficiency is low. 
To overcome these disadvantages, the protocol of mon-
olayer cell culture was developed [74, 75]. This approach 
can significantly increase the differentiation efficiency 
of iPSCs with derived cells exhibiting characteristic 
phenotypes of ventricular, atrial, or junctional cardio-
myocytes [76]. Although the details, efficiency, and yield 
vary widely in various studies, the monolayer cell cul-
ture protocol has been used by an increasing number of 
investigators, probably because of its simplicity and high 
efficiency [77, 78].

iPSCs and genome editing
iPSC technology has unprecedented advantages. How-
ever, using healthy relative- or healthy unrelated donor-
derived iPSC-CMs as standard controls in early studies 
was not adequate [79]. This is because the phenotype dif-
ferences between patient-derived iPSC-CMs and controls 
may be the result of different (epi)genetic backgrounds 
rather than disease-specific variants, or the effect of (epi)
genetic backgrounds on phenotype may outweigh that 
caused by mutations. For example, the action poten-
tial duration of different iPSC-CM lines varies largely in 
healthy controls [80]. Furthermore, it has been reported 
that the monozygotic twins carrying the same MYH7 
mutation differed significantly in the degree of myocar-
dial fibrosis [81]. Therefore, it is sometimes difficult to 
link direct effects on the function with specific mutations 
by using healthy controls, as the (epi)genetic background 
of these cells is largely unknown [82].

Genome editing techniques like CRISPR-Cas9 [83], 
CPF1 [84], and TALENs [85] enable the generation of 
isogenic cell lines, which differ only in the mutation being 
studied and retain the same (epi)genetic background. 
Thus, the effects of mutations can be directly compared 
with their isogenic wild-type controls. Among all genome 
editing techniques, CRISPR-Cas9 is the first choice due 
to its low cost, simple structure, and high fidelity. Gene 
editing techniques can make precise changes to the 

genome, ranging from insertions or deletions (such as 
the ~ 65  kb Dip2a gene [86]) to the point mutation of a 
single base [87]. By combining iPSCs with genome edit-
ing techniques, it is possible to directly compare iPSC-
CMs carrying disease-associated mutations with their 
corresponding isogenic wild-type controls to determine 
the exact effect of the mutation on disease [88].

Gene editing technologies are based on endonucle-
ase activity, which aims to insert double-strand breaks 
(DSBs) into the genome at a precise and desired site. 
There are two main mechanisms for the repair of DSBs: 
nonhomologous end joining (NHEJ) and homology-
directed repair (HDR) [89]. NHEJ is an efficient but 
error-prone process that may cause insertion, deletion, 
or substitution of nucleotides [90]. Insertion/deletion 
frequently results in frameshift mutations, which lead 
to premature termination codons (PTCs) [11]. HDR is 
a more accurate method for the specific repair of DSBs. 
Based on the use of a homologous template (single-
stranded oligonucleotides or double-stranded DNA tem-
plates), HDR allows the precise introduction of point 
mutation [88], micro-peptide-encoding tags [91], and 
even fluorescent proteins at specific positions [92–94]. 
Thus, HDR can be targeted either to introduce specific 
mutations in healthy iPSCs or to correct preexisting 
genetic mutations to generate isogenic lines. However, 
the ratio of HDR is lower compared to NHEJ, limiting the 
efficiency of gene knock-in or introducing specific muta-
tions [95]. Therefore, different approaches have been 
developed to inhibit NHEJ or promote HDR [96, 97]. 
For example, covalent linkage of DNA repair template 
to CRISPR-Cas9 nuclease can improve HDR efficiency, 
which may be a promising strategy [98, 99]. In addition, 
an alternative is using base editors that replace bases in 
the target DNA without breaking double-stranded DNA 
and DNA repair templates [100].

iPSC‑CMs characterization
It is indispensable that iPSC-CMs recapitulate the phe-
notypes of adult cardiomyocytes for disease modeling. 
However, iPSC-CMs generated using standard protocols 
differ from adult cardiomyocytes in cellular morphology, 
sarcomeric protein isoforms, electrophysiology, excita-
tion–contraction coupling, and calcium handling, as well 
as mitochondrial function and metabolic characteristics. 
Table  2 summarizes the major phenotypic differences 
between iPSC-CMs and adult cardiomyocytes.

Cellular morphology
The iPSC-CMs generated using current protocols are 
usually round or polygonal with disorganized sarcom-
eres, whereas adult cardiomyocytes are rod-shaped with 
an aspect ratio of 5:1–9:1 and organized sarcomeres [101, 
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102]. iPSC-CMs had lower surface area and volume com-
pared to adult cardiomyocytes [103]. Differences in orga-
nelle distribution and morphology between iPSC-CMs 
and adult cardiomyocytes are also evident. iPSC-CMs in 
comparison with adult cardiomyocytes lack developed 
t-tubules networks, which are necessary for efficient 
contractile function [104]. Furthermore, iPSC-CMs are 
mostly mononucleated, whereas adult cardiomyocytes 
are usually multinucleated [105].

Sarcomeric protein isoforms
During cardiac development, many sarcomeric proteins 
undergo isoform switching, which can be used as use-
ful markers to determine the maturity level of cardio-
myocytes. For example, a switch of the cardiac troponin 
I (cTnI) isoforms occurs during the maturation of car-
diomyocytes. In the fetal heart, expression levels of slow 
skeletal troponin I (ssTnI) are higher than that of cTnI, 
whereas cTnI expression levels in adult cardiomyocytes 
are elevated and ssTnI levels are decreased [106]. Bedada 
et  al. [107] reported that iPSC-CMs mainly expressed 
ssTnI, indicating their relative immaturity. In addition, 
myosin heavy chain (MHC) also undergoes isoforms 
switching during maturation. In human hearts, β-MHC 
(encoded by the MYH7 gene) dominates throughout 
the development of cardiomyocytes, and levels of which 
increase with age [108]. Compared with adult cardio-
myocytes, the content of α-MHC (encoded by the MYH6 
gene) in iPSC-CMs is higher. However, α-MHC slowly 
converts to β-MHC as iPSC-CMs mature. Finally, fetal 
cardiomyocytes predominantly express the N2BA iso-
form of titin, whereas adult cardiomyocytes mainly 
express the N2B isoform [109]. It was reported that, 
similar to fetal cardiomyocytes, iPSC-CMs primarily 

express the N2BA isoform [110]. Therefore, we can judge 
whether iPSC-CMs are mature based on the ratios of 
cTnI/ssTnI, α-MHC/β-MHC, and N2B/N2BA.

Electrophysiology
Directly comparing differences in electrophysiological 
properties between iPSC-CMs and adult cardiomyocytes 
is challenging due to experimental differences, tissue het-
erogeneity, and disease states. However, the detailed elec-
trophysiological characterization of iPSC-CMs has been 
reported [111, 112]. Prior studies have documented that 
iPSC-CMs in comparison with adult cardiomyocytes dis-
played action potential (AP) phenotypes characterized by 
smaller maximum diastolic potential and slower upstroke 
velocity [76, 111]. In addition, it has been reported that 
the ventricular-like iPSC-CMs shared electrophysi-
ological properties analogous to those of adult cardio-
myocytes, including the distinct plateau phase (phase 
2) followed by accelerated repolarization (phase 3), the 
AP duration in the normal range of QT interval, and the 
maximum diastolic potential which was close to that of 
adult cardiomyocytes [112].

Different ionic currents have been characterized in 
iPSC-CMs, including sodium (INa), calcium (ICa), hyper-
polarization-activated pacemaker (If), transient outward 
potassium (Ito), inward rectifier potassium (IK1), and the 
rapid and slow activating components of the delayed 
rectifier potassium currents (IKr and IKs, respectively). 
iPSC-CMs have prominent INa and ICa with activation 
and inactivation gating properties that are similar to 
those of human ventricular cardiomyocytes [111, 113, 
114]. Ma et al. [111] reported the presence of If in ven-
tricular-like iPSC-CMs, which promoted auto-depolar-
ization in phase 4. Three K+ currents (Ito, IKr, and IKs) 

Table 2  Major differences between human iPSC-CMs and adult cardiomyocytes

IK1 Inward rectifier potassium, iPSC-CMs Induced pluripotent stem cell-derived cardiomyocytes, MHC Myosin heavy chain

iPSC-CMs Adult cardiomyocytes

Cellular morphology Smaller in size, roundish in shape Larger in size, elongated in shape

Disorganized sarcomeres Organized sarcomeres

Sarcomeric protein isoforms Slow skeletal troponin I (ssTnI) Cardiac troponin I (cTnI)

Higher ratios of α-MHC/β-MHC Lower ratios of α-MHC/β-MHC

Titin N2BA isoform Titin N2B isoform

Electrophysiology Smaller maximum diastolic potential Larger maximum diastolic potential

Slower upstroke velocity Faster upstroke velocity

Automaticity in ventricular-like iPSC-CMs No automaticity in adult ventricular myocytes

Undetectable or significantly smaller IK1 Larger IK1

Calcium handling Poor calcium handling Improved calcium handling

No or few T-tubules Abundant T-tubules

Mitochondrial function Few and underdeveloped mitochondria Dense, developed, and well-distributed mitochondria

Metabolic characteristics Glycolysis as major energy source Fatty acid β-oxidation as major energy source
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were observed in iPSC-CMs with their maximum current 
densities and activation characteristics comparable with 
those of adults CMs [55, 111]. However, IK1 in iPSC-CMs 
was either undetectable or significantly smaller than that 
in adult cardiomyocytes.

In summary, multiple ion channels are present in both 
iPSC-CMs and adult cardiomyocytes, which lead to char-
acteristic AP. But significant differences do exist, such 
as reduced IK1 and the existence of If. Consequently, the 
iPSC-CMs exhibit spontaneous automaticity, which is 
not recorded in adult cardiomyocytes.

Excitation contraction coupling and calcium handling
Cardiac contraction and relaxation are accomplished 
through excitation–contraction coupling, which is the 
orchestrated cycling of calcium between cytoplasm, 
sarcoplasmic reticulum (SR), and troponin [115]. The 
observed whole-cell intracellular Ca2+ concentration 
([Ca2+]i) transients in iPSC-CMs demonstrated the pres-
ence of excitation–contraction coupling resembling 
native cardiomyocytes [116]. It has been reported that 
Ca2+ influx into cells through depolarization-activated 
L-type Ca2+ channels leads to the release of SR Ca2+ 
stores via Ca2+-sensitive ryanodine receptors, recapitu-
lating a process known as Ca2+-induced Ca2+ release 
in iPSC-CMs [117]. It was noted that the Ca2+ cycling 
properties of iPSC-CMs cultured on micro-grooved sub-
strates were significantly improved with a shorter time 
to peak and more organized SR Ca2+ release in response 
to caffeine [118]. Besides, iPSC-CM-based HCM mod-
eling indicates the existence of functional SR and Ca2+ 
transients [88]. However, Ca2+ transients in iPSC-CMs 
are small with a relatively slow rise characterized by a 
U-shape waveform, suggesting that the calcium handling 
properties of iPSC-CMs are relatively immature [119]. 
Several studies have shown that the Ca2+ handling func-
tion in iPSC-CMs may be affected by poorly developed 
SR and T-tubules deficiency [104, 120].

Mitochondrial function and metabolism
The heart contains a large number of mitochondria, com-
prising up to 23% in human, 22% in dog, 28% in rat, and 
32% in mouse myocardium [121]. The mitochondria of 
adult cardiomyocytes are mostly rod-shaped and evenly 
arranged along the sarcomere [122]. Cellular factors con-
trolling mitochondria are highly expressed in adult car-
diomyocytes, including fission factor Drp1 and fusion 
factors Mfn1, Mfn2, and Opa1 [123]. Compared with 
adult cardiomyocytes, iPSC-CMs have fewer and thinner 
mitochondria, which usually aggregate near the nucleus 
with decreased expression of mitochondrial dynamics 
proteins [120, 124].

During the early stages of cardiac development, car-
diomyocytes primarily rely on glycolysis as an energy 
source (80%). As cardiomyocytes mature and terminally 
differentiate, mitochondrial oxidative phosphorylation, 
mainly in the form of glucose oxidation and fatty acid 
β-oxidation, becomes the major energy source (80%). 
Interestingly, cardiac metabolism in patients with HCM 
switches back to a more fetal phenotype with an increase 
in glycolysis and a decrease in fatty acid β-oxidation 
[125]. Similar to fetal cardiomyocytes, iPSC-CMs mainly 
rely on glycolysis as an energy source [126].

Approaches to enhance iPSC‑CMs maturation
The relatively immature iPSC-CMs make HCM mod-
eling challenging, as it is uncertain whether iPSC-CMs 
can recapitulate human HCM phenotypes. Furthermore, 
the understanding of early pathological events would be 
affected by the maturation levels of iPSC-CMs. Several 
culture methods and techniques have been proposed 
to generate mature and homogeneous cardiomyocytes, 
including prolonged culture time [127], triiodothyro-
nine (T3) hormone treatment [104], microRNA (miRNA) 
overexpression [128], metabolic manipulation [129], 
increased substrate stiffness [102], three-dimensional 
(3D) tissue engineering [130], mechanical stress [131], 
and electrical stimulation [132]. The general princi-
ple of these methods is to simulate in vivo environment 
and subject iPSC-CMs to relatively stable physical and/
or humoral stimuli to promote their structural and func-
tional maturation.

Initial studies tried to promote the maturation of iPSC-
CMs by prolonging culture time. For example, late-stage 
iPSC-CMs (80–120  days of in  vitro culture) exhibited 
increased cell volume, greater density and alignment of 
myofibril, and a significant increase in the proportion 
of multinucleated cardiomyocytes [127]. Furthermore, 
long-term cultured iPSC-CMs showed elevated levels 
of mitochondrial oxidative phosphorylation, enhanced 
contractility, and responsiveness to isoproterenol [133]. 
It has been reported that protein kinase A/proteasome-
dependent signaling pathway modulated mitochondrial 
respiratory chain proteins and enhanced metabolic out-
put of iPSC-CMs during long-term culture, resulting in 
increased cell contractility [133]. However, the arrange-
ment of sarcomeres in iPSC-CMs remained disordered 
compared to adult cardiomyocytes, suggesting that addi-
tional approaches are required to achieve full maturation.

The use of a T3-containing medium can promote 
the molecular, morphological, and functional matura-
tion of iPSC-CMs, including increased expression of 
genes encoding sarcomeric proteins, improved sar-
comeric organization, and increased action potential 
amplitudes and contraction force [134]. Transcriptomic 
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analysis revealed that iPSC-CMs treated with T3 were 
more mature than those without T3 [135]. In addition, 
the combination of T3 and glucocorticoids promotes the 
formation of T-tubules and enhances excitation–contrac-
tion coupling [104]. These studies indicate that T3 plays 
an important role in the maturation of iPSC-CMs. How-
ever, Bedada et al. [107] reported that T3 did not affect 
the cTnI/ssTnI ratio in iPSC-CMs, which could be used 
as a genetic marker for cardiomyocyte maturity.

Genomics revealed that miRNAs are key regulators 
during cardiac development [136]. Delivering miRNAs 
to human embryonic stem cell-derived cardiomyocytes 
resulted in increased cell size and proportion of binucle-
ated cells, improved sarcomere alignment and calcium 
handling [137]. Furthermore, overexpression of miRNA 
in the let-7 family increased cell size and sarcomere 
length with enhanced contractility and mitochondrial 
oxidative phosphorylation, promoting the maturation of 
iPSC-CMs [128, 138].

During cardiac development, the main energy source of 
cardiomyocytes undergoes a shift from glycolysis to oxi-
dative phosphorylation of fatty acids and glucose [125]. 
This metabolic change can be mimicked by adjusting 
medium composition to promote maturation of iPSC-
CMs, such as by replacing high-carbohydrate, glucose-
based medium with a low-carbohydrate, fatty acid-based 
medium [129, 139]. However, a subsequent study indi-
cated that culturing iPSC-CMs in a medium with rich 
fatty acids induced lipotoxicity, causing cell death [140]. 
To overcome the disadvantage, the medium containing 
galactose and fatty acids was used to culture iPSC-CMs, 
which displayed elongated cell morphology, improved 
sarcomeric organization, increased myofibril force gener-
ation, and elevated levels of oxidative metabolism [141].

The dynamic cellular environment of heart tissues 
cannot be fully recapitulated in monolayer cultured 
cells. Culture substrates with increased stiffness were 
thus used to resemble those of the native tissue. It was 
reported that culturing mouse embryonic stem cells on 
polymer mattress can promote their differentiation into 
cardiomyocytes [142]. By screening the library of poly-
mers comprised of polyethylene glycol (PEG), hydropho-
bic poly-ε-caprolactone (PCL), and carboxylated PCL 
(CPCL), Chun et al. [143] found that culturing iPSC-CMs 
on a 4% PEG-96% PCL matrix enhanced cell contractil-
ity and mitochondrial function, as well as isoform switch-
ing from ssTnI to cTnI. Afterward, Feaster et  al. [144] 
cultured iPSC-CMs on a 0.4- to 0.8-mm-thick mattress 
of undiluted Matrigel (mattress iPSC-CMs) and on a con-
trol substrate of 0.1-mm-thick, diluted Matrigel (control 
iPSC-CMs). Compared with control iPSC-CMs, mattress 
iPSC-CMs exhibited rod-shaped morphology, increased 
sarcomere length, and elevated expression levels of cTnI.

Monolayer cell culture models have been widely used 
in cardiovascular disease research. However, they can 
neither fully mimic the cellular environment in the heart 
nor recapitulate the architecture of myocardial tissue. In 
contrast, 3D cardiac tissues can better simulate the struc-
ture and microenvironment of the human heart, which 
are important for disease modeling [145]. iPSC-CMs can 
be mixed with scaffolds to form engineered heart tissues 
(EHTs) [146]. Consisting of collagen, gelatin, hyaluronic 
acid, and natural extracellular matrix (ECM) extracts, 
hydrogel scaffolds are frequently used to improve the 
maturation of iPSC-CMs and serve as a model for meas-
uring myocardial tissues contractility [147, 148].

During human growth and development, subjecting 
cardiomyocytes to increasing workloads can promote 
cardiac maturation [149]. Two recent studies demon-
strated the feasibility of this approach by modulating 
tissue stress and electrical stimulation frequency, respec-
tively. Abilez et  al. [131] found that increasing the ten-
sion of EHTs could promote their maturation, including 
improved cell alignment and calcium dynamics, and 
increased expression of mature cardiomyocyte genes. In 
addition to mechanical stress, electrical stimulation can 
also improve the maturity of iPSC-CMs. It was reported 
that iPSC-CMs under electrical stimulation exhib-
ited advanced levels of structural and functional matu-
rity, e.g., adultlike gene expression profiles, remarkably 
organized sarcomere, the presence of T-tubules, posi-
tive force–frequency relationship, and improved calcium 
handling [150]. Furthermore, the combination of these 
two approaches was also used to promote the maturation 
of iPSC-CMs [151].

HCM phenotypes of iPSC‑CMs
With the advancement of culture and differentiation pro-
tocols, iPSCs can be efficiently generated and directed to 
differentiate into cardiomyocytes. Therefore, more and 
more laboratories use iPSC-CMs to establish in  vitro 
HCM models [89, 152]. However, how do HCM pheno-
types of iPSC-CMs compare with those of “real” human 
HCM? To solve this question, our study statistically ana-
lyzed 28 studies reporting phenotypes of human iPSC-
CMs either derived from iPSC lines of patients with 
HCM or from human iPSC lines in which the HCM 
mutation had been genetically introduced (Table 3).

Cellular morphology
Histologically, HCM features pathological hypertrophy 
of cardiomyocytes, sarcomere disorder, and myocardial 
fibrosis. iPSC-CMs harboring HCM mutations exhib-
ited hypertrophied cardiomyocytes and disorganized 
sarcomere [79, 153, 155]. In addition, previous stud-
ies have reported that the proportion of multinucleated 
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cells was significantly increased in iPSC-CMs carrying 
HCM mutations [157, 166, 178]. However, studies have 
also shown that iPSC-CMs with HCM mutations varied 
widely in cell size with surface areas ranging from 800 
[156] to > 6000 μm2 [178] and volumes ranging from 5.8 
[165] to 120 μm3 [166]. iPSC-CMs appear extremely low 
compared to the 15,000–40,000 μm3 in adult cardiomyo-
cytes [179]. In addition to culture protocols (e.g., cul-
turing time, medium composition, etc.), differences in 
imaging techniques and methods of measurement may 
explain the scatter.

Altered contractility
Hypercontractility has been reported in several stud-
ies of mutations in MYH7, MYBPC3, ACTN2, and 
ACTC1. The analysis of single-cell video recordings by 
pixel quantification software confirmed hypercontrac-
tility of patient-derived iPSC-CMs with MYH7 R663H 
mutation [79]. In addition, Cohn et  al. [171] measured 
cardiac microtissues (CMTs) generated from iPSC-
CMs with MYBPC3 R502W mutation by traction force 
microscopy, finding that the diseased CMTs generated 
increased twitch force and maximum contraction veloc-
ity but without changes in contraction time. HCM CMTs 
exhibited prolonged relaxation half-time, consistent 
with previously reported that impaired relaxation was 
the consequence of HCM mutations [15, 180]. Likewise, 
iPSC-CMs with ACTN2 T247M mutation exhibited 
increased peak force and prolonged relaxation time, but 
no change in time to peak contraction [173]. Compared 
with healthy isogenic controls in which CRISPR/Cas9 
was used to correct ACTC1 G301A mutation in patient 
lines, diseased iPSC-CMs displayed increased cell short-
ening, prolonged contraction, and relaxation times [175].

However, it has also been reported that iPSC-CMs 
with MYH7 and MYBPC3 mutations displayed a hypo-
contractile phenotype. Mosqueira et  al. [166] generated 
a series of isogenic iPSC-CM lines with MYH7 R453C 
mutation and then formed EHTs to measure contractile 
properties. Surprisingly, they found that EHTs carrying 
the HCM mutation exhibited decreased contractile force 
and prolonged contraction time but little change in relax-
ation time. Moreover, Seeger et  al. [172] used traction 
force microscopy in MYBPC3 R943x iPSC-CMs treated 
with dexamethasone, T3, and insulin-like growth factor 
1 (IGF1) to characterize their contractility. The diseased 
iPSC-CMs showed significantly decreased contractile 
force generation, prolonged contraction, and relaxation 
kinetics.

The above studies have shown that iPSC-CMs with 
HCM mutations did not always exhibit hypercontrac-
tility, and even mutations in the same genes (such as 
MYH7 and MYBPC3) might display opposite phenotypes 

[156, 158, 171, 176]. Furthermore, different muta-
tions may have different pathogenesis at the sarcomere 
level. For example, haploinsufficiency [160] may be the 
main pathogenesis of HCM phenotypes in MYBPC3 
c.2373dupG iPSC-CMs, whereas activation of the non-
sense-mediated mRNA decay (NMD) pathway [172] may 
be the main cause of HCM phenotypes in iPSC-CMs har-
boring MYBPC3 R943x mutation.

Abnormal calcium handling
The myocyte excitation–contraction coupling can be 
regulated, in part, through modulation of calcium release 
and uptake [181]. It was reported that L-type calcium 
channels were excessively activated in HCM iPSC-CMs, 
resulting in a pronounced increase in Ca2+ currents and 
elevated [Ca2+]i [155]. In addition, Lan et al. [79] reported 
that iPSC-CMs with MYH7 R663H mutation exhibited 
significantly smaller SR Ca2+ release as compared to con-
trols, leading to increased [Ca2+]i. The increased [Ca2+]i 
can drive the electrogenic Na+–Ca2+ exchanger (NCX), 
resulting in further inward flow of Na + and inducing 
delayed after depolarization (DAD) [175].

The relationship between [Ca2+]i and contractile force 
is a highly regulated biological constant with half-maxi-
mal twitch force at [Ca2+]i of ~ 0.65 μM [182]. Based on 
this, Wu et al. [88] defined the ratio of sarcomere contrac-
tion rate to Ca2+ transient amplitude (dF/Δ [Ca2+]i) as an 
indicator of myofilament calcium sensitivity, which was 
significantly increased in HCM iPSC-CMs. In addition, 
several studies have reported increased Ca2+ sensitivity 
in iPSC-CMs harboring HCM mutations [88, 158, 161, 
173]. Clearly, increased Ca2+ sensitivity in HCM iPSC-
CMs would lead to hypercontractility at lower [Ca2+]i 
and prolonged Ca2+ decay time, which is consistent with 
the clinical phenotypes of preserved systolic function but 
diastolic dysfunction in HCM patients [165].

Decreased energetic efficiency
HCM mutations may result in decreased energetic effi-
ciency of the cross-bridge cycle, i.e., inefficient usage of 
ATP for contraction, and increased oxygen consumption 
[183, 184]. Likewise, iPSC-CMs with MYH7 c.C9123T 
mutation showed increased basal and maximal respira-
tion, and elevated ATP production, but decreased con-
tractility [166]. In addition, HCM mutations frequently 
lead to increased energy depletion in cardiomyocytes. 
For instance, Toepfer et al. [185] in their study reported 
that MYH7 mutations increased proportions of myosins 
in the disordered relaxed state (DRX) conformation and 
decreased in the super relaxed state (SRX) conforma-
tions, which contributed to the significantly decreased 
phosphocreatine/ATP ratio, and energetic and metabolic 
stress.
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Prospects of iPSCs in modeling HCM
Detecting the pathological significance of gene mutations 
and determining their pathogenicity
A major challenge faced by doctors treating patients with 
suspected HCM is how to determine the pathogenic-
ity of specific genetic mutations, especially with incom-
plete gene penetrance and asymptomatic patients. With 
the development of iPSC technology, the HCM pheno-
type can be recapitulated in vitro by generating patient-
derived iPSC-CMs [173]. Furthermore, HCM mutations 
can be corrected by gene editing techniques such as the 
CRISPR-Cas9 system, eliminating differences in (epi)
genetic background, and directly comparing the diseased 
iPSC-CMs with healthy isogenic iPSC-CMs to examine 
the causality of HCM mutations [88].

Discovering new disease mechanisms
The iPSC-CMs models can help us discover new cellular 
mechanisms caused by HCM mutations. For example, 
Wu et al. [79] proposed that elevated [Ca2+]i was a poten-
tial mechanism leading to the arrhythmic phenotype in 
HCM iPSC-CMs, which was validated in a subsequent 
study. The Jamie lab [175] reported that a combination 
treatment of dantrolene and ranolazine was performed 
on the iPSC-CM lines with MYH7 R403Q mutation to 
decrease [Ca2+]i. This strategy proved effective in sig-
nificantly reducing the frequency of arrhythmic events in 
HCM iPSC-CMs to levels comparable to isogenic healthy 
controls. It remains to be seen whether this conclusion 
applies to other HCM mutations.

Verifying the disease mechanism caused by HCM 
mutations
iPSC technology allowed us to test the hypothesis gen-
erated from human studies. For example, the study of 
MYBPC3 R943x mutation by Seeger et  al. [172] dem-
onstrated that activation of the NMD pathway is the 
main pathogenesis of HCM. In addition, Prondzynski 
et al. [160] reported that iPSC-CMs harboring MYBPC3 
c.1358-1359insC mutation displayed hypertrophic phe-
notype and had decreased MYBPC3 mRNA and cMyBPC 
levels, validating the hypothesis of haploinsufficiency.

Aiding risk stratification and prognosis
If the cellular phenotype of mutant-bearing iPSC-CMs 
is stable and reliable, and clinical relevance can be estab-
lished, the cellular phenotype can serve as an indicator 
for clinical risk stratification and prognosis. To achieve 
this goal, in future studies, our efforts should focus on 
standardizing culture time, optimizing culture condi-
tions, and developing novel maturation methods to 
generate normalized, mature iPSC-CMs. In addition, 

long-term, prospective studies of iPSC-CM phenotype/
clinical phenotype correlation must be performed in a 
large number of mutation carriers to determine the natu-
ral history and prognosis of HCM.

Use for gene therapy
Gene editing technologies can specifically repair gene 
mutations and have broad prospects in the treatment 
of HCM. Prondzynski et  al. [160] applied trans-splicing 
and gene replacement techniques to increase the expres-
sion of MYBPC3 in iPSC-CMs with MYBPC3c.1358-
1359insC mutation. Adenovirus was used to, respectively, 
transfect iPSC-CMs with 5′ and 3′ trans-spliced mol-
ecules and MYBPC3 cDNA. However, both 5′ trans-
splicing and 3′ trans-splicing strategies were inefficient 
with the trans-spliced cMyBPC protein not detectable. In 
contrast, whole-gene replacement increased the expres-
sion level of MYBPC3 to more than 80% in comparison 
with non-transduced control iPSC-CMs and prevented 
cell hypertrophy [160].

Testing of existing drugs
A major advantage of the iPSC technology is the abil-
ity to test the efficacy of drugs in mutation-specific or 
patient-specific iPSC-CMs. Several studies have reported 
that Ca2+ channel blocker verapamil can significantly 
improve HCM phenotypes including myocyte hyper-
trophy, Ca2+ handling abnormalities, and arrhythmia 
[79, 88]. However, a previous double-blind clinical trial 
showed that although verapamil improved symptoms in 
HCM patients, it failed to provide objective clinical ben-
efits, such as exercise capacity [186]. In addition, it was 
reported that ranolazine ameliorated arrhythmia and 
reduced the transduction of cellular hypertrophic signal-
ing in iPSC-CMs with MYH7 R453C mutation [166, 170]. 
However, a randomized, double-blind, phase 2 study 
showed that ranolazine did not improve exercise capac-
ity, diastolic function, or quality of life in HCM patients 
[187]. The effects of these drugs at the cellular level did 
not carry over to the human body, possibly because 
pathological changes in organs (e.g., myocardial fibro-
sis) masked the effects of the drugs on cells. Future, more 
systematic studies will have to determine the validity of 
this approach.

Discovery of new drugs
Compared with animal models, the usage of disease- or 
patient-specific iPSC-CMs can better reflect the pos-
sible effects of drugs in humans. With further research, 
we can obtain more and more iPSC lines carrying differ-
ent sarcomeric mutations, which can be used for high-
throughput screening assays for drug discovery [122]. 
Efficacy studies of drugs in iPSC-CMs of different genetic 
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backgrounds are actually clinical trials in dishes, thereby 
reducing the high cost of current drug development and 
improving efficiency. Moreover, we can optimize patient 
selection for clinical trials by predicting patient respon-
siveness to drugs to achieve individualized treatment.

Testing drug safety
Human iPSC-CMs can be used to screen for drug-
induced cardiovascular toxicity in time, including altera-
tions in cardiac cellular contractility, electrophysiology, 
and viability [188]. For example, breast cancer patient-
derived iPSC-CMs treated with doxorubicin showed 
decreased cell viability, impaired calcium handling, and 
mitochondrial function, suggesting that breast cancer 
patients are more susceptible to doxorubicin-induced 
cardiotoxicity [189]. In addition, iPSC-CMs derived from 
healthy people also exhibited cardiotoxicity induced by 
doxorubicin [190]. Therefore, before clinical trials of new 
drugs, we can test their safety in iPSC-CMs.

Limitations to iPSC‑derived disease models
Although the iPSCs have great therapeutic and transla-
tional potential, they show important limitations, such 
as low reprogramming efficiency, significant differences 
in the gene expression profiles with embryonic stem cells 
(ESCs), and teratogenicity.

One limitation is the low reprogramming efficiency 
of iPSCs, which ranges from 4.4% with modified mRNA 
and 1% with the retroviruses to as little as 0.001% with 
the adenovirus and plasmids [191]. By contrast, B cell 
lines induced by C/EBPalpha can be converted into 
macrophage-like cells at 100% efficiency within 2–3 days 
[192]. This shows the fact that the induction of pluripo-
tency by specific factors in contrast to lineage switch-
ing faces more barriers, possibly because of the higher 
degree of epigenetic and transcriptional similarity among 
mature cells than between mature and pluripotent cell 
lines [193].

iPSCs were originally thought to resemble ESCs, given 
their similarity in morphology, proliferation, differen-
tiation potential, and marker expression [48]. However, 
this similarity was soon doubted, as differences were 
discovered in the gene expression profiles. It was found 
that iPSCs retain donor cell-specific transcriptome, 
along with the DNA methylation signature [194–197]. 
For example, Marchetto et  al. [194] compared the gene 
expression profiles of iPSCs and ESCs. Their transcrip-
tome analysis showed that iPSCs had insufficient induc-
tion of embryonic-specific genes. In addition, a group of 
genes were upregulated in iPSCs, but they were silenced 
in ESCs.

The potential teratoma formation after transplanta-
tion of iPSCs is another hurdle for clinical application. 

Incomplete differentiation and difficulty in eliminat-
ing undifferentiated cells may lead to potential teratoma 
formation [198, 199]. However, advances in the culture 
and differentiation protocol have largely overcome this 
challenge, resulting in highly pure iPSC-CMs [88, 141]. 
In addition to the teratogenicity by the undifferentiated 
cells, differentiated iPSCs still have the intrinsic risk of 
malignant transformation [200]. The initial use of retro-
viruses with the integration of viruses into host cell DNA 
was a contributing factor. Furthermore, the overexpres-
sion of c-Myc increases the risk of teratoma formation 
[47]. To overcome the limitations of retroviral vectors, 
non-integrating methods have been developed to induce 
pluripotency, which reduced the risk of genomic integra-
tion [201].

Apart from the above limitations, an important limita-
tion to iPSC-derived disease models is present at the drug 
screening level, considering the fact that it is unlikely to 
measure all toxicities or side effects merely at the cellular 
level [202]. Animal studies and clinical human research 
are required to investigate drug-induced changes and 
long-term side effects in nontarget tissues. Besides, with 
the advances in bioengineering technologies, we will be 
able to perfuse drug solutions on iPSC derivatives (e.g., 
cardiac, hepatic, pulmonary, and renal cells) to simulate 
the multiorgan interactions in the human body, as well as 
to assess toxicities and side effects.

Conclusions
Since Yamanaka discovered the method of inducing 
somatic cells into pluripotent stem cells, there has been 
impressive progress in reprogramming and differentia-
tion protocols. Currently, we can stably acquire a large 
number of cardiomyocytes from iPSCs, which opens up 
a new field of HCM research with great potential. Due to 
the difficulty in obtaining human myocardial tissue and 
the species differences in animal models, iPSC-CMs have 
great advantages with their abundant sources. Several 
studies have demonstrated that iPSC-CM models can 
facilitate the study of HCM phenotypes and have made 
important contributions to elucidating molecular mech-
anisms. In addition, in combination with gene editing 
technologies such as CRISPR-Cas9 to directly introduce 
or repair specific HCM mutations, we can directly com-
pare the differences between patient-specific iPSC-CMs 
and their isogenic control lines to determine the patho-
genic role of HCM mutations.

Nonetheless, the research of HCM modeling with 
iPSC-CMs is still in its infancy. Differences between 
complex in vivo structures and pathophysiology and sim-
plified in  vitro conditions may result in the inability of 
iPSC-CMs to fully recapitulate the HCM phenotype. Fur-
thermore, one of the challenges is the need to continue to 
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improve the maturity of iPSC-CMs. Previous studies have 
shown that increasing substrate stiffness [102], mechani-
cal stress [131], electrical stimulation [132], and several 
other methods can promote the maturation of iPSC-CMs 
to a certain degree. However, it is unclear how far matu-
ration should improve before iPSC-CMs could be to be 
generally accepted as a model for studying HCM. Obvi-
ously, the use of iPSC-CMs for HCM modeling requires a 
set of CMs characteristic criteria, including cell morphol-
ogy, sarcomeric protein isoforms, electrophysiology, cal-
cium handling, mitochondrial function, and metabolism 
resembling adult cardiomyocytes (as listed in Table 2).

Although the 28 studies reporting iPSC-CMs with 
HCM mutations vary largely in cell size and no clear 
consensus is formed in other HCM phenotypes such as 
contractility, it is too early to conclude that iPSC-CMs 
cannot provide critical information for HCM models. 
These differences may reflect the diversity of culture 
conditions and measurement methods. Therefore, a con-
sensus-implemented approach is needed to standardize 
the generation and differentiation of iPSCs, normalizing 
the structure and function properties of iPSC-CMs. We 
believe that with standardization of culture conditions 
and culture time, improvement in maturity, and emer-
gence of more comprehensive measurement techniques, 
more predictive HCM models from iPSC-CMs would 
be built to better mimic HCM. This will help to provide 
a better understanding of the pathophysiology of HCM 
and its individualized treatment.
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