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Bone marrow mesenchymal stem 
cells facilitate diabetic wound healing 
through the restoration of epidermal cell 
autophagy via the HIF‑1α/TGF‑β1/SMAD 
pathway
Yan Shi1,2,3†, Shang Wang4†, Weiwei Zhang1,2, Yihan Zhu5, Zhiqiang Fan6, Yuesheng Huang7*, Furong Li1,2* and 
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Abstract 

Background:  The biological activity and regenerative medicine of bone marrow mesenchymal stem cells (BMSCs) 
have been focal topics in the broad fields of diabetic wound repair. However, the molecular mechanisms are still 
largely elusive for other cellular processes that are regulated during BMSC treatment. Our previous studies have 
shown that hypoxia is not only a typical pathological phenomenon of wounds but also exerts a vital regulatory effect 
on cellular bioactivity. In this study, the beneficial effects of hypoxic BMSCs on the cellular behaviors of epidermal cells 
and diabetic wound healing were investigated.

Method:  The viability and secretion ability of hypoxic BMSCs were detected. The autophagy, proliferation and 
migration of HaCaT cells cultured with hypoxic BMSCs-derived conditioned medium were assessed by estimating the 
expression of autophagy-related proteins, MTS, EdU proliferation and scratch assays. And the role of the SMAD signal-
ing pathway during hypoxic BMSC-evoked HaCaT cell autophagy was explored through a series of in vitro gain- and 
loss-of-function experiments. Finally, the therapeutic effects of hypoxic BMSCs were evaluated using full-thickness 
cutaneous diabetic wound model.
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Background
Diabetic foot is one of the major complications of dia-
betes mellitus and leads to ulcerations and amputations 
of the lower extremities. Impaired self-healing capabil-
ity is a common cause of diabetic foot ulcers and limb 
amputations. Although a growing number of biotechnol-
ogy applications have been reported for diabetic wound 
healing and soft tissue defects [1–3], the refractory char-
acteristic of diabetic wounds is still a major clinical prob-
lem that must be addressed. In normal skin, wounding 
induces epidermal cell autophagy to degrade misfolded 
or damaged proteins and organelles, which in turn pro-
vides essential elements for cell metabolism and survival, 
and this process has close connections to the wound 
repair process [1, 4]. Our previous study showed that 
epidermal cell autophagy was inhibited in diabetic skin, 
which subsequently compromised epidermal cell func-
tions, including proliferation and emigration, as well as 
further re-epithelialization, leading to delayed healing 
or no healing [5, 6]. Thus, dysfunction of epidermal cell 
autophagy is considered to be a significant pathophysi-
ological change in diabetic skin during wound healing, 
and it undoubtedly provides support to further improve 
defects in epidermal cell autophagy as a therapeutic strat-
egy for diabetic wounds.

Bone marrow mesenchymal stem cells (BMSCs) 
are multipotent stem cells that have demonstrated 
the potency to self-renew and differentiate into mul-
tiple lineages. Compelling evidence has shown the 
therapeutic effects of BMSCs on tissue repair [7, 8]. 
Although BMSC-based therapies for wound healing 
have been introduced in clinical trials [9], the molec-
ular mechanisms are still largely elusive for other 
cellular processes that are regulated during  BMSC 
treatment and determine cell apoptosis, autophagy, 
migration, proliferation, survival and senescence. 
Indeed, it is a critical theme that BMSCs exert 

beneficial effects against various diseases through 
paracrine factor production rather than differentia-
tion. For example, BMSCs exhibit their immunomod-
ulatory properties in the experimental moles of heart 
disease and stroke by secreting transforming growth 
factor beta 1 (TGF-β1) [10–12]. Moreover, TGF-β 
proteins have been explored in recent years due to the 
promising potential they hold in the regulation of cell 
autophagy [13, 14]. However, whether BMSCs contrib-
ute to improving epidermal cell autophagy dysfunc-
tion to promote diabetic wound healing through their 
paracrine effects or the role of BMSC-derived TGF-β1 
during this process has not been reported. Thus, there 
is a strong need for insight into the potential pro-
autophagy effect of BMSCs on diabetic wound healing, 
especially the link between BMSC-derived TGF-β1 
and epidermal cell autophagy.

Hypoxia is not only a vital  component of the BMSC 
microenvironment in bone marrow but also a typi-
cal pathological phenomenon of diabetic wounds that 
surround the transplanted BMSCs. Our previous stud-
ies have shown that cells on the wound site are nor-
mally deprived of O2 [15], which is mainly attributed to 
enhanced oxygen consumption and insufficient blood 
supply to wound tissue [16]. In addition, compelling 
evidence is accumulating for the critical influence of 
the microenvironment surrounding BMSCs on BMSC-
secreted bioactive molecules, which then exhibit par-
acrine effects on neighboring cells [17]. Therefore, an 
exploration of the paracrine activity of hypoxic BMSCs 
can aid in improving our understanding of the thera-
peutic effect of BMSCs for diabetic wound repair.

In this study, we demonstrated that hypoxia enhanced 
TGF-β1 secretion by BMSCs, which was mediated by 
hypoxia-induced factor-1 alpha (HIF-1α), and BMSCs 
exert a positive therapeutic benefit for diabetic wound 
healing by restoring epidermal cell autophagy through 
the HIF-1α/TGF-β1/SMAD pathway.

Results:  First, we demonstrated that hypoxic conditions intensify HIF-1α-mediated TGF-β1 secretion by BMSCs. Then, 
the further data revealed that BMSC-derived TGF-β1 was responsible for the activation of epidermal cell autophagy, 
which contributed to the induction of epidermal cell proliferation and migration. Here, the SMAD signaling pathway 
was identified as downstream of BMSC-derived TGF-β1 to regulate HaCaT cell autophagy. Moreover, the administra-
tion of BMSCs to diabetic wounds increased epidermal autophagy and the rate of re-epithelialization, leading to 
accelerated healing, and these effects were significantly attenuated, accompanied by the downregulation of Smad2 
phosphorylation levels due to TGF-β1 interference in BMSCs.

Conclusion:  In this report, we present evidence that uncovers a previously unidentified role of hypoxic BMSCs in 
regulating epidermal cell autophagy. The findings demonstrate that BMSC-based treatment by restoring epidermal 
cell autophagy could be an attractive therapeutic strategy for diabetic wounds and that the process is mediated by 
the HIF-1α/TGF-β1/SMAD pathway.

Keywords:  Bone marrow mesenchymal stem cells, TGF-β1, Autophagy, Diabetic wound
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Methods
Ethics statement
All animal procedures in this study were conducted in 
accordance with the committee guidelines of Shenzhen 
People’s Hospital for animal experiments, which met the 
NIH guidelines for the care and use of laboratory animals 
(NIH Pub. No. 85-23, revised 1996).

Cell culture
hBMSCs were purchased from American Type Culture 
Collection (ATCC, Manassas, USA). mBMSCs were 
obtained from Cyagen Biosciences Company (Guang-
zhou, China). These cells were cultured with a Mesen-
chymal Stem Cell Growth Kit for Bone Marrow-derived 
MSCs (ATCC PCS-500-041) (supplemented with rh 
FGF basic: 125  pg/mL, rh IGF-1: 15  ng/mL, 7% fetal 
bovine serum (FBS) and L-Alanyl-L-Glutamine: 2.4 mM). 
Hypoxic preconditioning was induced in an oxygen con-
trol incubator (Smartor 118, Zhejiang, China) filled with 
5% CO2 and 90–94% N2. The oxygen concentrations and 
hypoxic incubation times were indicated as shown. Cells 
cultured under normoxic conditions (21% O2) served as 
a control.

The human keratinocyte (HaCaT) cell line was pur-
chased from the Cell Bank of the Chinese Academy of 
Sciences (Shanghai, China) (originally from American 
Type Culture Collection (Manassas, USA)) and was cul-
tured in Minimum Essential Medium (MEM; Procell 
Life Science & Technology, PM150410) containing 10% 
FBS (Gibco, A3160802) and 1% penicillin and streptomy-
cin (Gibco). HaCaT cells were treated with high glucose 
(HG) (25 mM glucose) and 1% O2 hypoxia.

Preparation of CM
To collect CM from hypoxia-preconditioned BMSCs, 
3 × 105 BMSCs were seeded into 10-cm dishes and 
grown to 80% confluence. The culture medium was then 
replaced with DMEM containing 0.1% FBS, and the cells 
were cultured under hypoxic or normoxic conditions. 
Then, the media was collected.

Western blot analysis
Cells were harvested and washed twice with ice-cold 
PBS and lysed with protein extraction agent (Beyotime, 
Beijing, China). Proteins (25–50  μg) were loaded and 
run on a 6–10% SDS/PAGE gel and then transferred 
onto PVDF membranes (Millipore, Billerica, MA). After 
PVDF membranes were blocked at room temperature 
for 1  h, the membranes were incubated with primary 
antibodies overnight at 4  °C. The primary antibodies 
used in the study included HIF-1α (1:5000, Proteintech, 
20960–1-AP), TGF-β1 (1:1000, Abcam, ab215715), TGF-
β2 (1:1000, Abcam, ab36495), TGF-β3 (1:1000, Abcam, 

ab15537), ATG5 (1:1000, HUABIO, ET1611-38), ATG7 
(1:1000, HUABIO, ET1610-53), LC3B (1:1000, HUA-
BIO, ET1701-65), BECN1 (1:1000, HUABIO, R1509-1), 
SQSTM1 (1:500, HUABIO, R1309-8), SMAD2 (1:1000, 
CST, #5339), phospho-SMAD2 (1:1000, CST, #18338), 
SMAD4 (1:1000, CST, #8685), mTOR (1:1000, CST, 
#2983), p-mTOR(ser2448) (1:1000, CST, #5536), ERK1/2 
(1:1000, CST, #4695), p-ERK1/2 (1:2000, CST, #4370), 
β-Actin (#3700  s, 1:1000, CST), GAPDH (1:1000, CST, 
#5174S), and Lamin B1 (1:1000, CST, #13435S). After 
that, the membranes were incubated with secondary 
antibodies for 1  h at room temperature. The protein 
bands were visualized using Millipore’s enhanced chemi-
luminescence (ECL) system and detected using MultiIm-
age Light Cabinet Filter Positions (Alpha Innotech, San 
Leandro, CA, USA). The intensity of each band was ana-
lyzed by ImageJ software (NIH, Bethesda, MD, USA).

Immunofluorescence (IF) staining
After being treated, the cells on glass coverslips were 
fixed in 4% paraformaldehyde for 30 min, and mouse skin 
was fixed in 4% paraformaldehyde for 2  days and then 
resected for frozen sectioning. The samples were washed 
three times with PBS, blocked with 10% goat serum for 
1  h, nested, incubated with primary antibodies at 4  °C 
overnight and washed three times with phosphate-buff-
ered saline (PBS). Next, the samples were stained with 
fluorescent secondary antibodies for 1  h at 37  °C. The 
following primary antibodies were used: HIF-1α (1:200, 
Proteintech, 20960-1-AP), ATG5 (1:200, HUABIO, 
ET1611-38), ATG7 (1:200, HUABIO, ET1610-53), K14 
(1:200, Proteintech, 60320-1-Ig), and SMAD4 (1:200, 
CST, #8685). Nuclei were then counterstained with DAPI 
(Abcam) before imaging. IF images were captured using 
fluorescence microscopy and confocal microscopy (Leica 
Microsystems, Germany).

Cell viability assay
Cell viability was determined after 12, 24, 36, 48 and 
72 h of incubation with different media at 37 °C by a Cell 
Titer 96® Aqueous One Solution Cell Proliferation Assay 
(MTS) from Promega (Madison, WI, USA), a colorimet-
ric method for determinating the number of viable cells 
in proliferation assays. All experiments were repeated in 
triplicate.

ELISA
CM from normoxic and hypoxic BMSCs were collected 
and subjected to ELISA analysis to determine the TGF-
β1, TGF-β2, and TGF-β3 contents. ELISA kits from R&D 
Systems (Minneapolis, MN, USA) were used according to 
the manufacturer’s protocols. Concentrations were nor-
malized to the total protein content.
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Ethynyl‑2′‑deoxyuridine (EdU) assay
Cell proliferation was also measured using EdU assay kit 
EdU assay kit (RiboBio, C10310-1) according to the man-
ufacturer’s instructions. Briefly, cells were seeded into 
24-well plates at a density of 5.0 × 104 cells/well and cul-
tured for 24 h before the administration of Edu (50 mM). 
Then, Apollo and DNA stains were added. Finally, pro-
liferation images were acquired and analyzed by fluores-
cence microscopy (Leica Microsystems, Germany).

Scratch assay
We utilized a scratch assay to measure HaCaT cell migra-
tion. HaCaT cells were plated on 6-well plates. Cell mon-
olayers were scratched with 200 µl plastic pipets. At 24 h 
after wounding, cells that migrated into the cell-free 
area were monitored with an inverted light microscope 
(Olympus, Japan). Cell migration was assessed by the 
residual wound rate: (residual scratch width / original 
scratch width) × 100%.

siRNA transfection
On the day prior to transfection, cells were plated to the 
required cell density (at least 70% confluence). Small 
interfering RNAs (siRNAs) specific for ATG5, ATG7, 
TGF-β1, SMAD2, HIF-1α and the corresponding scram-
bled siRNA (siNC) were diluted in Opti-MEM (Life 
Technologies) and incubated for 5 min at room temper-
ature. The diluted siRNAs were added to diluted Lipo-
fectamine 2000 (Invitrogen, USA) and further incubated 
for 20  min. The complex was added according to the 
manufacturer’s protocol.

Quantitative real‑time reverse transcription PCR (qRT‑PCR)
AG RNAex Pro RNA Reagent (AG21102, Accurate 
Biotechnology(Hunan)Co., Ltd) was used to extract total 
RNA from cells. Complementary DNA (cDNA) was syn-
thesized using the PrimeScript RT reagent kit (RR037A, 
Takara, Japan) and real-time PCR was performed with TB 
Green Premix Ex Taq (RR420A, Takara, Japan) on a Ste-
pOnePlus quantitative PCR system (Applied Biosystems, 
USA). Expression levels were normalized to the internal 
control (GAPDH) and the relative expression levels were 
evaluated using the comparative 2−ΔΔCT method. The 
specific primers for ATG5, ATG7 and GAPDH were pur-
chased from Sangon Biotech Co., Ltd. (Shanghai, China). 
The primer sequences are listed in Additional file 1: Fig. 
S1.

Full‑thickness cutaneous wound model
A total of thirty-six 8-week-old male type-2 diabetic mice 
(db/db) were acquired from Shanghai Slac Laboratory 
Animal Co., Ltd. (Shanghai, China). The full-thickness 
cutaneous wound model was established as previously 

described. Briefly, the mice were anesthetized by 5% 
pelltobarbitalum natricum (25  mg/kg) and Sumianxin 
(0.1  ml/kg), and an 8-mm diameter wound was created 
by a punch biopsy instrument with moderate force on 
the back of the mouse. Next, the middle of the outlined 
region of skin was sharply excised along the outline with 
a pair of scissors. The excised tissues were full-thickness 
in depth, leaving subcutaneous dorsal muscle exposed 
after the excision. Before being injected, mBMSCs were 
transfected with TGF-β1 siRNA or negative control 
siRNA, 2 × 106 cells were suspended in 4 ml of PBS, and 
then the cells were intradermally injected around each 
wound. PBS (4 ml) was used as a control.

Haematoxylin and eosin (H&E)
For histological analysis, the excised skin samples were 
fixed in 4% paraformaldehyde for 24 h, embedded in par-
affin, and then stained with H&E (Sigma, Poole, UK). The 
stained sections were scanned for digital imaging by light 
microscopy (Olympus BX51, Olympus, Japan).

Statistical analyses
All experiments were performed at least in triplicate to 
be eligible for the indicated statistical analysis. Statisti-
cal comparisons were then performed with GraphPad 
Prism 9.0 (GraphPad Software). All data are presented as 
the mean ± SD. The Shapiro–Wilk test was used to check 
whether the data were normally distributed. Unpaired t 
test was used to examine the difference if the data satis-
fied the normality requirement, otherwise, Wilcoxon test 
was used. Statistical significance among three or more 
groups was assessed by one-way analysis of variance 
(ANOVA), and differences between two or more groups 
at different time points were estimated using two-way 
ANOVA. The Bonferroni method was used for multiple-
group comparisons after ANOVA. A two-sided P value 
of less than 0.05 was considered statistical significance 
(*P < 0.05, **P < 0.01).

Results
Hypoxic conditions promoted human BMSC (hBMSC) 
survival and HIF‑1α‑mediated TGF‑β secretion
To confirm the establishment of a hypoxic model, we first 
examined the expression of HIF-1α in hBMSCs after dif-
ferent times (12, 24 and 48 h) of hypoxic conditions (1% 
O2) and normoxic conditions (Fig. 1a–c). Next, the MTS 
assay was utilized to evaluate BMSC viability subjected 
to hypoxic or normoxic conditions for different times 
(12, 24, 36 and 48  h). As shown in Fig.  1d, the viability 
of BMSCs under hypoxic conditions was significantly 
higher than that under normoxic conditions at differ-
ent periods, suggesting that hypoxic conditions favor 
BMSC survival. Considering that the paracrine activity 



Page 5 of 16Shi et al. Stem Cell Research & Therapy          (2022) 13:314 	

Fig. 1  Hypoxia favors hBMSC survival and HIF-1α-mediated TGF-β1 secretion. a Western blotting and b quantitative analysis were used to analyze 
the expression level of HIF-1α in hBMSCs after different times (12, 24 and 48 h) of hypoxia (1% O2) and normoxia. c Representative fluorescence 
images of HIF-1α-stained hBMSCs under different hypoxic and normoxic conditions. Bar, 50 μm. d The viability of hBMSCs was determined using 
MTS assays after hypoxia and normoxia for different times (12, 24, 36 and 48 h). e Western blotting and f quantitative analysis were used to analyze 
the expression levels of TGF-β1 in hBMSCs after 48 h of hypoxic and normoxic conditions. g ELISA was performed to measure the protein level of 
secreted TGF-β1 in CM from hBMSCs subjected to 48 h of hypoxic and normoxic conditions. h Western blotting and i quantitative analysis were 
used to analyze the expression levels of HIF-1α and TGF-β1 in control hBMSCs and siHIF-1α hBMSCs after 48 h of hypoxia. j ELISA was performed to 
measure TGF-β1 secretion levels in the CM of control hBMSCs and siHIF-1α hBMSCs after 48 h of hypoxia treatment. Mean ± SEM. n = 3. *P < 0.05, 
**P < 0.01
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of BMSCs is potentiated by hypoxia and exerts benefi-
cial effects against tissue damage [18], we investigated 
whether hypoxia enhanced the expression and secretion 
of TGF-β1 in BMSCs. Western blot results indicated 
that hypoxic conditions for 48  h significantly promoted 
the expression of TGF-β1 in hBMSCs compared with 
normoxic conditions (Fig.  1e, f ). We further measured 
and compared the levels of TGF-β1 in hypoxic hBMSC-
derived conditioned medium (hyCM) vs. normoxic 
hBMSC-derived conditioned medium (noCM) by ELISA. 
As shown in Fig.  1g, the level of TGF-β1 was signifi-
cantly higher in hyCM that in noCM. Next, we explored 
how hypoxic conditions stimulate the expression and 
secretion of TGF-β1 in hBMSCs. Of note, recent studies 
identified HIF-1α as a key regulator of TGF-β1 expres-
sion in hypoxic cells [19, 20]. Our results also indicated 
that inhibiting HIF-1α expression by siRNA interference 
decreased TGF-β1 expression and secretion in hBMSCs 
subjected to hypoxia (Fig. 1h–j), suggesting that HIF-1α 
participated in the induction of TGF-β1 in hBMSCs in 
response to hypoxic conditions.

CM from hypoxic hBMSCs induced HaCaT cell autophagy, 
proliferation and migration
To identify the therapeutic effect of hypoxic hBMSCs on 
epidermal cells in a paracrine manner, we incubated high 
glucose-treated (HG-treated) HaCaT cells under hypoxic 
conditions in different CMs, including hyCM and noCM, 
for 24 h. No hBMSC-derived CM treatment served as a 
control (conCM). Next, the expression of autophagy-
related proteins was analyzed by Western blotting, and 
the results demonstrated significant increases in the 
autophagy-related proteins ATG5, ATG7, LC3B-I/II, 
BECN1 (beclin-1) and SQSTM1 (p62, the autophagy 
receptor) in the hyCM group compared with the noCM 
and conCM groups (Fig.  2a, b). Because epidermal cell 
autophagy enables epidermal cell proliferation and 
migration [4], we further evaluated the beneficial effects 
of hyCM on HaCaT cell proliferation and migration. 
The MTS assay results indicated marked upregulation of 
HaCaT cell viability in the hyCM group compared with 
the other two groups (Fig. 2c). Likewise, the results of the 
EdU proliferation assay demonstrated that the number of 
EdU-stained HaCaT cells was higher in both the hyCM 
and noCM groups than in the conCM group (Fig.  2d). 
Furthermore, hyCM treatment increased the number of 
EdU-stained cells (Fig.  2d). In addition, a scratch assay 
revealed that hyCM induced more HaCaT cell migration 
than that in the noCM and conCM groups (Fig.  2e, f ). 
These results confirmed that hypoxic hBMSCs support 
HaCaT cell autophagy, proliferation and migration in a 
paracrine manner.

The proliferative and migratory effects of hypoxic hBMSCs 
on HaCaT cells could be blocked by suppressing autophagy
To further identify the biological meaning of the 
autophagic effect of hypoxic hBMSCs on HaCaT cell 
proliferation and migration, we first used a stable siRNA 
expression system targeting the essential autophagy 
genes ATG5 and ATG7 in HaCaT cells subjected to 
hyCM for 24 h. PCR and Western blotting were used to 
examine the transfection efficiency of siRNA in HaCaT 
cells (Fig. 3a–c). Moreover, LC3B-I/II and SQSTM1 deg-
radation indicated that siATG5 and siATG7 were effec-
tive in suppressing autophagic flux (Fig. 3d, e). The results 
of the MTS and EdU proliferation assays showed that the 
proliferation of HaCaT cells exposed to hyCM was sig-
nificantly attenuated due to autophagy defects (Fig.  3f, 
g). Then, we examined HaCaT cell migration potential 
during autophagy dysfunction. As shown in Fig.  3h, i, 
HaCaT cells with impaired autophagy exhibited delayed 
wound closure in the presence of hyCM, suggesting that 
the migratory effect of hypoxic hBMSCs was inhibited 
due to HaCaT cell autophagy deficiency. In summary, the 
effect of hypoxic hBMSCs on epidermal cell autophagy 
contributes to promoting HaCaT cell proliferation and 
migration.

TGF‑β1 was required for the effect of hypoxic hBMSCs 
on HaCaT cell autophagy
Next, we tested the hypothesis that hBMSC-derived 
TGF-β1 is responsible for the activation of epidermal 
cell autophagy by CM from hypoxic hBMSCs. We used 
hypoxic hBMSCs (hy-hBMSCs) transfected with TGF-
β1 siRNA (hypoxia + siTGF-β1) or negative control 
siRNA (hypoxia + siNC). We confirmed the successful 
knockdown of TGF-β1 in siRNA-transfected hy-hBM-
SCs by analyzing TGF-β1 levels in hy-hBMSCs and CM 
from hy-hBMSCs (Fig.  4a–c). Further, we examined 
the expression of autophagy-related proteins in HaCaT 
cells exposed to CM. As shown in Fig.  4d, e, Western 
blot analysis revealed that the expression of autophagy-
related proteins was lower in HaCaT cells cultured in 
CM from siTGF-β1/hy-hBMSCs (siTGF-β1/hyCM) than 
in HaCaT cells cultured in CM from siNC/hy-hBMSCs 
(siNC/hyCM). These results indicate the paracrine effect 
of TGF-β1 on hy-hBMSC-induced HaCaT cell autophagy.

The SMAD signaling pathway functioned downstream 
of BMSC‑derived TGF‑β1 in the regulation of HaCaT cell 
autophagy
Notably, at the molecular level, the regulation of TGF-
β1 for the expression of autophagy genes is indirect 
and  needs to be mediated by downstream signaling 
pathways. Since SMAD and the non-SMAD-dependent 
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signaling pathway function downstream of TGF-β1 in 
regulating many fundamental aspects of cellular behav-
ior, we investigated whether these pathways contrib-
ute to this process. As shown in Fig.  5a, b, siTGF-β1/
hyCM significantly downregulated the phosphoryla-
tion  level of SMAD2 and slightly changed total SMAD4 
compared with the effects of siNC/hyCM. However, 
IF analysis showed that SMAD4 was mainly localized 
to the nucleus in HaCaT cells in the siNC/hyCM group 
compared to those in the siTGF-β1/hyCM and conCM 
groups (Fig.  5c). Thus, we further used Western blot 

analysis to examine SMAD4 expression in the nucleus 
and cytoplasm of HaCaT cells. Consistent with the IF 
data, SMAD4 was significantly upregulated in the nuclei 
of HaCaT cells in the siNC/hyCM group, while the 
nuclear expression of SMAD4 protein was notably sup-
pressed in the other groups (Fig. 5d, e). In addition, the 
activities of other SMAD-independent pathways were 
not significantly different among the three groups (Addi-
tional file 1: Fig. S2). Next, we investigated the role of the 
SMAD pathway through a loss-of-function assay. After 
SMAD2 siRNA was transfected into HaCaT cells (Fig. 5f, 

Fig. 2  Hypoxic hBMSCs promote HaCaT cell autophagy, proliferation and migration in a paracrine manner. a Western blotting and b quantitative 
analysis were used to analyze the expression levels of ATG5, ATG7, LC3B-I/II, BECN1 and SQSTM1 in HaCaT cells after treatment with different 
conditioned media for 24 h. c MTS and d EdU assays were used to assess the proliferation of HaCaT cells after 24 h of treatment with different CM. 
Bar, 100. e Scratch assays and f quantitative analysis were performed to detect the migration of HaCaT cells after the cells were treated with different 
conditioned media for 24 h. Bar, 200 μm. Mean ± SEM. n = 3. *P < 0.05, **P < 0.01
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Fig. 3  The autophagic effect of hypoxic hBMSCs promotes HaCaT cell proliferation and migration. a qRT-PCR and b, c Western blotting was used 
to measure the mRNA and protein levels of ATG5 and ATG7 to evaluate the efficiency of siATG5 and siATG7 in HaCaT cells at 24 h after hyCM 
administration. d Western blotting and e quantitative analysis were used to analyze the expression levels of LC3B-I/II and SQSTM1 in control HaCaT 
cells and siATG5 and siATG7 HaCaT cells after the cells were treated with different conditioned media for 24 h. f MTS and g EdU assays were used 
to assess the proliferation of these HaCaT cells after 24 h of treatment with different CM. Bar, 100. h Scratch assays and i quantitative analysis were 
performed to detect the migration of HaCaT cells after treatment with different conditioned media for 24 h. Bar, 200 μm. Mean ± SEM. n = 3. 
*P < 0.05, **P < 0.01
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g), the activation of HaCaT cell autophagy was signifi-
cantly attenuated in the presence of hyCM (Fig.  5h, i). 
These results suggest that the SMAD signaling pathway 
acts downstream of hBMSC-derived TGF-β1 to regulate 
HaCaT cell autophagy.

Knockdown of TGF‑β1 in mouse BMSCs (mBMSCs) reduced 
the therapeutic effect on diabetic wounds by attenuating 
the autophagic potential of mBMSCs
To further investigate the therapeutic effect of BMSCs on 
diabetic wound repair and the role of the TGF-β1/SMAD 

signaling pathway in this process, diabetic wounds were 
administered differentially treated mBMSCs on three 
consecutive days (days 0–2), and the quality of wound 
healing was further evaluated. The results showed that 
mBMSC treatment remarkably accelerated wound clo-
sure from day 7 to day 13, which was partly attenuated 
due to the knockdown of TGF-β1 in mBMSCs (Fig.  6a, 
b). The H&E staining results of day 7 wounds further 
showed that the newly healed wounds in the siNC/
mBMSC group resulted from rapid re-epithelialization, 
which was reversed due to TGF-β1 interference in the 

Fig. 4  hBMSC-derived TGF-β1 contributes to the activation of HaCaT cell autophagy by hypoxic hBMSCs. a Western blotting and b quantitative 
analysis were used to measure the protein level of TGF-β1 to evaluate the efficiency of siTGF-β1 in hBMSCs after 24 h of hypoxia exposure. c ELISA 
was performed to measure the protein level of secreted TGF-β1 in the CM from control hBMSCs and siTGF-β1 hBMSCs after 24 h of hypoxia. d 
Western blotting and e quantitative analysis were used to analyze the expression levels of ATG5, ATG7, LC3B-I/II, BECN1 and SQSTM1 in HaCaT cells 
after 24 h of exposure to CM from control hy-hBMSCs and siTGF-β1 hy-hBMSCs. Mean ± SEM. n = 3. *P < 0.05, **P < 0.01

(See figure on next page.)
Fig. 5  The SMAD pathway is responsible for HaCaT cell autophagy induction by hBMSC-derived TGF-β1. a Western blotting and b quantitative 
analysis were used to analyze the expression levesl of SMAD2, p-SMAD2 and SMAD4 in HaCaT cells subjected to CM from control hy-hBMSCs and 
siTGF-β1 hy-hBMSCs for 24 h. c Representative fluorescence images of SMAD4-stained HaCaT cells after 24 h of treatment with different CM. Bar, 
20 μm. d Western blotting and e quantitative analysis were used to examine the proportion of SMAD expression in the nucleus and cytoplasm of 
HaCaT cells subjected to 24 h of different CM. f Western blotting and g quantitative analysis were used to measure the protein level of SMAD2 to 
evaluate the efficiency of siSMAD2 in HaCaT cells at 24 h after hyCM administration. h Western blotting and i quantitative analysis were used to 
analyze the expression levels of LC3B-I/II, BECN1 and SQSTM1 in control HaCaT cells and siSMAD2 HaCaT cells at 24 h after hyCM administration. 
Mean ± SEM. n = 3. *P < 0.05, **P < 0.01
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Fig. 5  (See legend on previous page.)
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Fig. 6  Knockdown of TGF-β1 in mBMSCs attenuates the therapeutic effects on diabetic wounds. a Representative pictures and b quantitation of 
the healing time of control mBMSC-treated and siTGF-β1 mBMSC-treated and untreated diabetic wounds after an 8-mm primary biopsy. n = 6. c 
Representative H&E-stained images of the wounds on day 7. The epithelium is marked with a dotted line. Bars, 50 μm. d Western blotting and e 
quantitative analysis were used to analyze the expression levels of Smad2, p-Smand2, atg5, atg7, lc3b-I/II, beclin1 and p62 in the wounds on day 
7 after wounding. f Representative images of wounded (day 7) skin stained to show the expression of atg5 or atg7 (green) and K14 (red) in the 
wounds (blue). Bar, 100 μm. Mean ± SEM. n = 3 (in addition to the quantitation of healing time). *P < 0.05, **P < 0.01
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siTGF-β1/mBMSC group (Fig. 6c). In the present study, 
we found that the expression of autophagy-related pro-
teins in wound tissue was significantly induced in the 
siNC/mBMSC group at 7 days postwounding, accompa-
nied by the upregulation of Smad2 phosphorylation lev-
els compared with those in the other two groups (Fig. 6d, 
e). In addition, we performed double immunostaining 
for keratin 14 (K14) (a keratinocyte marker) and atg5 or 
atg7 to identify keratinocyte-specific autophagy at 7 days 
postwounding. A small number of cells that were posi-
tive for both K14 and atg5 or atg7 were detected in the 
siTGF-β1/mBMSC group, and larger numbers of cells 
were observed in the siNC/mBMSC group (Fig.  6f ). 
These data suggest that BMSC-based treatment could 
serve as an effective agent for diabetic wound repair 
through the activation of epidermal autophagy, which is 
attributed to the TGF-β1/SMAD pathway.

Discussion
Since the exploration of MSC-based therapy decades ago 
[21], the biological activity and regenerative medicine 
of BMSCs have been focal topics in the broad fields of 
diabetic wound repair. Given the broad biological func-
tions of BMSCs, investigating the pleiotropic effects of 
BMSCs and their downstream regulatory mechanisms 
will help to better understand BMSC-based therapeutics 
for diabetic wounds. In this report, we present data that 
revealed a previously unrecognized function of hypoxic 
BMSCs in the modulation of epidermal cell autophagy. 
First, the analysis found that TGF-β1 secretion by 
hypoxic BMSCs was significantly increased and that the 
process was mediated by HIF-1α. Furthermore, BMSC-
derived TGF-β1 was responsible for activating epidermal 
cell autophagy, which subsequently contributed to poten-
tiating epidermal cell proliferation and migration. Then, 
it was demonstrated that the SMAD-dependent signal-
ing pathway functions downstream of BMSC-derived 
TGF-β1 in the regulation of epidermal cell autophagy. 
In  vivo, BMSCs provided beneficial effects for diabetic 
wound healing, displaying augmentation of epidermal 
autophagy and rapid re-epithelialization, while down-
regulation of TGF-β1 in BMSCs resulted in inhibition of 
SMAD-dependent signaling, autophagy limitation of epi-
dermal cells and delayed wound healing. Collectively, this 
study revealed a novel function of hypoxic BMSCs in the 
modulation of epidermal cell autophagy via the HIF-1α/
TGF-β1/SMAD signaling pathway (Fig.  7), indicating 
that BMSC-based treatment by restoring epidermal cell 
autophagy could be an attractive therapeutic strategy for 
diabetic wounds.

During the exploration of the therapeutic effect and 
molecular mechanisms of BMSCs, these cells are usu-
ally exposed to normoxia (21% O2) under in vitro culture 

conditions, which is very different from the oxygen con-
centrations found in the body. In fact, a large propor-
tion of BMSCs are present in a hypoxic environment 
(1–8% O2) in the bone marrow [22]. Moreover, BMSCs 
transplanted into diabetic wound sites inevitably faced 
diminished oxygen availability due to vasculopathies 
such as atherosclerosis and impaired vascular struc-
ture, and heightened oxygen consumption. In addition, 
some studies exploring the effect of locally administered 
BMSCs on injured tissues found that hypoxic condi-
tions could enhance cell survival and inhibit extensive 
cell apoptosis, which in turn potentiated the therapeutic 
effect of BMSCs [23]. Most importantly, hypoxic condi-
tions have been shown to intensify the paracrine ability 
of BMSCs [24, 25]. These findings led us to hypothesize 
that hypoxic BMSCs could secrete more TGF-β1, thereby 
exerting a more robust therapeutic effect than normoxic 
BMSCs. In this study, we found that hypoxic conditions 
significantly intensified TGF-β1 expression and secre-
tion in BMSCs. Furthermore, the data demonstrated that 
hypoxia favors BMSCs survival, which is consistent with 
previous reports that the proliferation ability of BMSCs 
subjected to hypoxic conditions was enhanced, accom-
panied by the upregulation of the expression of cell cycle 
regulators, such as p21, p27, p53 and p-Rb [26]. Notably, 
hypoxia-induced TGF-β1 expression and secretion were 
accompanied by increased HIF-1α expression in BMSCs. 
Indeed, HIF-1α was not only shown to serve as a hypoxia 
sensor but has also been reported to be a crucial modula-
tor of oxygen homeostasis by modulating the transcrip-
tion of genes encoding proteins [27]. It has been reported 
that HIF-1α can bind to the hypoxia regulatory element 
of the TGF-β1 promoter, which is located between bp 
–1030 and –666 in front of the TGF-β1 promoter region, 
and stimulate TGF-β1 production in BMSCs [28]. Our 
results further indicated that knockdown of HIF-1α by 
siRNAs attenuated TGF-β1 expression and secretion in 
BMSCs subjected to hypoxia, suggesting that hypoxia-
induced TGF-β1 in BMSCs is tightly connected with 
HIF-1α expression.

At the cellular level, we found that CM from hypoxic 
BMSCs effectively induced not only epidermal cell 
autophagy but also epidermal cell migration and pro-
liferation. Autophagy is a crucial eukaryotic catabolic 
system that plays a pivotal role in regulating cellular 
balance and physiology. Thus, we further explored the 
biological role of BMSC-evoked autophagy in the induc-
tion of epidermal cell migration and proliferation. We 
found that epidermal cell functions, including prolifera-
tion and migration, which were potentiated by CM from 
hypoxic BMSCs, were compromised due to autophagy 
deficiency in epidermal cells. This effect could be due to 
the following reasons: (a) autophagy provides nutrient 
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and energy support for cells by degrading aggregated 
proteins, ribosomes and even damaged organelles, and 
autophagy inhibition leads to insufficient nutrient and 
energy supply and thus metabolic stress [29], thereby 
resulting in the inhibition of epidermal cell proliferation 
and migration; (b) autophagy adapts cells to oxidative 
damage through the maintenance of ROS at low physi-
ological levels [30], but autophagy deficiency impairs cell 

viability due to uncontrolled ROS formation [31]; and 
(c) the autophagy pathway in cells is critical for regulat-
ing DNA damage repair [32, 33]; thus, the dysregula-
tion of autophagy results in programmed cell death [34]. 
Therefore, the present findings indicated that the effect of 
hypoxic BMSCs on the induction of epidermal cell prolif-
eration and migration is autophagy dependent, which not 
only emphasizes the value of the pro-autophagy effect 

Fig. 7  Schematic of epidermal cell autophagy activation by hypoxic hBMSCs: the primary event in this process is HIF-1α expression in hBMSCs in 
response to hypoxic conditions, which in turn drives TGF-β1 expression and secretion in hypoxic hBMSCs. Then, TGF-β1 from hBMSCs binds to the 
membrane-associated TGF-β receptors on epidermal cells and subsequently stimulates SMAD2/SMAD3 through direct phosphorylation, which 
further forms a trimer with SMAD4, and the complex is transferred to the epidermal cell nucleus. Activation of the SMAD pathway, in turn, induces 
autophagy in HaCaT cells
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of BMSCs on epidermal cells but also provides further 
research directions for exploring the molecular mecha-
nisms by which autophagy influences epidermal cell pro-
liferation and migration based on BMSC treatment.

TGF-β1, as an evolutionarily conserved secreted pro-
tein, can be read by neighboring cells and in turn acti-
vate intracellular signals to regulate a wide range of 
cellular processes [35]. Although the role of TGF-β1 as a 
key mediator of cell autophagy has been reported, there 
are conflicting studies about the impact of TGF-β1 in 
the regulation of cell autophagy. During the pathogen-
esis of liver fibrosis, Ning Lin et  al. reported that TGF-
β1 treatment ameliorates experimental hepatic fibrosis 
by inhibiting hepatic stellate cell (HSC) autophagy [36]. 
However, the effect of TGF-β1-driven autophagy has also 
been shown in renal epithelial cells [37] and lung epithe-
lial cells [38]. Consistent with the results in these cells, 
we uncovered that BMSC-derived  TGF-β1 was respon-
sible for the activation  of epidermal cell autophagy in 
our in vitro and in vivo system through loss-of-function 
assays. A distinct  cellular context could be utilized to 
explain the contradictory observations. In HSCs, TGF-
β1 treatment obstructs autophagic flux by upregulating 
mTOR signaling [39], which is recognized as a key nega-
tive pathway of autophagy [40]. However,  TGF-β1 from 
BMSCs did not affect the phosphorylation of mTOR in 
our in vitro study (Additional file 1: Fig. S2). The broad 
biological effect of TGF-β1 depends on SMAD and non-
SMAD mechanisms [41]. In the previous studies, ERK 
signaling was identified to be responsible for the pro-
autophagy potential of TGF-β1 in ovarian carcinoma 
and SMAD4-negative pancreatic ductal adenocarcinoma 
[42, 43], which was not observed in our study (Addi-
tional file  1: Fig. S2). Instead, we found that CM from 
hypoxic BMSCs increased SMAD2 phosphorylation 
levels and SMAD4 localization  in  the  nuclei  of epider-
mal cells, suggesting SMAD pathway activation in epi-
dermal cells. In TGF-β1/SMAD signaling, the binding 
of TGF-β1 to its receptor complex activates SMAD2/
SMAD3 through direct phosphorylation and further 
forms a trimer with SMAD4 that subsequently trans-
locates into the nucleus to facilitate gene transcription 
[44]. Regarding the essential role of the TGF-β1/SMAD 
signaling pathway in the modulation of cellular behav-
ior, we hypothesized that SMADs are the pivotal down-
stream mediators of epidermal cell autophagy activation 
in response to hypoxic BMSC-derived CM. The present 
study further showed that SMAD2 inhibition reversed 
the autophagy induction of epidermal cells treated with 
hypoxic BMSC-derived CM, implying that epidermal cell 
autophagy induction by BMSC-derived TGF-β1 relies 
on SMAD-dependent mechanisms. In addition to totally 
different genetic contexts, another possible explanation 

is that TGF-β1-induced autophagic flux through SMAD 
or non-SMAD pathways based on signaling kinetics. As 
described in previous papers, EGF-induced ERK activa-
tion occurs within 10 min in some cells, e.g., mast cells, 
while a similar effect requires several hours in other cells, 
e.g., pancreatic acinar cells [45, 46]. Taken together, his 
study sheds new light on the rich repertoire of TGF-β1/
SMAD signaling involved in the pro-autophagy effect of 
BMSCs in epidermal cells.

Wound repair is a complex and dynamic sequence that 
involves three major phases: inflammation, re-epitheliali-
zation, and resolution. It has become evident that various 
cells and the associated extracellular matrix orchestrate 
this process. Indeed, the dynamic influential nature of 
autophagy not only determines the proliferation and 
migration of epidermal cells in the wound bed but also 
directs the survival and fate of other cells as well as the 
transitions through the various phases of wound healing 
[47]. Previous work has shown that epidermal stem cells 
and progenitor cells maintain their self-renewal capa-
bility through autophagy [48]. Furthermore, autophagy 
is thought to be linked to the first and third phases of 
wound repair by triggering M1 macrophages to remove 
all damaged ECM debris [49] and the phenotypic shifts of 
fibroblasts [50]. Thus, more work needs to be performed 
exploring the relationship between the pro-autophagy 
effect of BMSCs and other cell types in the context of 
wound healing, which may provide added insight into the 
influence of BMSCs on diabetic wound repair. For stem 
cell-based therapy, in addition to BMSCs as an alterna-
tive to repair and regenerate tissues, adipose-derived 
mesenchymal stem cells (AD-MSCs) can serve as a stem 
cell source for many tissue engineering applications, 
including wound healing [3, 51], scars [52], skin photo-
aging [53, 54], and COVID-19 treatment [55–57]. How-
ever, whether the paracrine mechanism of AD-MSCs 
is involved in regulating cell autophagy during wound 
repair is still unclear. Thus, future studies should deter-
mine the autophagic potential of AD-MSCs in diabetic 
wound healing.

Conclusions
In conclusion, this study revealed a previously unidenti-
fied role of hypoxic BMSCs in regulating epidermal cell 
autophagy and highlighted the relationship between epi-
dermal cell autophagy and the restoration of cell prolif-
eration and migration as well as diabetic wound healing. 
These data further present a novel mechanistic view that 
hypoxic BMSCs support epidermal cell autophagy by the 
HIF-1α/TGF-β1/SMAD pathway, which simultaneously 
identifies BMSC-based treatment as an attractive thera-
peutic strategy for the clinical intervention of diabetic 
wounds.
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